When #3303 was merged, a cyclic dependency chain was generated:
libdevice <- libcncrypto <- libringct <- libdevice
This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:
libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct
This eliminates the need for crypto_device.cpp and rctOps_device.cpp.
Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
Fix the way the REAL mode is handle:
Let create_transactions_2 and create_transactions_from construct the vector of transactions.
Then iterate on it and resign.
We just need to add 'outs' list in the TX struct for that.
Fix default secret keys value when DEBUG_HWDEVICE mode is off
The magic value (00...00 for view key and FF..FF for spend key) was not correctly set
when DEBUG_HWDEVICE was off. Both was set to 00...00.
Add sub-address info in ABP map in order to correctly display destination sub-address on device
Fix DEBUG_HWDEVICE mode:
- Fix compilation errors.
- Fix control device init in ledger device.
- Add more log.
Fix sub addr control
Fix debug Info
0e7ad2e2 Wallet API: generalize 'bool testnet' to 'NetworkType nettype' (stoffu)
af773211 Stagenet (stoffu)
cc9a0bee command_line: allow args to depend on more than one args (stoffu)
55f8d917 command_line::get_arg: remove 'required' for dependent args as they're always optional (stoffu)
450306a0 command line: allow has_arg to handle arg_descriptor<bool,false,true> #3318 (stoffu)
9f9e095a Use `genesis_tx` parameter in `generate_genesis_block`. #3261 (Jean Pierre Dudey)
* src/cryptnote_config.h: The constant `config::testnet::GENESIS_TX` was
changed to be the same as `config::GENESIS_TX` (the mainnet's transaction)
because the mainnet's transaction was being used for both networks.
* src/cryptonote_core/cryptonote_tx_utils.cpp: The `generate_genesis_block` function
was ignoring the `genesis_tx` parameter, and instead it was using the `config::GENESIS_TX`
constant. That's why the testnet genesis transaction was changed. Also five lines of unused
code were removed.
Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.
Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.
The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and the "Ledger", which delegates
all calls to Ledger device.
When a block is added as part of a chunk (when syncing historical
blocks), a block may end up already in the blockchain if it was
added to the queue before being added to the chain (though it's
not clear how that could happen, but it's an implementation detail)
and thus may not be added to the chain when add_block is called.
This would cause m_blocks_txs_check to not be cleared, causing it
to get out of sync at next call, and thus wrongfully reject the
next block.
e4646379 keccak: fix mdlen bounds sanity checking (moneromooo-monero)
2e3e90ac pass large parameters by const ref, not value (moneromooo-monero)
61defd89 blockchain: sanity check number of precomputed hash of hash blocks (moneromooo-monero)
9af6b2d1 ringct: fix infinite loop in unused h2b function (moneromooo-monero)
8cea8d0c simplewallet: double check a new multisig wallet is multisig (moneromooo-monero)
9b98a6ac threadpool: catch exceptions in dtor, to avoid terminate (moneromooo-monero)
24803ed9 blockchain_export: fix buffer overflow in exporter (moneromooo-monero)
f3f7da62 perf_timer: rewrite to make it clear there is no division by zero (moneromooo-monero)
c6ea3df0 performance_tests: remove add_arg call stray extra param (moneromooo-monero)
fa6b4566 fuzz_tests: fix an uninitialized var in setup (moneromooo-monero)
03887f11 keccak: fix sanity check bounds test (moneromooo-monero)
ad11db91 blockchain_db: initialize m_open in base class ctor (moneromooo-monero)
bece67f9 miner: restore std::cout precision after modification (moneromooo-monero)
1aabd14c db_lmdb: check hard fork info drop succeeded (moneromooo-monero)
bc61ae69 tx_pool: add a max pool size, settable with --max-txpool-size (moneromooo-monero)
3b4e6b35 txpool: increase unmined tx expiry to three days (moneromooo-monero)
Previously, when outputs_amount == inputs_amount, the "m_overspend" property
was set, whereas "m_fee_too_low" would have been the correct property to set.
This is unlikely to ever occur and just something I've noticed while reading
through the code.
Scheme by luigi1111:
Multisig for RingCT on Monero
2 of 2
User A (coordinator):
Spendkey b,B
Viewkey a,A (shared)
User B:
Spendkey c,C
Viewkey a,A (shared)
Public Address: C+B, A
Both have their own watch only wallet via C+B, a
A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants)
A and B watch for incoming outputs
B creates "half" key images for discovered output D:
I2_D = (Hs(aR)+c) * Hp(D)
B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D),
and sending the pubkeys with I2_D.
A also creates "half" key images:
I1_D = (Hs(aR)+b) * Hp(D)
Then I_D = I1_D + I2_D
Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction).
A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D
to his own generated ones where they are needed (secret row L, R).
At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r,
which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo).
B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well).
B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D
to his cache, allowing him to verify spent status as well.
NOTE:
A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively.
Otherwise, trickery like the following becomes possible:
A creates viewkey a,A, spendkey b,B, and sends a,A,B to B.
B creates a fake key C = zG - B. B sends C back to A.
The combined spendkey C+B then equals zG, allowing B to spend funds at any time!
The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature).
2 of 3
User A (coordinator)
Shared viewkey a,A
"spendkey" j,J
User B
"spendkey" k,K
User C
"spendkey" m,M
A collects K and M from B and C
B collects J and M from A and C
C collects J and K from A and B
A computes N = nG, n = Hs(jK)
A computes O = oG, o = Hs(jM)
B anc C compute P = pG, p = Hs(kM) || Hs(mK)
B and C can also compute N and O respectively if they wish to be able to coordinate
Address: N+O+P, A
The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other
needed part of the signature/key images from either of the other two.
Alternatively, if secure communication exists between parties:
A gives j to B
B gives k to C
C gives m to A
Address: J+K+M, A
3 of 3
Identical to 2 of 2, except the coordinator must collect the key images from both of the others.
The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it
or send it back to A.
N-1 of N
Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around
(using either the secure or insecure method).
For example (ignoring viewkey so letters line up):
[4 of 5]
User: spendkey
A: a
B: b
C: c
D: d
E: e
a -> B, b -> C, c -> D, d -> E, e -> A
Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with
the transaction so the signers know if they should use 1 or both keys.
Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each.
Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning:
1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image)
2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator
must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use.
You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might
also be straightforward enough to support with minimal changes from N-1 format.
You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc.
The process is somewhat cumbersome:
To create a N/N multisig wallet:
- each participant creates a normal wallet
- each participant runs "prepare_multisig", and sends the resulting string to every other participant
- each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N)
As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent:
- each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant
- each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants
Then, a transaction may be initiated:
- one of the participants runs "transfer ADDRESS AMOUNT"
- this partly signed transaction will be written to the "multisig_monero_tx" file
- the initiator sends this file to another participant
- that other participant runs "sign_multisig multisig_monero_tx"
- the resulting transaction is written to the "multisig_monero_tx" file again
- if the threshold was not reached, the file must be sent to another participant, until enough have signed
- the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
43f5269f Wallets now do not depend on the daemon rpc lib (moneromooo-monero)
bb89ae8b move connection_basic and network_throttle from src/p2p to epee (moneromooo-monero)
4abf25f3 cryptonote_core does not depend on p2p anymore (moneromooo-monero)
0d9c0db9 Do not build against epee_readline if it was not built (Howard Chu)
178014c9 split off readline code into epee_readline (moneromooo-monero)
a9e14a19 link against readline only for monerod and wallet-wallet-{rpc,cli} (moneromooo-monero)
437421ce wallet: move some scoped_message_writer calls from the libs (moneromooo-monero)
e89994e9 wallet: rejig to avoid prompting in wallet2 (moneromooo-monero)
ec5135e5 move input_line from command_line to simplewallet (moneromooo-monero)
082db75f move cryptonote command line options to cryptonote_core (moneromooo-monero)
ec48e8d8 core: do not forbid txes without destination (moneromooo-monero)
523084bc core: don't add empty additional pub keys field to extra (moneromooo-monero)
This patch allows to filter out sensitive information for queries that rely on the pool state, when running in restricted mode.
This filtering is only applied to data sent back to RPC queries. Results of inline commands typed locally in the daemon are not affected.
In practice, when running with `--restricted-rpc`:
* get_transaction_pool will list relayed transactions with the fields "last relayed time" and "received time" set to zero.
* get_transaction_pool will not list transaction that have do_not_relay set to true, and will not list key images that are used only for such transactions
* get_transaction_pool_hashes.bin will not list such transaction
* get_transaction_pool_stats will not count such transactions in any of the aggregated values that are computed
The implementation does not make filtering the default, so developers should be mindful of this if they add new RPC functionality.
Fixes#2590.
Transactions in the txpool are marked when another transaction
is seen double spending one or more of its inputs.
This is then exposed wherever appropriate.
Note that being marked with this "double spend seen" flag does
NOT mean this transaction IS a double spend and will never be
mined: it just means that the network has seen at least another
transaction spending at least one of the same inputs, so care
should be taken to wait for a few confirmations before acting
upon that transaction (ie, mostly of use for merchants wanting
to accept unconfirmed transactions).
It is safe in those cases, though might return slightly out of date
information if another thread is busy modifying the blockchain,
but it avoids potentially lengthy delays just to get things like
the current blockchain height.
22b51e06 db_lmdb: include chain height when failing to find an output key (moneromooo-monero)
5db433b3 blockchain: avoid exceptions in output verification (moneromooo-monero)
0aaaca29 tx_pool: set the "invalid input" bit when check_tx_inputs fails (moneromooo-monero)
9236823b simplewallet: print tx rejection reason where it was missing (moneromooo-monero)
3dee3301 core_rpc_server: print tx rejection reason at L0 too (moneromooo-monero)
6137a0b9 blockchain: reject unsorted ins and outs from v7 (moneromooo-monero)
16afab90 core: sort ins and outs key key image and public key, respectively (moneromooo-monero)
0c36b9f9 common: add apply_permutation file and function (moneromooo-monero)
It was always returning true, and could not be foreseen to
usefully return errors in the future. This silences CID 162652
as well as saves some checking code in a few places.
0299cb77 Fix various oversights/bugs in ZMQ RPC server code (Thomas Winget)
77986023 json serialization for rpc-relevant monero types (Thomas Winget)
5c1e08fe Refactor some things into more composable (smaller) functions (Thomas Winget)
9ac2ad07 DRY refactoring (Thomas Winget)
And optimize import startup:
Remember start_height position during initial count_blocks pass
to avoid having to reread entire file again to arrive at start_height
It is unused, as it was apparently a future optimization,
and it leaks some information (though since pools publish
thei blocks they find, that amount seems small).
Structured {de-,}serialization methods for (many new) types
which are used for requests or responses in the RPC.
New types include RPC requests and responses, and structs which compose
types within those.
# Conflicts:
# src/cryptonote_core/blockchain.cpp
This commit refactors some of the rpc-related functions in the
Blockchain class to be more composable. This change was made
in order to make implementing the new zmq rpc easier without
trampling on the old rpc.
New functions:
Blockchain::get_num_mature_outputs
Blockchain::get_random_outputs
Blockchain::get_output_key
Blockchain::get_output_key_mask_unlocked
Blockchain::find_blockchain_supplement (overload)
functions which previously had this functionality inline now call these
functions as necessary.
This might prevent some calls to terminate when the LockedTXN
dtor is called as part of stack unwinding caused by another
exception in the first place.
c867357a cryptonote_protocol: error handling on cleanup_handle_incoming_blocks (moneromooo-monero)
ce901fcb Fix blockchain_import wedge on exception in cleanup_handle_incoming_blocks (moneromooo-monero)
84fa015e core: guard against exceptions in handle_incoming_{block,tx} (moneromooo-monero)