This is an eXtendable-Output Function with the following claimed
security strengths against *all* adversaries:
Collision: min(d/2, 256)
Preimage: >= min(d, 256)
2nd Preimage: min(d, 256)
where d is the amount of output used, in bits.
* DIGEST_SHA3_[256,512] added as supported algorithms, which do
exactly what is said on the tin.
* test/bench now benchmarks all of the supported digest algorithms,
so it's possible to see just how slow SHA-3 is, though the message
sizes could probably use tweaking since this is very dependent on
the message size vs the SHA-3 rate.
These functions must really never fail; so have crypto_rand() assert
that it's working okay, and have crypto_seed_rng() demand that
callers check its return value. Also have crypto_seed_rng() check
RAND_status() before returning.
(These inputs are possible when Shadow starts the world at time_t 0,
and breaks our assumption that Tor didn't exist in the 1970s.)
Fixes regression introduced in 241e6b09. Fixes#16980.
The base64 and base32 functions used to be in crypto.c;
crypto_format.h had no header; some general-purpose functions were in
crypto_curve25519.c.
This patch makes a {crypto,util}_format.[ch], and puts more functions
there. Small modules are beautiful!
The runtime sanity checking is slightly different from the optimized
basepoint stuff in that it uses a given implementation's self tests if
available, and checks if signing/verification works with a test vector
from the IETF EdDSA draft.
The unit tests include a new testcase that will fuzz donna against ref0,
including the blinding and curve25519 key conversion routines. If this
is something that should be done at runtime (No?), the code can be
stolen from there.
Note: Integrating batch verification is not done yet.
Integration work scavanged from nickm's `ticket8897_9663_v2` branch,
with minor modifications. Tor will still sanity check the output but
now also attempts to catch extreme breakage by spot checking the
optimized implementation vs known values from the NaCl documentation.
Implements feature 9663.
Routers now use TAP and ntor onion keys to sign their identity keys,
and put these signatures in their descriptors. That allows other
parties to be confident that the onion keys are indeed controlled by
the router that generated the descriptor.