2007-12-12 22:09:01 +01:00
|
|
|
/* Copyright (c) 2001, Matej Pfajfar.
|
2006-02-09 06:46:49 +01:00
|
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
2007-12-12 22:09:01 +01:00
|
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
2011-01-03 17:50:39 +01:00
|
|
|
* Copyright (c) 2007-2011, The Tor Project, Inc. */
|
2003-06-30 21:18:12 +02:00
|
|
|
/* See LICENSE for licensing information */
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/**
|
|
|
|
* \file aes.c
|
2011-11-09 04:51:59 +01:00
|
|
|
* \brief Implements a counter-mode stream cipher on top of AES.
|
2004-05-10 05:53:24 +02:00
|
|
|
**/
|
2003-06-30 21:18:12 +02:00
|
|
|
|
2004-11-14 18:21:32 +01:00
|
|
|
#include "orconfig.h"
|
2005-09-23 20:50:50 +02:00
|
|
|
#include <openssl/opensslv.h>
|
2003-06-30 21:18:12 +02:00
|
|
|
#include <assert.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
2011-11-21 03:20:31 +01:00
|
|
|
#include <openssl/aes.h>
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <openssl/engine.h>
|
2007-02-27 04:53:45 +01:00
|
|
|
#include "compat.h"
|
2003-08-12 08:45:03 +02:00
|
|
|
#include "aes.h"
|
2003-06-30 21:18:12 +02:00
|
|
|
#include "util.h"
|
2010-07-10 03:52:20 +02:00
|
|
|
#include "torlog.h"
|
2003-06-30 21:18:12 +02:00
|
|
|
|
2011-11-21 03:20:31 +01:00
|
|
|
#ifdef ANDROID
|
|
|
|
/* Android's OpenSSL seems to have removed all of its Engine support. */
|
|
|
|
#define DISABLE_ENGINES
|
2011-11-09 04:51:59 +01:00
|
|
|
#endif
|
2007-02-27 04:53:45 +01:00
|
|
|
|
2011-11-21 03:20:31 +01:00
|
|
|
/* We have 2 strategies for getting AES: Via OpenSSL's AES_encrypt function,
|
|
|
|
* via OpenSSL's EVP_EncryptUpdate function.
|
|
|
|
*
|
|
|
|
* If there's any hardware acceleration in play, we want to be using EVP_* so
|
|
|
|
* we can get it. Otherwise, we'll want AES_*, which seems to be about 5%
|
|
|
|
* faster than indirecting through the EVP layer.
|
|
|
|
*/
|
|
|
|
|
2007-02-27 04:53:45 +01:00
|
|
|
/* Include OpenSSL headers as needed. */
|
|
|
|
|
2003-06-30 21:18:12 +02:00
|
|
|
/*======================================================================*/
|
|
|
|
/* Interface to AES code, and counter implementation */
|
|
|
|
|
2008-02-21 10:01:32 +01:00
|
|
|
/** Implements an AES counter-mode cipher. */
|
2003-06-30 21:18:12 +02:00
|
|
|
struct aes_cnt_cipher {
|
2008-02-21 10:01:32 +01:00
|
|
|
/** This next element (however it's defined) is the AES key. */
|
2011-11-21 03:20:31 +01:00
|
|
|
union {
|
|
|
|
EVP_CIPHER_CTX evp;
|
|
|
|
AES_KEY aes;
|
|
|
|
} key;
|
2007-09-20 19:07:45 +02:00
|
|
|
|
2011-11-09 04:57:15 +01:00
|
|
|
#if !defined(WORDS_BIGENDIAN)
|
2007-09-20 19:28:07 +02:00
|
|
|
#define USING_COUNTER_VARS
|
2007-09-20 19:07:45 +02:00
|
|
|
/** These four values, together, implement a 128-bit counter, with
|
|
|
|
* counter0 as the low-order word and counter3 as the high-order word. */
|
2011-11-09 04:54:52 +01:00
|
|
|
uint32_t counter3;
|
|
|
|
uint32_t counter2;
|
|
|
|
uint32_t counter1;
|
|
|
|
uint32_t counter0;
|
2007-09-20 19:07:45 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
union {
|
|
|
|
/** The counter, in big-endian order, as bytes. */
|
2011-11-09 04:54:52 +01:00
|
|
|
uint8_t buf[16];
|
2007-09-20 19:07:45 +02:00
|
|
|
/** The counter, in big-endian order, as big-endian words. Note that
|
|
|
|
* on big-endian platforms, this is redundant with counter3...0,
|
|
|
|
* so we just use these values instead. */
|
2011-11-09 04:54:52 +01:00
|
|
|
uint32_t buf32[4];
|
2007-09-20 19:07:45 +02:00
|
|
|
} ctr_buf;
|
2011-11-09 04:57:15 +01:00
|
|
|
|
2007-09-20 19:07:45 +02:00
|
|
|
/** The encrypted value of ctr_buf. */
|
2011-11-09 04:54:52 +01:00
|
|
|
uint8_t buf[16];
|
2007-09-20 19:07:45 +02:00
|
|
|
/** Our current stream position within buf. */
|
2011-11-09 04:54:52 +01:00
|
|
|
uint8_t pos;
|
2011-11-21 03:20:31 +01:00
|
|
|
|
|
|
|
/** True iff we're using the evp implementation of this cipher. */
|
|
|
|
uint8_t using_evp;
|
2003-06-30 21:18:12 +02:00
|
|
|
};
|
|
|
|
|
2011-11-21 03:20:31 +01:00
|
|
|
/** True if we should prefer the EVP implementation for AES, either because
|
|
|
|
* we're testing it or because we have hardware acceleration configured */
|
|
|
|
static int should_use_EVP = 0;
|
|
|
|
|
|
|
|
/** Check whether we should use the EVP interface for AES. If <b>force_val</b>
|
|
|
|
* is nonnegative, we use use EVP iff it is true. Otherwise, we use EVP
|
|
|
|
* if there is an engine enabled for aes-ecb. */
|
|
|
|
int
|
|
|
|
evaluate_evp_for_aes(int force_val)
|
|
|
|
{
|
|
|
|
ENGINE *e;
|
|
|
|
|
|
|
|
if (force_val >= 0) {
|
|
|
|
should_use_EVP = force_val;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#ifdef DISABLE_ENGINES
|
|
|
|
should_use_EVP = 0;
|
|
|
|
#else
|
|
|
|
e = ENGINE_get_cipher_engine(NID_aes_128_ecb);
|
|
|
|
|
|
|
|
if (e) {
|
|
|
|
log_notice(LD_CRYPTO, "AES engine \"%s\" found; using EVP_* functions.",
|
|
|
|
ENGINE_get_name(e));
|
|
|
|
should_use_EVP = 1;
|
|
|
|
} else {
|
|
|
|
log_notice(LD_CRYPTO, "No AES engine found; using AES_* functions.");
|
|
|
|
should_use_EVP = 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-09-20 19:28:07 +02:00
|
|
|
#if !defined(USING_COUNTER_VARS)
|
2007-09-20 19:07:45 +02:00
|
|
|
#define COUNTER(c, n) ((c)->ctr_buf.buf32[3-(n)])
|
|
|
|
#else
|
|
|
|
#define COUNTER(c, n) ((c)->counter ## n)
|
|
|
|
#endif
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/**
|
|
|
|
* Helper function: set <b>cipher</b>'s internal buffer to the encrypted
|
|
|
|
* value of the current counter.
|
|
|
|
*/
|
2005-12-01 19:30:39 +01:00
|
|
|
static INLINE void
|
2003-06-30 21:18:12 +02:00
|
|
|
_aes_fill_buf(aes_cnt_cipher_t *cipher)
|
|
|
|
{
|
2005-09-27 21:39:25 +02:00
|
|
|
/* We don't currently use OpenSSL's counter mode implementation because:
|
|
|
|
* 1) some versions have known bugs
|
|
|
|
* 2) its attitude towards IVs is not our own
|
|
|
|
* 3) changing the counter position was not trivial, last time I looked.
|
|
|
|
* None of these issues are insurmountable in principle.
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
|
2011-11-21 03:20:31 +01:00
|
|
|
if (cipher->using_evp) {
|
2005-09-27 21:39:25 +02:00
|
|
|
int outl=16, inl=16;
|
2011-11-21 03:20:31 +01:00
|
|
|
EVP_EncryptUpdate(&cipher->key.evp, cipher->buf, &outl,
|
2007-09-20 19:07:45 +02:00
|
|
|
cipher->ctr_buf.buf, inl);
|
2011-11-21 03:20:31 +01:00
|
|
|
} else {
|
|
|
|
AES_encrypt(cipher->ctr_buf.buf, cipher->buf, &cipher->key.aes);
|
2005-09-27 21:39:25 +02:00
|
|
|
}
|
2003-06-30 21:18:12 +02:00
|
|
|
}
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/**
|
|
|
|
* Return a newly allocated counter-mode AES128 cipher implementation.
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
aes_cnt_cipher_t*
|
2005-09-30 00:59:17 +02:00
|
|
|
aes_new_cipher(void)
|
2003-06-30 21:18:12 +02:00
|
|
|
{
|
2005-09-23 20:50:50 +02:00
|
|
|
aes_cnt_cipher_t* result = tor_malloc_zero(sizeof(aes_cnt_cipher_t));
|
2003-06-30 21:18:12 +02:00
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/** Set the key of <b>cipher</b> to <b>key</b>, which is
|
|
|
|
* <b>key_bits</b> bits long (must be 128, 192, or 256). Also resets
|
|
|
|
* the counter to 0.
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
void
|
2005-05-07 07:55:06 +02:00
|
|
|
aes_set_key(aes_cnt_cipher_t *cipher, const char *key, int key_bits)
|
2003-06-30 21:18:12 +02:00
|
|
|
{
|
2011-11-21 03:20:31 +01:00
|
|
|
if (should_use_EVP) {
|
|
|
|
const EVP_CIPHER *c;
|
|
|
|
switch (key_bits) {
|
|
|
|
case 128: c = EVP_aes_128_ecb(); break;
|
|
|
|
case 192: c = EVP_aes_192_ecb(); break;
|
|
|
|
case 256: c = EVP_aes_256_ecb(); break;
|
|
|
|
default: tor_assert(0);
|
|
|
|
}
|
|
|
|
EVP_EncryptInit(&cipher->key.evp, c, (const unsigned char*)key, NULL);
|
|
|
|
cipher->using_evp = 1;
|
|
|
|
} else {
|
|
|
|
AES_set_encrypt_key((const unsigned char *)key, key_bits, &cipher->key.aes);
|
|
|
|
cipher->using_evp = 0;
|
2005-09-27 21:39:25 +02:00
|
|
|
}
|
2007-09-20 19:28:07 +02:00
|
|
|
#ifdef USING_COUNTER_VARS
|
|
|
|
cipher->counter0 = 0;
|
|
|
|
cipher->counter1 = 0;
|
|
|
|
cipher->counter2 = 0;
|
|
|
|
cipher->counter3 = 0;
|
|
|
|
#endif
|
2011-11-09 04:57:15 +01:00
|
|
|
|
2007-09-20 19:07:45 +02:00
|
|
|
memset(cipher->ctr_buf.buf, 0, sizeof(cipher->ctr_buf.buf));
|
|
|
|
|
2003-06-30 21:18:12 +02:00
|
|
|
cipher->pos = 0;
|
|
|
|
_aes_fill_buf(cipher);
|
|
|
|
}
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/** Release storage held by <b>cipher</b>
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
void
|
|
|
|
aes_free_cipher(aes_cnt_cipher_t *cipher)
|
|
|
|
{
|
2009-09-28 16:37:01 +02:00
|
|
|
if (!cipher)
|
|
|
|
return;
|
2011-11-21 03:20:31 +01:00
|
|
|
if (cipher->using_evp) {
|
|
|
|
EVP_CIPHER_CTX_cleanup(&cipher->key.evp);
|
|
|
|
}
|
2010-02-22 11:39:29 +01:00
|
|
|
memset(cipher, 0, sizeof(aes_cnt_cipher_t));
|
2005-09-30 22:47:58 +02:00
|
|
|
tor_free(cipher);
|
2003-06-30 21:18:12 +02:00
|
|
|
}
|
|
|
|
|
2011-11-09 04:57:15 +01:00
|
|
|
#if defined(USING_COUNTER_VARS)
|
2007-09-20 19:07:45 +02:00
|
|
|
#define UPDATE_CTR_BUF(c, n) STMT_BEGIN \
|
|
|
|
(c)->ctr_buf.buf32[3-(n)] = htonl((c)->counter ## n); \
|
|
|
|
STMT_END
|
2007-09-20 19:28:07 +02:00
|
|
|
#else
|
|
|
|
#define UPDATE_CTR_BUF(c, n)
|
2007-09-20 19:07:45 +02:00
|
|
|
#endif
|
|
|
|
|
2004-05-10 05:53:24 +02:00
|
|
|
/** Encrypt <b>len</b> bytes from <b>input</b>, storing the result in
|
|
|
|
* <b>output</b>. Uses the key in <b>cipher</b>, and advances the counter
|
|
|
|
* by <b>len</b> bytes as it encrypts.
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
void
|
2005-12-14 21:40:40 +01:00
|
|
|
aes_crypt(aes_cnt_cipher_t *cipher, const char *input, size_t len,
|
|
|
|
char *output)
|
2003-06-30 21:18:12 +02:00
|
|
|
{
|
2010-10-15 19:34:31 +02:00
|
|
|
/* This function alone is up to 5% of our runtime in some profiles; anything
|
|
|
|
* we could do to make it faster would be great.
|
|
|
|
*
|
|
|
|
* Experimenting suggests that unrolling the inner loop into a switch
|
|
|
|
* statement doesn't help. What does seem to help is making the input and
|
|
|
|
* output buffers word aligned, and never crypting anything besides an
|
|
|
|
* integer number of words at a time -- it shaves maybe 4-5% of the per-byte
|
|
|
|
* encryption time measured by bench_aes. We can't do that with the current
|
|
|
|
* Tor protocol, though: Tor really likes to crypt things in 509-byte
|
|
|
|
* chunks.
|
|
|
|
*
|
|
|
|
* If we were really ambitous, we'd force len to be a multiple of the block
|
|
|
|
* size, and shave maybe another 4-5% off.
|
|
|
|
*/
|
2003-06-30 21:18:12 +02:00
|
|
|
int c = cipher->pos;
|
2008-02-07 17:10:33 +01:00
|
|
|
if (PREDICT_UNLIKELY(!len)) return;
|
2003-06-30 21:18:12 +02:00
|
|
|
|
|
|
|
while (1) {
|
|
|
|
do {
|
|
|
|
if (len-- == 0) { cipher->pos = c; return; }
|
|
|
|
*(output++) = *(input++) ^ cipher->buf[c];
|
|
|
|
} while (++c != 16);
|
|
|
|
cipher->pos = c = 0;
|
2007-09-20 19:07:45 +02:00
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 0))) {
|
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 1))) {
|
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 2))) {
|
|
|
|
++COUNTER(cipher, 3);
|
|
|
|
UPDATE_CTR_BUF(cipher, 3);
|
2007-09-19 17:53:38 +02:00
|
|
|
}
|
2007-09-20 19:07:45 +02:00
|
|
|
UPDATE_CTR_BUF(cipher, 2);
|
2007-09-19 17:53:38 +02:00
|
|
|
}
|
2007-09-20 19:07:45 +02:00
|
|
|
UPDATE_CTR_BUF(cipher, 1);
|
2007-09-19 17:53:38 +02:00
|
|
|
}
|
2007-09-20 19:07:45 +02:00
|
|
|
UPDATE_CTR_BUF(cipher, 0);
|
2003-06-30 21:18:12 +02:00
|
|
|
_aes_fill_buf(cipher);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-02-07 17:10:33 +01:00
|
|
|
/** Encrypt <b>len</b> bytes from <b>input</b>, storing the results in place.
|
|
|
|
* Uses the key in <b>cipher</b>, and advances the counter by <b>len</b> bytes
|
|
|
|
* as it encrypts.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
aes_crypt_inplace(aes_cnt_cipher_t *cipher, char *data, size_t len)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* XXXX This function is up to 5% of our runtime in some profiles;
|
|
|
|
* we should look into unrolling some of the loops; taking advantage
|
2008-02-09 04:11:10 +01:00
|
|
|
* of alignment, using a bigger buffer, and so on. Not till after 0.1.2.x,
|
2008-02-07 17:10:33 +01:00
|
|
|
* though. */
|
|
|
|
int c = cipher->pos;
|
|
|
|
if (PREDICT_UNLIKELY(!len)) return;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
do {
|
|
|
|
if (len-- == 0) { cipher->pos = c; return; }
|
|
|
|
*(data++) ^= cipher->buf[c];
|
|
|
|
} while (++c != 16);
|
|
|
|
cipher->pos = c = 0;
|
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 0))) {
|
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 1))) {
|
|
|
|
if (PREDICT_UNLIKELY(! ++COUNTER(cipher, 2))) {
|
|
|
|
++COUNTER(cipher, 3);
|
|
|
|
UPDATE_CTR_BUF(cipher, 3);
|
|
|
|
}
|
|
|
|
UPDATE_CTR_BUF(cipher, 2);
|
|
|
|
}
|
|
|
|
UPDATE_CTR_BUF(cipher, 1);
|
|
|
|
}
|
|
|
|
UPDATE_CTR_BUF(cipher, 0);
|
|
|
|
_aes_fill_buf(cipher);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-10-04 18:21:58 +02:00
|
|
|
/** Reset the 128-bit counter of <b>cipher</b> to the 16-bit big-endian value
|
|
|
|
* in <b>iv</b>. */
|
2007-09-19 17:53:38 +02:00
|
|
|
void
|
|
|
|
aes_set_iv(aes_cnt_cipher_t *cipher, const char *iv)
|
|
|
|
{
|
2007-09-20 19:28:07 +02:00
|
|
|
#ifdef USING_COUNTER_VARS
|
2007-09-19 17:53:38 +02:00
|
|
|
cipher->counter3 = ntohl(get_uint32(iv));
|
|
|
|
cipher->counter2 = ntohl(get_uint32(iv+4));
|
|
|
|
cipher->counter1 = ntohl(get_uint32(iv+8));
|
|
|
|
cipher->counter0 = ntohl(get_uint32(iv+12));
|
2007-09-20 19:28:07 +02:00
|
|
|
#endif
|
2007-09-19 17:53:38 +02:00
|
|
|
cipher->pos = 0;
|
2007-09-20 19:07:45 +02:00
|
|
|
memcpy(cipher->ctr_buf.buf, iv, 16);
|
2007-09-19 17:53:38 +02:00
|
|
|
|
|
|
|
_aes_fill_buf(cipher);
|
|
|
|
}
|
|
|
|
|