Specifying SSL certificates for peer verification does an exact match,
making it a not-so-obvious alias for the fingerprints option. This
changes the checks to OpenSSL which loads concatenated certificate(s)
from a single file and does a certificate-authority (chain of trust)
check instead. There is no drop in security - a compromised exact match
fingerprint has the same worse case failure. There is increased security
in allowing separate long-term CA key and short-term SSL server keys.
This also removes loading of the system-default CA files if a custom
CA file or certificate fingerprint is specified.
RPC connections now have optional tranparent SSL.
An optional private key and certificate file can be passed,
using the --{rpc,daemon}-ssl-private-key and
--{rpc,daemon}-ssl-certificate options. Those have as
argument a path to a PEM format private private key and
certificate, respectively.
If not given, a temporary self signed certificate will be used.
SSL can be enabled or disabled using --{rpc}-ssl, which
accepts autodetect (default), disabled or enabled.
Access can be restricted to particular certificates using the
--rpc-ssl-allowed-certificates, which takes a list of
paths to PEM encoded certificates. This can allow a wallet to
connect to only the daemon they think they're connected to,
by forcing SSL and listing the paths to the known good
certificates.
To generate long term certificates:
openssl genrsa -out /tmp/KEY 4096
openssl req -new -key /tmp/KEY -out /tmp/REQ
openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT
/tmp/KEY is the private key, and /tmp/CERT is the certificate,
both in PEM format. /tmp/REQ can be removed. Adjust the last
command to set expiration date, etc, as needed. It doesn't
make a whole lot of sense for monero anyway, since most servers
will run with one time temporary self signed certificates anyway.
SSL support is transparent, so all communication is done on the
existing ports, with SSL autodetection. This means you can start
using an SSL daemon now, but you should not enforce SSL yet or
nothing will talk to you.
RPC connections now have optional tranparent SSL.
An optional private key and certificate file can be passed,
using the --{rpc,daemon}-ssl-private-key and
--{rpc,daemon}-ssl-certificate options. Those have as
argument a path to a PEM format private private key and
certificate, respectively.
If not given, a temporary self signed certificate will be used.
SSL can be enabled or disabled using --{rpc}-ssl, which
accepts autodetect (default), disabled or enabled.
Access can be restricted to particular certificates using the
--rpc-ssl-allowed-certificates, which takes a list of
paths to PEM encoded certificates. This can allow a wallet to
connect to only the daemon they think they're connected to,
by forcing SSL and listing the paths to the known good
certificates.
To generate long term certificates:
openssl genrsa -out /tmp/KEY 4096
openssl req -new -key /tmp/KEY -out /tmp/REQ
openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT
/tmp/KEY is the private key, and /tmp/CERT is the certificate,
both in PEM format. /tmp/REQ can be removed. Adjust the last
command to set expiration date, etc, as needed. It doesn't
make a whole lot of sense for monero anyway, since most servers
will run with one time temporary self signed certificates anyway.
SSL support is transparent, so all communication is done on the
existing ports, with SSL autodetection. This means you can start
using an SSL daemon now, but you should not enforce SSL yet or
nothing will talk to you.
- Support for ".onion" in --add-exclusive-node and --add-peer
- Add --anonymizing-proxy for outbound Tor connections
- Add --anonymous-inbounds for inbound Tor connections
- Support for sharing ".onion" addresses over Tor connections
- Support for broadcasting transactions received over RPC exclusively
over Tor (else broadcast over public IP when Tor not enabled).
a connection's timeout is halved for every extra connection
from the same host.
Also keep track of when we don't need to use a connection
anymore, so we can close it and free the resource for another
connection.
Also use the longer timeout for non routable local addresses.
We don't actually need to keep them past the call to start, as this
adds them to the config object list, and so they'll then be cancelled
already when the stop signal arrives. This allows removing the periodic
call to cleanup connections.
All code which was using ip and port now uses a new IPv4 object,
subclass of a new network_address class. This will allow easy
addition of I2P addresses later (and also IPv6, etc).
Both old style and new style peer lists are now sent in the P2P
protocol, which is inefficient but allows peers using both
codebases to talk to each other. This will be removed in the
future. No other subclasses than IPv4 exist yet.
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
The noexcept specs were added to make GCC 6.1.1 happy (#846), but this
one was missing (because GCC did not complain about it on Linux, but
does complain on OSX).
Since connections from the ::connect method are now kept in
a deque to be able to cancel them on exit, this leaks both
memory and a file descriptor. Here, we clean those up after
30 seconds, to avoid this. 30 seconds is higher then the
5 second timeout used in the async code, so this should be
safe. However, this is an assumption which would break if
that async code was to start relying on longer timeouts.
When the boost ioservice is stopped, pending work notifications
will not happen. This includes deadline timers, which would
otherwise time out the now cancelled I/O operations. When this
happens just after starting a new connect operation, this can
leave that operations in a state where it won't receive either
the completion notification nor a timeout, causing a hang.
This is fixed by keeping a list of connections corresponding
to the connect operations, and cancelling them before stopping
the boost ioservice.
Note that the list of these connections can grow unbounded, as
they're never cleaned up. Cleaning them up would involve
working out which connections do not have any pending work,
and it's not quite clear yet how to go about this.
Update of the PR with network limits
works very well for all speeds
(but remember that low download speed can stop upload
because we then slow down downloading of blockchain
requests too)
more debug options
fixed pedantic warnings in our code
should work again on Mac OS X and FreeBSD
fixed warning about size_t
tested on Debian, Ubuntu, Windows(testing now)
TCP options and ToS (QoS) flag
FIXED peer number limit
FIXED some spikes in ingress/download
FIXED problems when other up and down limit
commands and options for network limiting
works very well e.g. for 50 KiB/sec up and down
ToS (QoS) flag
peer number limit
TODO some spikes in ingress/download
TODO problems when other up and down limit
added "otshell utils" - simple logging (with colors, text files channels)