mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-10 13:13:44 +01:00
Add R script for estimating average node latency at different levels of network load
svn:r17768
This commit is contained in:
parent
a32477db65
commit
3ba7a6e219
93
doc/design-paper/node-selection/vary-network-load.R
Normal file
93
doc/design-paper/node-selection/vary-network-load.R
Normal file
@ -0,0 +1,93 @@
|
||||
## The waiting time for a node (assuming no overloaded nodes)
|
||||
## x: 1/bandwidth
|
||||
## q: selection probability
|
||||
## L: network load
|
||||
wait <- function(x,q,L) {
|
||||
a <- q*L*x*x
|
||||
b <- 2*(1-q*x*L)
|
||||
return (x + a/b)
|
||||
}
|
||||
|
||||
## The weighted wait time
|
||||
wwait <- function(x,q,L) {
|
||||
return (q*wait(x,q,L))
|
||||
}
|
||||
|
||||
## Average latency, returning NA for infinite
|
||||
netLatency <- function(x, q, L) {
|
||||
if (any(x*q*L <0 | x*q*L >1)) {
|
||||
return (NA)
|
||||
} else {
|
||||
return (sum(wwait(x, q, L)))
|
||||
}
|
||||
}
|
||||
|
||||
## Load in data files
|
||||
t1 <- read.table("opt_1e-6.pickle.dat", header=TRUE)
|
||||
t2 <- read.table("opt_1e-3.pickle.dat", header=TRUE)
|
||||
t3 <- read.table("opt_1e-1.pickle.dat", header=TRUE)
|
||||
t4 <- read.table("opt_0.75.pickle.dat", header=TRUE)
|
||||
t5 <- read.table("opt_0.5.pickle.dat", header=TRUE)
|
||||
t6 <- read.table("opt_0.25.pickle.dat", header=TRUE)
|
||||
t7 <- read.table("opt_0.1.pickle.dat", header=TRUE)
|
||||
tt <- read.table("opt_tor.pickle.dat", header=TRUE)
|
||||
|
||||
## Node bandwidth and reciprocal
|
||||
bw <- t1$bw
|
||||
x <- 1/bw
|
||||
|
||||
## Calculate network capcity
|
||||
capacity <- sum(bw)
|
||||
|
||||
## Calculate selection probabilties that Tor uses
|
||||
torProb <- bw/sum(bw)
|
||||
|
||||
## Load values to try
|
||||
varyLoad <- seq(0.01,0.93,0.01)
|
||||
latencyTor <- c()
|
||||
latency3 <- c()
|
||||
latency4 <- c()
|
||||
latency5 <- c()
|
||||
for (L in varyLoad) {
|
||||
latencyTor <- append(latencyTor,
|
||||
netLatency(x, torProb, capacity*L))
|
||||
latency3 <- append(latency3,
|
||||
netLatency(x, t3$prob, capacity*L))
|
||||
latency4 <- append(latency4,
|
||||
netLatency(x, t4$prob, capacity*L))
|
||||
latency5 <- append(latency5,
|
||||
netLatency(x, t5$prob, capacity*L))
|
||||
}
|
||||
|
||||
## Output graph
|
||||
pdf("vary-network-load.pdf")
|
||||
|
||||
## Set up axes
|
||||
yFac <- 1000
|
||||
xFac <- 100
|
||||
|
||||
ylim <- range(na.omit(c(latencyTor, latency3, latency4, latency5)))
|
||||
ylim <- c(0,0.015) * yFac
|
||||
xlim <- c(0,1) * xFac
|
||||
plot(NA, NA,
|
||||
xlim=xlim, ylim=ylim,
|
||||
frame.plot=FALSE,
|
||||
xlab = "Network load (%)",
|
||||
ylab = "Average queuing delay (ms)",
|
||||
main = "Latency for varying network loads")
|
||||
|
||||
## Plot data
|
||||
col <- rainbow(8)
|
||||
lines(varyLoad*xFac, latency3*yFac, col=col[3])
|
||||
lines(varyLoad*xFac, latency4*yFac, col=col[4])
|
||||
lines(varyLoad*xFac, latency5*yFac, col=col[5])
|
||||
lines(varyLoad*xFac, latencyTor*yFac)
|
||||
|
||||
## Plot points at which selection probabilities are optimal
|
||||
par(xpd=TRUE)
|
||||
points(c(0.9, 0.75, 0.5, 1)*xFac, rep(par("usr")[3], 4),
|
||||
col=c(col[3:5], "black"), pch=20,
|
||||
cex=2)
|
||||
|
||||
## Close output device
|
||||
dev.off()
|
Loading…
Reference in New Issue
Block a user