// Copyright (c) 2014-2017, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "include_base_utils.h" using namespace epee; #include "cryptonote_tx_utils.h" #include "cryptonote_config.h" #include "cryptonote_basic/miner.h" #include "crypto/crypto.h" #include "crypto/hash.h" #include "ringct/rctSigs.h" namespace cryptonote { //--------------------------------------------------------------- bool construct_miner_tx(size_t height, size_t median_size, uint64_t already_generated_coins, size_t current_block_size, uint64_t fee, const account_public_address &miner_address, transaction& tx, const blobdata& extra_nonce, size_t max_outs, uint8_t hard_fork_version) { tx.vin.clear(); tx.vout.clear(); tx.extra.clear(); keypair txkey = keypair::generate(); add_tx_pub_key_to_extra(tx, txkey.pub); if(!extra_nonce.empty()) if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) return false; txin_gen in; in.height = height; uint64_t block_reward; if(!get_block_reward(median_size, current_block_size, already_generated_coins, block_reward, hard_fork_version)) { LOG_PRINT_L0("Block is too big"); return false; } #if defined(DEBUG_CREATE_BLOCK_TEMPLATE) LOG_PRINT_L1("Creating block template: reward " << block_reward << ", fee " << fee); #endif block_reward += fee; // from hard fork 2, we cut out the low significant digits. This makes the tx smaller, and // keeps the paid amount almost the same. The unpaid remainder gets pushed back to the // emission schedule // from hard fork 4, we use a single "dusty" output. This makes the tx even smaller, // and avoids the quantization. These outputs will be added as rct outputs with identity // masks, to they can be used as rct inputs. if (hard_fork_version >= 2 && hard_fork_version < 4) { block_reward = block_reward - block_reward % ::config::BASE_REWARD_CLAMP_THRESHOLD; } std::vector out_amounts; decompose_amount_into_digits(block_reward, hard_fork_version >= 2 ? 0 : ::config::DEFAULT_DUST_THRESHOLD, [&out_amounts](uint64_t a_chunk) { out_amounts.push_back(a_chunk); }, [&out_amounts](uint64_t a_dust) { out_amounts.push_back(a_dust); }); CHECK_AND_ASSERT_MES(1 <= max_outs, false, "max_out must be non-zero"); if (height == 0 || hard_fork_version >= 4) { // the genesis block was not decomposed, for unknown reasons while (max_outs < out_amounts.size()) { //out_amounts[out_amounts.size() - 2] += out_amounts.back(); //out_amounts.resize(out_amounts.size() - 1); out_amounts[1] += out_amounts[0]; for (size_t n = 1; n < out_amounts.size(); ++n) out_amounts[n - 1] = out_amounts[n]; out_amounts.resize(out_amounts.size() - 1); } } else { CHECK_AND_ASSERT_MES(max_outs >= out_amounts.size(), false, "max_out exceeded"); } uint64_t summary_amounts = 0; for (size_t no = 0; no < out_amounts.size(); no++) { crypto::key_derivation derivation = AUTO_VAL_INIT(derivation);; crypto::public_key out_eph_public_key = AUTO_VAL_INIT(out_eph_public_key); bool r = crypto::generate_key_derivation(miner_address.m_view_public_key, txkey.sec, derivation); CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" << miner_address.m_view_public_key << ", " << txkey.sec << ")"); r = crypto::derive_public_key(derivation, no, miner_address.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " << no << ", "<< miner_address.m_spend_public_key << ")"); txout_to_key tk; tk.key = out_eph_public_key; tx_out out; summary_amounts += out.amount = out_amounts[no]; out.target = tk; tx.vout.push_back(out); } CHECK_AND_ASSERT_MES(summary_amounts == block_reward, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal block_reward = " << block_reward); if (hard_fork_version >= 4) tx.version = 2; else tx.version = 1; //lock tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; tx.vin.push_back(in); tx.invalidate_hashes(); //LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "(" << print_money(block_reward - fee) << "+" << print_money(fee) // << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2); return true; } //--------------------------------------------------------------- crypto::public_key get_destination_view_key_pub(const std::vector &destinations, const account_keys &sender_keys) { if (destinations.empty()) return null_pkey; for (size_t n = 1; n < destinations.size(); ++n) { if (!memcmp(&destinations[n].addr, &sender_keys.m_account_address, sizeof(destinations[0].addr))) continue; if (destinations[n].amount == 0) continue; if (memcmp(&destinations[n].addr, &destinations[0].addr, sizeof(destinations[0].addr))) return null_pkey; } return destinations[0].addr.m_view_public_key; } //--------------------------------------------------------------- bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector& sources, const std::vector& destinations, std::vector extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key, bool rct) { std::vector amount_keys; tx.set_null(); amount_keys.clear(); tx.version = rct ? 2 : 1; tx.unlock_time = unlock_time; tx.extra = extra; keypair txkey = keypair::generate(); remove_field_from_tx_extra(tx.extra, typeid(tx_extra_pub_key)); add_tx_pub_key_to_extra(tx, txkey.pub); tx_key = txkey.sec; // if we have a stealth payment id, find it and encrypt it with the tx key now std::vector tx_extra_fields; if (parse_tx_extra(tx.extra, tx_extra_fields)) { tx_extra_nonce extra_nonce; if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce)) { crypto::hash8 payment_id = null_hash8; if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id)) { LOG_PRINT_L2("Encrypting payment id " << payment_id); crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys); if (view_key_pub == null_pkey) { LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids"); return false; } if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec)) { LOG_ERROR("Failed to encrypt payment id"); return false; } std::string extra_nonce; set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id); remove_field_from_tx_extra(tx.extra, typeid(tx_extra_nonce)); if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) { LOG_ERROR("Failed to add encrypted payment id to tx extra"); return false; } LOG_PRINT_L1("Encrypted payment ID: " << payment_id); } } } else { LOG_ERROR("Failed to parse tx extra"); return false; } struct input_generation_context_data { keypair in_ephemeral; }; std::vector in_contexts; uint64_t summary_inputs_money = 0; //fill inputs int idx = -1; for(const tx_source_entry& src_entr: sources) { ++idx; if(src_entr.real_output >= src_entr.outputs.size()) { LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size()); return false; } summary_inputs_money += src_entr.amount; //key_derivation recv_derivation; in_contexts.push_back(input_generation_context_data()); keypair& in_ephemeral = in_contexts.back().in_ephemeral; crypto::key_image img; if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img)) return false; //check that derivated key is equal with real output key if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest) ) { LOG_ERROR("derived public key mismatch with output public key at index " << idx << ", real out " << src_entr.real_output << "! "<< ENDL << "derived_key:" << string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:" << string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) ); LOG_ERROR("amount " << src_entr.amount << ", rct " << src_entr.rct); LOG_ERROR("tx pubkey " << src_entr.real_out_tx_key << ", real_output_in_tx_index " << src_entr.real_output_in_tx_index); return false; } //put key image into tx input txin_to_key input_to_key; input_to_key.amount = src_entr.amount; input_to_key.k_image = img; //fill outputs array and use relative offsets for(const tx_source_entry::output_entry& out_entry: src_entr.outputs) input_to_key.key_offsets.push_back(out_entry.first); input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets); tx.vin.push_back(input_to_key); } // "Shuffle" outs std::vector shuffled_dsts(destinations); std::random_shuffle(shuffled_dsts.begin(), shuffled_dsts.end(), [](unsigned int i) { return crypto::rand() % i; }); uint64_t summary_outs_money = 0; //fill outputs size_t output_index = 0; for(const tx_destination_entry& dst_entr: shuffled_dsts) { CHECK_AND_ASSERT_MES(dst_entr.amount > 0 || tx.version > 1, false, "Destination with wrong amount: " << dst_entr.amount); crypto::key_derivation derivation; crypto::public_key out_eph_public_key; bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")"); if (tx.version > 1) { crypto::secret_key scalar1; crypto::derivation_to_scalar(derivation, output_index, scalar1); amount_keys.push_back(rct::sk2rct(scalar1)); } r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")"); tx_out out; out.amount = dst_entr.amount; txout_to_key tk; tk.key = out_eph_public_key; out.target = tk; tx.vout.push_back(out); output_index++; summary_outs_money += dst_entr.amount; } //check money if(summary_outs_money > summary_inputs_money ) { LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")"); return false; } // check for watch only wallet bool zero_secret_key = true; for (size_t i = 0; i < sizeof(sender_account_keys.m_spend_secret_key); ++i) zero_secret_key &= (sender_account_keys.m_spend_secret_key.data[i] == 0); if (zero_secret_key) { MDEBUG("Null secret key, skipping signatures"); } if (tx.version == 1) { //generate ring signatures crypto::hash tx_prefix_hash; get_transaction_prefix_hash(tx, tx_prefix_hash); std::stringstream ss_ring_s; size_t i = 0; for(const tx_source_entry& src_entr: sources) { ss_ring_s << "pub_keys:" << ENDL; std::vector keys_ptrs; std::vector keys(src_entr.outputs.size()); size_t ii = 0; for(const tx_source_entry::output_entry& o: src_entr.outputs) { keys[ii] = rct2pk(o.second.dest); keys_ptrs.push_back(&keys[ii]); ss_ring_s << o.second.dest << ENDL; ++ii; } tx.signatures.push_back(std::vector()); std::vector& sigs = tx.signatures.back(); sigs.resize(src_entr.outputs.size()); if (!zero_secret_key) crypto::generate_ring_signature(tx_prefix_hash, boost::get(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data()); ss_ring_s << "signatures:" << ENDL; std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;}); ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output << ENDL; i++; } MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str()); } else { size_t n_total_outs = sources[0].outputs.size(); // only for non-simple rct // the non-simple version is slightly smaller, but assumes all real inputs // are on the same index, so can only be used if there just one ring. bool use_simple_rct = sources.size() > 1; if (!use_simple_rct) { // non simple ringct requires all real inputs to be at the same index for all inputs for(const tx_source_entry& src_entr: sources) { if(src_entr.real_output != sources.begin()->real_output) { LOG_ERROR("All inputs must have the same index for non-simple ringct"); return false; } } // enforce same mixin for all outputs for (size_t i = 1; i < sources.size(); ++i) { if (n_total_outs != sources[i].outputs.size()) { LOG_ERROR("Non-simple ringct transaction has varying ring size"); return false; } } } uint64_t amount_in = 0, amount_out = 0; rct::ctkeyV inSk; // mixRing indexing is done the other way round for simple rct::ctkeyM mixRing(use_simple_rct ? sources.size() : n_total_outs); rct::keyV destinations; std::vector inamounts, outamounts; std::vector index; for (size_t i = 0; i < sources.size(); ++i) { rct::ctkey ctkey; amount_in += sources[i].amount; inamounts.push_back(sources[i].amount); index.push_back(sources[i].real_output); // inSk: (secret key, mask) ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec); ctkey.mask = sources[i].mask; inSk.push_back(ctkey); // inPk: (public key, commitment) // will be done when filling in mixRing } for (size_t i = 0; i < tx.vout.size(); ++i) { destinations.push_back(rct::pk2rct(boost::get(tx.vout[i].target).key)); outamounts.push_back(tx.vout[i].amount); amount_out += tx.vout[i].amount; } if (use_simple_rct) { // mixRing indexing is done the other way round for simple for (size_t i = 0; i < sources.size(); ++i) { mixRing[i].resize(sources[i].outputs.size()); for (size_t n = 0; n < sources[i].outputs.size(); ++n) { mixRing[i][n] = sources[i].outputs[n].second; } } } else { for (size_t i = 0; i < n_total_outs; ++i) // same index assumption { mixRing[i].resize(sources.size()); for (size_t n = 0; n < sources.size(); ++n) { mixRing[i][n] = sources[n].outputs[i].second; } } } // fee if (!use_simple_rct && amount_in > amount_out) outamounts.push_back(amount_in - amount_out); // zero out all amounts to mask rct outputs, real amounts are now encrypted for (size_t i = 0; i < tx.vin.size(); ++i) { if (sources[i].rct) boost::get(tx.vin[i]).amount = 0; } for (size_t i = 0; i < tx.vout.size(); ++i) tx.vout[i].amount = 0; crypto::hash tx_prefix_hash; get_transaction_prefix_hash(tx, tx_prefix_hash); rct::ctkeyV outSk; if (use_simple_rct) tx.rct_signatures = rct::genRctSimple(rct::hash2rct(tx_prefix_hash), inSk, destinations, inamounts, outamounts, amount_in - amount_out, mixRing, amount_keys, index, outSk); else tx.rct_signatures = rct::genRct(rct::hash2rct(tx_prefix_hash), inSk, destinations, outamounts, mixRing, amount_keys, sources[0].real_output, outSk); // same index assumption CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout"); MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL); } tx.invalidate_hashes(); return true; } //--------------------------------------------------------------- bool construct_tx(const account_keys& sender_account_keys, const std::vector& sources, const std::vector& destinations, std::vector extra, transaction& tx, uint64_t unlock_time) { crypto::secret_key tx_key; return construct_tx_and_get_tx_key(sender_account_keys, sources, destinations, extra, tx, unlock_time, tx_key); } //--------------------------------------------------------------- bool generate_genesis_block( block& bl , std::string const & genesis_tx , uint32_t nonce ) { //genesis block bl = boost::value_initialized(); account_public_address ac = boost::value_initialized(); std::vector sz; construct_miner_tx(0, 0, 0, 0, 0, ac, bl.miner_tx); // zero fee in genesis blobdata txb = tx_to_blob(bl.miner_tx); std::string hex_tx_represent = string_tools::buff_to_hex_nodelimer(txb); std::string genesis_coinbase_tx_hex = config::GENESIS_TX; blobdata tx_bl; bool r = string_tools::parse_hexstr_to_binbuff(genesis_coinbase_tx_hex, tx_bl); CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob"); r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx); CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob"); bl.major_version = CURRENT_BLOCK_MAJOR_VERSION; bl.minor_version = CURRENT_BLOCK_MINOR_VERSION; bl.timestamp = 0; bl.nonce = nonce; miner::find_nonce_for_given_block(bl, 1, 0); bl.invalidate_hashes(); return true; } //--------------------------------------------------------------- }