mirror of
https://codeberg.org/anoncontributorxmr/monero.git
synced 2024-11-24 03:43:27 +01:00
255 lines
7.9 KiB
C++
255 lines
7.9 KiB
C++
// Copyright (c) 2018, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "crypto/crypto.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "ringct/multiexp.h"
|
|
|
|
static const rct::key TESTSCALAR = rct::skGen();
|
|
static const rct::key TESTPOW2SCALAR = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
|
|
static const rct::key TESTSMALLSCALAR = {{5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
|
|
static const rct::key TESTPOINT = rct::scalarmultBase(rct::skGen());
|
|
|
|
static rct::key basic(const std::vector<rct::MultiexpData> &data)
|
|
{
|
|
ge_p3 res_p3 = ge_p3_identity;
|
|
for (const auto &d: data)
|
|
{
|
|
ge_cached cached;
|
|
ge_p3 p3;
|
|
ge_p1p1 p1;
|
|
ge_scalarmult_p3(&p3, d.scalar.bytes, &d.point);
|
|
ge_p3_to_cached(&cached, &p3);
|
|
ge_add(&p1, &res_p3, &cached);
|
|
ge_p1p1_to_p3(&res_p3, &p1);
|
|
}
|
|
rct::key res;
|
|
ge_p3_tobytes(res.bytes, &res_p3);
|
|
return res;
|
|
}
|
|
|
|
static ge_p3 get_p3(const rct::key &point)
|
|
{
|
|
ge_p3 p3;
|
|
EXPECT_TRUE(ge_frombytes_vartime(&p3, point.bytes) == 0);
|
|
return p3;
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_empty)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_zero_and_non_zero)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
data.push_back({TESTSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_pow2_scalar)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
data.push_back({TESTPOW2SCALAR, get_p3(TESTPOINT)});
|
|
data.push_back({TESTSMALLSCALAR, get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_only_zeroes)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({rct::zero(), get_p3(TESTPOINT)});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
|
|
TEST(multiexp, straus_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
|
|
TEST(multiexp, pippenger_only_identities)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 16; ++n)
|
|
data.push_back({TESTSCALAR, get_p3(rct::identity())});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
|
|
TEST(multiexp, bos_coster_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == bos_coster_heap_conv_robust(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, straus_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == straus(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, pippenger_random)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
for (int n = 0; n < 32; ++n)
|
|
{
|
|
data.push_back({rct::skGen(), get_p3(rct::scalarmultBase(rct::skGen()))});
|
|
ASSERT_TRUE(basic(data) == pippenger(data));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, straus_cached)
|
|
{
|
|
static constexpr size_t N = 256;
|
|
std::vector<rct::MultiexpData> P(N);
|
|
for (size_t n = 0; n < N; ++n)
|
|
{
|
|
P[n].scalar = rct::zero();
|
|
ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0);
|
|
}
|
|
std::shared_ptr<rct::straus_cached_data> cache = rct::straus_init_cache(P);
|
|
for (size_t n = 0; n < N/16; ++n)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
size_t sz = 1 + crypto::rand<size_t>() % (N-1);
|
|
for (size_t s = 0; s < sz; ++s)
|
|
{
|
|
data.push_back({rct::skGen(), P[s].point});
|
|
}
|
|
ASSERT_TRUE(basic(data) == straus(data, cache));
|
|
}
|
|
}
|
|
|
|
TEST(multiexp, pippenger_cached)
|
|
{
|
|
static constexpr size_t N = 256;
|
|
std::vector<rct::MultiexpData> P(N);
|
|
for (size_t n = 0; n < N; ++n)
|
|
{
|
|
P[n].scalar = rct::zero();
|
|
ASSERT_TRUE(ge_frombytes_vartime(&P[n].point, rct::scalarmultBase(rct::skGen()).bytes) == 0);
|
|
}
|
|
std::shared_ptr<rct::pippenger_cached_data> cache = rct::pippenger_init_cache(P);
|
|
for (size_t n = 0; n < N/16; ++n)
|
|
{
|
|
std::vector<rct::MultiexpData> data;
|
|
size_t sz = 1 + crypto::rand<size_t>() % (N-1);
|
|
for (size_t s = 0; s < sz; ++s)
|
|
{
|
|
data.push_back({rct::skGen(), P[s].point});
|
|
}
|
|
ASSERT_TRUE(basic(data) == pippenger(data, cache));
|
|
}
|
|
}
|