monero/src/ringct/rctOps.h
stoffu 27a196b126
device: untangle cyclic depenency
When #3303 was merged, a cyclic dependency chain was generated:

    libdevice <- libcncrypto <- libringct <- libdevice

This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:

    libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct

This eliminates the need for crypto_device.cpp and rctOps_device.cpp.

Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
2018-03-14 21:00:15 +09:00

180 lines
7.5 KiB
C++

//#define DBG
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#ifndef RCTOPS_H
#define RCTOPS_H
#include <cstddef>
#include <tuple>
#include "crypto/generic-ops.h"
extern "C" {
#include "crypto/random.h"
#include "crypto/keccak.h"
#include "rctCryptoOps.h"
}
#include "crypto/crypto.h"
#include "rctTypes.h"
//Define this flag when debugging to get additional info on the console
#ifdef DBG
#define DP(x) dp(x)
#else
#define DP(x)
#endif
namespace rct {
//Various key initialization functions
static const key Z = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
static const key I = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
static const key L = { {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } };
//Creates a zero scalar
inline key zero() { return Z; }
inline void zero(key &z) { memset(&z, 0, 32); }
//Creates a zero elliptic curve point
inline key identity() { return I; }
inline void identity(key &Id) { memcpy(&Id, &I, 32); }
//Creates a key equal to the curve order
inline key curveOrder() { return L; }
inline void curveOrder(key &l) { l = L; }
//copies a scalar or point
inline void copy(key &AA, const key &A) { memcpy(&AA, &A, 32); }
inline key copy(const key & A) { key AA; memcpy(&AA, &A, 32); return AA; }
//initializes a key matrix;
//first parameter is rows,
//second is columns
keyM keyMInit(size_t rows, size_t cols);
//Various key generation functions
//generates a random scalar which can be used as a secret key or mask
key skGen();
void skGen(key &);
//generates a vector of secret keys of size "int"
keyV skvGen(size_t rows );
//generates a random curve point (for testing)
key pkGen();
//generates a random secret and corresponding public key
void skpkGen(key &sk, key &pk);
std::tuple<key, key> skpkGen();
//generates a <secret , public> / Pedersen commitment to the amount
std::tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount);
//generates C =aG + bH from b, a is random
void genC(key & C, const key & a, xmr_amount amount);
//this one is mainly for testing, can take arbitrary amounts..
std::tuple<ctkey, ctkey> ctskpkGen(const key &bH);
// make a pedersen commitment with given key
key commit(xmr_amount amount, const key &mask);
// make a pedersen commitment with zero key
key zeroCommit(xmr_amount amount);
//generates a random uint long long
xmr_amount randXmrAmount(xmr_amount upperlimit);
//Scalar multiplications of curve points
//does a * G where a is a scalar and G is the curve basepoint
void scalarmultBase(key & aG, const key &a);
key scalarmultBase(const key & a);
//does a * P where a is a scalar and P is an arbitrary point
void scalarmultKey(key &aP, const key &P, const key &a);
key scalarmultKey(const key &P, const key &a);
//Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
key scalarmultH(const key & a);
//Curve addition / subtractions
//for curve points: AB = A + B
void addKeys(key &AB, const key &A, const key &B);
rct::key addKeys(const key &A, const key &B);
//aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
void addKeys1(key &aGB, const key &a, const key & B);
//aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
void addKeys2(key &aGbB, const key &a, const key &b, const key &B);
//Does some precomputation to make addKeys3 more efficient
// input B a curve point and output a ge_dsmp which has precomputation applied
void precomp(ge_dsmp rv, const key &B);
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
//B must be input after applying "precomp"
void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B);
void addKeys3(key &aAbB, const key &a, const ge_dsmp A, const key &b, const ge_dsmp B);
//AB = A - B where A, B are curve points
void subKeys(key &AB, const key &A, const key &B);
//checks if A, B are equal as curve points
bool equalKeys(const key & A, const key & B);
//Hashing - cn_fast_hash
//be careful these are also in crypto namespace
//cn_fast_hash for arbitrary l multiples of 32 bytes
void cn_fast_hash(key &hash, const void * data, const size_t l);
void hash_to_scalar(key &hash, const void * data, const size_t l);
//cn_fast_hash for a 32 byte key
void cn_fast_hash(key &hash, const key &in);
void hash_to_scalar(key &hash, const key &in);
//cn_fast_hash for a 32 byte key
key cn_fast_hash(const key &in);
key hash_to_scalar(const key &in);
//for mg sigs
key cn_fast_hash128(const void * in);
key hash_to_scalar128(const void * in);
key cn_fast_hash(const ctkeyV &PC);
key hash_to_scalar(const ctkeyV &PC);
//for mg sigs
key cn_fast_hash(const keyV &keys);
key hash_to_scalar(const keyV &keys);
//for ANSL
key cn_fast_hash(const key64 keys);
key hash_to_scalar(const key64 keys);
//returns hashToPoint as described in https://github.com/ShenNoether/ge_fromfe_writeup
key hashToPointSimple(const key &in);
key hashToPoint(const key &in);
void hashToPoint(key &out, const key &in);
//sums a vector of curve points (for scalars use sc_add)
void sumKeys(key & Csum, const key &Cis);
//Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
// where C= aG + bH
void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec);
void ecdhDecode(ecdhTuple & masked, const key & sharedSec);
}
#endif /* RCTOPS_H */