mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-30 23:53:32 +01:00
94 lines
2.4 KiB
R
94 lines
2.4 KiB
R
|
## The waiting time for a node (assuming no overloaded nodes)
|
||
|
## x: 1/bandwidth
|
||
|
## q: selection probability
|
||
|
## L: network load
|
||
|
wait <- function(x,q,L) {
|
||
|
a <- q*L*x*x
|
||
|
b <- 2*(1-q*x*L)
|
||
|
return (x + a/b)
|
||
|
}
|
||
|
|
||
|
## The weighted wait time
|
||
|
wwait <- function(x,q,L) {
|
||
|
return (q*wait(x,q,L))
|
||
|
}
|
||
|
|
||
|
## Average latency, returning NA for infinite
|
||
|
netLatency <- function(x, q, L) {
|
||
|
if (any(x*q*L <0 | x*q*L >1)) {
|
||
|
return (NA)
|
||
|
} else {
|
||
|
return (sum(wwait(x, q, L)))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
## Load in data files
|
||
|
t1 <- read.table("opt_1e-6.pickle.dat", header=TRUE)
|
||
|
t2 <- read.table("opt_1e-3.pickle.dat", header=TRUE)
|
||
|
t3 <- read.table("opt_1e-1.pickle.dat", header=TRUE)
|
||
|
t4 <- read.table("opt_0.75.pickle.dat", header=TRUE)
|
||
|
t5 <- read.table("opt_0.5.pickle.dat", header=TRUE)
|
||
|
t6 <- read.table("opt_0.25.pickle.dat", header=TRUE)
|
||
|
t7 <- read.table("opt_0.1.pickle.dat", header=TRUE)
|
||
|
tt <- read.table("opt_tor.pickle.dat", header=TRUE)
|
||
|
|
||
|
## Node bandwidth and reciprocal
|
||
|
bw <- t1$bw
|
||
|
x <- 1/bw
|
||
|
|
||
|
## Calculate network capcity
|
||
|
capacity <- sum(bw)
|
||
|
|
||
|
## Calculate selection probabilties that Tor uses
|
||
|
torProb <- bw/sum(bw)
|
||
|
|
||
|
## Load values to try
|
||
|
varyLoad <- seq(0.01,0.93,0.01)
|
||
|
latencyTor <- c()
|
||
|
latency3 <- c()
|
||
|
latency4 <- c()
|
||
|
latency5 <- c()
|
||
|
for (L in varyLoad) {
|
||
|
latencyTor <- append(latencyTor,
|
||
|
netLatency(x, torProb, capacity*L))
|
||
|
latency3 <- append(latency3,
|
||
|
netLatency(x, t3$prob, capacity*L))
|
||
|
latency4 <- append(latency4,
|
||
|
netLatency(x, t4$prob, capacity*L))
|
||
|
latency5 <- append(latency5,
|
||
|
netLatency(x, t5$prob, capacity*L))
|
||
|
}
|
||
|
|
||
|
## Output graph
|
||
|
pdf("vary-network-load.pdf")
|
||
|
|
||
|
## Set up axes
|
||
|
yFac <- 1000
|
||
|
xFac <- 100
|
||
|
|
||
|
ylim <- range(na.omit(c(latencyTor, latency3, latency4, latency5)))
|
||
|
ylim <- c(0,0.015) * yFac
|
||
|
xlim <- c(0,1) * xFac
|
||
|
plot(NA, NA,
|
||
|
xlim=xlim, ylim=ylim,
|
||
|
frame.plot=FALSE,
|
||
|
xlab = "Network load (%)",
|
||
|
ylab = "Average queuing delay (ms)",
|
||
|
main = "Latency for varying network loads")
|
||
|
|
||
|
## Plot data
|
||
|
col <- rainbow(8)
|
||
|
lines(varyLoad*xFac, latency3*yFac, col=col[3])
|
||
|
lines(varyLoad*xFac, latency4*yFac, col=col[4])
|
||
|
lines(varyLoad*xFac, latency5*yFac, col=col[5])
|
||
|
lines(varyLoad*xFac, latencyTor*yFac)
|
||
|
|
||
|
## Plot points at which selection probabilities are optimal
|
||
|
par(xpd=TRUE)
|
||
|
points(c(0.9, 0.75, 0.5, 1)*xFac, rep(par("usr")[3], 4),
|
||
|
col=c(col[3:5], "black"), pch=20,
|
||
|
cex=2)
|
||
|
|
||
|
## Close output device
|
||
|
dev.off()
|