Merge pull request #5102

1eef0565 performance_tests: better stats, and keep track of timing history (moneromooo-monero)
This commit is contained in:
Riccardo Spagni 2019-03-04 21:22:51 +02:00
commit a28237c9ca
No known key found for this signature in database
GPG Key ID: 55432DF31CCD4FCD
8 changed files with 638 additions and 62 deletions

View File

@ -0,0 +1,58 @@
#pragma once
#include <vector>
template<typename T, typename Tpod = T>
class Stats
{
public:
Stats(const std::vector<T> &v): values(v), cached(0) {}
~Stats() {}
size_t get_size() const;
Tpod get_min() const;
Tpod get_max() const;
Tpod get_median() const;
double get_mean() const;
double get_confidence_interval_95() const;
double get_confidence_interval_99() const;
double get_standard_deviation() const;
double get_standard_error() const;
double get_variance() const;
double get_kurtosis() const;
double get_non_parametric_skew() const;
double get_t_test(T t) const;
double get_t_test(size_t npoints, double mean, double stddev) const;
double get_t_test(const Stats<T> &other) const;
double get_z_test(const Stats<T> &other) const;
double get_test(const Stats<T> &other) const;
std::vector<Tpod> get_quantiles(unsigned int quantiles) const;
std::vector<size_t> get_bins(unsigned int bins) const;
bool is_same_distribution_95(size_t npoints, double mean, double stddev) const;
bool is_same_distribution_95(const Stats<T> &other) const;
bool is_same_distribution_99(size_t npoints, double mean, double stddev) const;
bool is_same_distribution_99(const Stats<T> &other) const;
double get_cdf95(size_t df) const;
double get_cdf95(const Stats<T> &other) const;
double get_cdf99(size_t df) const;
double get_cdf99(const Stats<T> &other) const;
private:
inline bool is_cached(int bit) const;
inline void set_cached(int bit) const;
const std::vector<T> &values;
mutable uint64_t cached;
mutable Tpod min;
mutable Tpod max;
mutable Tpod median;
mutable double mean;
mutable double standard_deviation;
mutable double standard_error;
mutable double variance;
mutable double kurtosis;
};
#include "stats.inl"

View File

@ -0,0 +1,359 @@
#include <math.h>
#include <limits>
#include <algorithm>
#include "stats.h"
enum
{
bit_min = 0,
bit_max,
bit_median,
bit_mean,
bit_standard_deviation,
bit_standard_error,
bit_variance,
bit_kurtosis,
};
static inline double square(double x)
{
return x * x;
}
template<typename T>
static inline double interpolate(T v, T v0, double i0, T v1, double i1)
{
return i0 + (i1 - i0) * (v - v0) / (v1 - v0);
}
template<typename T, typename Tpod>
inline bool Stats<T, Tpod>::is_cached(int bit) const
{
return cached & (1<<bit);
}
template<typename T, typename Tpod>
inline void Stats<T, Tpod>::set_cached(int bit) const
{
cached |= 1<<bit;
}
template<typename T, typename Tpod>
size_t Stats<T, Tpod>::get_size() const
{
return values.size();
}
template<typename T, typename Tpod>
Tpod Stats<T, Tpod>::get_min() const
{
if (!is_cached(bit_min))
{
min = std::numeric_limits<Tpod>::max();
for (const T &v: values)
min = std::min<Tpod>(min, v);
set_cached(bit_min);
}
return min;
}
template<typename T, typename Tpod>
Tpod Stats<T, Tpod>::get_max() const
{
if (!is_cached(bit_max))
{
max = std::numeric_limits<Tpod>::min();
for (const T &v: values)
max = std::max<Tpod>(max, v);
set_cached(bit_max);
}
return max;
}
template<typename T, typename Tpod>
Tpod Stats<T, Tpod>::get_median() const
{
if (!is_cached(bit_median))
{
std::vector<Tpod> sorted;
sorted.reserve(values.size());
for (const T &v: values)
sorted.push_back(v);
std::sort(sorted.begin(), sorted.end());
if (sorted.size() & 1)
{
median = sorted[sorted.size() / 2];
}
else
{
median = (sorted[(sorted.size() - 1) / 2] + sorted[sorted.size() / 2]) / 2;
}
set_cached(bit_median);
}
return median;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_mean() const
{
if (values.empty())
return 0.0;
if (!is_cached(bit_mean))
{
mean = 0.0;
for (const T &v: values)
mean += v;
mean /= values.size();
set_cached(bit_mean);
}
return mean;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_cdf95(size_t df) const
{
static const double p[101] = {
-1, 12.706, 4.3027, 3.1824, 2.7765, 2.5706, 2.4469, 2.3646, 2.3060, 2.2622, 2.2281, 2.2010, 2.1788, 2.1604, 2.1448, 2.1315,
2.1199, 2.1098, 2.1009, 2.0930, 2.0860, 2.0796, 2.0739, 2.0687, 2.0639, 2.0595, 2.0555, 2.0518, 2.0484, 2.0452, 2.0423, 2.0395,
2.0369, 2.0345, 2.0322, 2.0301, 2.0281, 2.0262, 2.0244, 2.0227, 2.0211, 2.0195, 2.0181, 2.0167, 2.0154, 2.0141, 2.0129, 2.0117,
2.0106, 2.0096, 2.0086, 2.0076, 2.0066, 2.0057, 2.0049, 2.0040, 2.0032, 2.0025, 2.0017, 2.0010, 2.0003, 1.9996, 1.9990, 1.9983,
1.9977, 1.9971, 1.9966, 1.9960, 1.9955, 1.9949, 1.9944, 1.9939, 1.9935, 1.9930, 1.9925, 1.9921, 1.9917, 1.9913, 1.9908, 1.9905,
1.9901, 1.9897, 1.9893, 1.9890, 1.9886, 1.9883, 1.9879, 1.9876, 1.9873, 1.9870, 1.9867, 1.9864, 1.9861, 1.9858, 1.9855, 1.9852,
1.9850, 1.9847, 1.9845, 1.9842, 1.9840,
};
if (df <= 100)
return p[df];
if (df <= 120)
return interpolate<size_t>(df, 100, 1.9840, 120, 1.98);
return 1.96;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_cdf95(const Stats<T> &other) const
{
return get_cdf95(get_size() + other.get_size() - 2);
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_cdf99(size_t df) const
{
static const double p[101] = {
-1, 9.9250, 5.8408, 4.6041, 4.0321, 3.7074, 3.4995, 3.3554, 3.2498, 3.1693, 3.1058, 3.0545, 3.0123, 2.9768, 2.9467, 2.9208, 2.8982,
2.8784, 2.8609, 2.8453, 2.8314, 2.8188, 2.8073, 2.7970, 2.7874, 2.7787, 2.7707, 2.7633, 2.7564, 2.7500, 2.7440, 2.7385, 2.7333,
2.7284, 2.7238, 2.7195, 2.7154, 2.7116, 2.7079, 2.7045, 2.7012, 2.6981, 2.6951, 2.6923, 2.6896, 2.6870, 2.6846, 2.6822, 2.6800,
2.6778, 2.6757, 2.6737, 2.6718, 2.6700, 2.6682, 2.6665, 2.6649, 2.6633, 2.6618, 2.6603, 2.6589, 2.6575, 2.6561, 2.6549, 2.6536,
2.6524, 2.6512, 2.6501, 2.6490, 2.6479, 2.6469, 2.6458, 2.6449, 2.6439, 2.6430, 2.6421, 2.6412, 2.6403, 2.6395, 2.6387, 2.6379,
2.6371, 2.6364, 2.6356, 2.6349, 2.6342, 2.6335, 2.6329, 2.6322, 2.6316, 2.6309, 2.6303, 2.6297, 2.6291, 2.6286, 2.6280, 2.6275,
2.6269, 2.6264, 2.6259,
};
if (df <= 100)
return p[df];
if (df <= 120)
return interpolate<size_t>(df, 100, 2.6529, 120, 2.617);
return 2.576;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_cdf99(const Stats<T> &other) const
{
return get_cdf99(get_size() + other.get_size() - 2);
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_confidence_interval_95() const
{
const size_t df = get_size() - 1;
return get_standard_error() * get_cdf95(df);
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_confidence_interval_99() const
{
const size_t df = get_size() - 1;
return get_standard_error() * get_cdf99(df);
}
template<typename T, typename Tpod>
bool Stats<T, Tpod>::is_same_distribution_95(size_t npoints, double mean, double stddev) const
{
return fabs(get_t_test(npoints, mean, stddev)) < get_cdf95(get_size() + npoints - 2);
}
template<typename T, typename Tpod>
bool Stats<T, Tpod>::is_same_distribution_95(const Stats<T> &other) const
{
return fabs(get_t_test(other)) < get_cdf95(other);
}
template<typename T, typename Tpod>
bool Stats<T, Tpod>::is_same_distribution_99(size_t npoints, double mean, double stddev) const
{
return fabs(get_t_test(npoints, mean, stddev)) < get_cdf99(get_size() + npoints - 2);
}
template<typename T, typename Tpod>
bool Stats<T, Tpod>::is_same_distribution_99(const Stats<T> &other) const
{
return fabs(get_t_test(other)) < get_cdf99(other);
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_standard_deviation() const
{
if (values.size() <= 1)
return 0.0;
if (!is_cached(bit_standard_deviation))
{
Tpod m = get_mean(), t = 0;
for (const T &v: values)
t += ((T)v - m) * ((T)v - m);
standard_deviation = sqrt(t / ((double)values.size() - 1));
set_cached(bit_standard_deviation);
}
return standard_deviation;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_standard_error() const
{
if (!is_cached(bit_standard_error))
{
standard_error = get_standard_deviation() / sqrt(get_size());
set_cached(bit_standard_error);
}
return standard_error;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_variance() const
{
if (!is_cached(bit_variance))
{
double stddev = get_standard_deviation();
variance = stddev * stddev;
set_cached(bit_variance);
}
return variance;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_kurtosis() const
{
if (values.empty())
return 0.0;
if (!is_cached(bit_kurtosis))
{
double m = get_mean();
double n = 0, d = 0;
for (const T &v: values)
{
T p2 = (v - m) * (v - m);
T p4 = p2 * p2;
n += p4;
d += p2;
}
n /= values.size();
d /= values.size();
d *= d;
kurtosis = n / d;
set_cached(bit_kurtosis);
}
return kurtosis;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_non_parametric_skew() const
{
return (get_mean() - get_median()) / get_standard_deviation();
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_t_test(T t) const
{
const double n = get_mean() - t;
const double d = get_standard_deviation() / sqrt(get_size());
return n / d;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_t_test(size_t npoints, double mean, double stddev) const
{
const double n = get_mean() - mean;
const double d = sqrt(get_variance() / get_size() + square(stddev) / npoints);
return n / d;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_t_test(const Stats<T> &other) const
{
const double n = get_mean() - other.get_mean();
const double d = sqrt(get_variance() / get_size() + other.get_variance() / other.get_size());
return n / d;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_z_test(const Stats<T> &other) const
{
const double m0 = get_mean();
const double m1 = other.get_mean();
const double sd0 = get_standard_deviation();
const double sd1 = other.get_standard_deviation();
const size_t s0 = get_size();
const size_t s1 = other.get_size();
const double n = m0 - m1;
const double d = sqrt(square(sd0 / sqrt(s0)) + square(sd1 / sqrt(s1)));
return n / d;
}
template<typename T, typename Tpod>
double Stats<T, Tpod>::get_test(const Stats<T> &other) const
{
if (get_size() >= 30 && other.get_size() >= 30)
return get_z_test(other);
else
return get_t_test(other);
}
template<typename T, typename Tpod>
std::vector<Tpod> Stats<T, Tpod>::get_quantiles(unsigned int quantiles) const
{
std::vector<Tpod> sorted;
sorted.reserve(values.size());
for (const T &v: values)
sorted.push_back(v);
std::sort(sorted.begin(), sorted.end());
std::vector<Tpod> q(quantiles + 1, 0);
for (unsigned int i = 1; i <= quantiles; ++i)
{
unsigned idx = (unsigned)ceil(values.size() * i / (double)quantiles);
q[i] = sorted[idx - 1];
}
if (!is_cached(bit_min))
{
min = sorted.front();
set_cached(bit_min);
}
q[0] = min;
if (!is_cached(bit_max))
{
max = sorted.back();
set_cached(bit_max);
}
return q;
}
template<typename T, typename Tpod>
std::vector<size_t> Stats<T, Tpod>::get_bins(unsigned int bins) const
{
std::vector<size_t> b(bins, 0);
const double scale = 1.0 / (get_max() - get_min());
const T base = get_min();
for (const T &v: values)
{
unsigned int idx = (v - base) * scale;
++b[idx];
}
return b;
}

View File

@ -45,6 +45,7 @@ set(common_sources
threadpool.cpp threadpool.cpp
updates.cpp updates.cpp
aligned.c aligned.c
timings.cc
combinator.cpp) combinator.cpp)
if (STACK_TRACE) if (STACK_TRACE)
@ -84,6 +85,7 @@ set(common_private_headers
threadpool.h threadpool.h
updates.h updates.h
aligned.h aligned.h
timings.h
combinator.h) combinator.h)
monero_private_headers(common monero_private_headers(common

View File

@ -53,6 +53,7 @@ public:
void resume(); void resume();
void reset(); void reset();
uint64_t value() const; uint64_t value() const;
operator uint64_t() const { return value(); }
protected: protected:
uint64_t ticks; uint64_t ticks;

125
src/common/timings.cc Normal file
View File

@ -0,0 +1,125 @@
#include <string.h>
#include <error.h>
#include <time.h>
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include "misc_log_ex.h"
#include "timings.h"
#define N_EXPECTED_FIELDS (8+11)
TimingsDatabase::TimingsDatabase()
{
}
TimingsDatabase::TimingsDatabase(const std::string &filename):
filename(filename)
{
load();
}
TimingsDatabase::~TimingsDatabase()
{
save();
}
bool TimingsDatabase::load()
{
instances.clear();
if (filename.empty())
return true;
FILE *f = fopen(filename.c_str(), "r");
if (!f)
{
MDEBUG("Failed to load timings file " << filename << ": " << strerror(errno));
return false;
}
while (1)
{
char s[4096];
if (!fgets(s, sizeof(s), f))
break;
char *tab = strchr(s, '\t');
if (!tab)
{
MWARNING("Bad format: no tab found");
continue;
}
const std::string name = std::string(s, tab - s);
std::vector<std::string> fields;
char *ptr = tab + 1;
boost::split(fields, ptr, boost::is_any_of(" "));
if (fields.size() != N_EXPECTED_FIELDS)
{
MERROR("Bad format: wrong number of fields: got " << fields.size() << " expected " << N_EXPECTED_FIELDS);
continue;
}
instance i;
unsigned int idx = 0;
i.t = atoi(fields[idx++].c_str());
i.npoints = atoi(fields[idx++].c_str());
i.min = atof(fields[idx++].c_str());
i.max = atof(fields[idx++].c_str());
i.mean = atof(fields[idx++].c_str());
i.median = atof(fields[idx++].c_str());
i.stddev = atof(fields[idx++].c_str());
i.npskew = atof(fields[idx++].c_str());
i.deciles.reserve(11);
for (int n = 0; n < 11; ++n)
{
i.deciles.push_back(atoi(fields[idx++].c_str()));
}
instances.insert(std::make_pair(name, i));
}
fclose(f);
return true;
}
bool TimingsDatabase::save()
{
if (filename.empty())
return true;
FILE *f = fopen(filename.c_str(), "w");
if (!f)
{
MERROR("Failed to write to file " << filename << ": " << strerror(errno));
return false;
}
for (const auto &i: instances)
{
fprintf(f, "%s", i.first.c_str());
fprintf(f, "\t%lu", (unsigned long)i.second.t);
fprintf(f, " %zu", i.second.npoints);
fprintf(f, " %f", i.second.min);
fprintf(f, " %f", i.second.max);
fprintf(f, " %f", i.second.mean);
fprintf(f, " %f", i.second.median);
fprintf(f, " %f", i.second.stddev);
fprintf(f, " %f", i.second.npskew);
for (uint64_t v: i.second.deciles)
fprintf(f, " %lu", (unsigned long)v);
fputc('\n', f);
}
fclose(f);
return true;
}
std::vector<TimingsDatabase::instance> TimingsDatabase::get(const char *name) const
{
std::vector<instance> ret;
auto range = instances.equal_range(name);
for (auto i = range.first; i != range.second; ++i)
ret.push_back(i->second);
std::sort(ret.begin(), ret.end(), [](const instance &e0, const instance &e1){ return e0.t < e1.t; });
return ret;
}
void TimingsDatabase::add(const char *name, const instance &i)
{
instances.insert(std::make_pair(name, i));
}

34
src/common/timings.h Normal file
View File

@ -0,0 +1,34 @@
#pragma once
#include <stdint.h>
#include <string>
#include <vector>
#include <map>
class TimingsDatabase
{
public:
struct instance
{
time_t t;
size_t npoints;
double min, max, mean, median, stddev, npskew;
std::vector<uint64_t> deciles;
};
public:
TimingsDatabase();
TimingsDatabase(const std::string &filename);
~TimingsDatabase();
std::vector<instance> get(const char *name) const;
void add(const char *name, const instance &data);
private:
bool load();
bool save();
private:
std::string filename;
std::multimap<std::string, instance> instances;
};

View File

@ -77,10 +77,12 @@ int main(int argc, char** argv)
const command_line::arg_descriptor<bool> arg_verbose = { "verbose", "Verbose output", false }; const command_line::arg_descriptor<bool> arg_verbose = { "verbose", "Verbose output", false };
const command_line::arg_descriptor<bool> arg_stats = { "stats", "Including statistics (min/median)", false }; const command_line::arg_descriptor<bool> arg_stats = { "stats", "Including statistics (min/median)", false };
const command_line::arg_descriptor<unsigned> arg_loop_multiplier = { "loop-multiplier", "Run for that many times more loops", 1 }; const command_line::arg_descriptor<unsigned> arg_loop_multiplier = { "loop-multiplier", "Run for that many times more loops", 1 };
const command_line::arg_descriptor<std::string> arg_timings_database = { "timings-database", "Keep timings history in a file" };
command_line::add_arg(desc_options, arg_filter); command_line::add_arg(desc_options, arg_filter);
command_line::add_arg(desc_options, arg_verbose); command_line::add_arg(desc_options, arg_verbose);
command_line::add_arg(desc_options, arg_stats); command_line::add_arg(desc_options, arg_stats);
command_line::add_arg(desc_options, arg_loop_multiplier); command_line::add_arg(desc_options, arg_loop_multiplier);
command_line::add_arg(desc_options, arg_timings_database);
po::variables_map vm; po::variables_map vm;
bool r = command_line::handle_error_helper(desc_options, [&]() bool r = command_line::handle_error_helper(desc_options, [&]()
@ -93,7 +95,10 @@ int main(int argc, char** argv)
return 1; return 1;
const std::string filter = tools::glob_to_regex(command_line::get_arg(vm, arg_filter)); const std::string filter = tools::glob_to_regex(command_line::get_arg(vm, arg_filter));
const std::string timings_database = command_line::get_arg(vm, arg_timings_database);
Params p; Params p;
if (!timings_database.empty())
p.td = TimingsDatabase(timings_database);
p.verbose = command_line::get_arg(vm, arg_verbose); p.verbose = command_line::get_arg(vm, arg_verbose);
p.stats = command_line::get_arg(vm, arg_stats); p.stats = command_line::get_arg(vm, arg_stats);
p.loop_multiplier = command_line::get_arg(vm, arg_loop_multiplier); p.loop_multiplier = command_line::get_arg(vm, arg_loop_multiplier);

View File

@ -37,7 +37,9 @@
#include <boost/regex.hpp> #include <boost/regex.hpp>
#include "misc_language.h" #include "misc_language.h"
#include "stats.h"
#include "common/perf_timer.h" #include "common/perf_timer.h"
#include "common/timings.h"
class performance_timer class performance_timer
{ {
@ -67,6 +69,7 @@ private:
struct Params struct Params
{ {
TimingsDatabase td;
bool verbose; bool verbose;
bool stats; bool stats;
unsigned loop_multiplier; unsigned loop_multiplier;
@ -85,6 +88,8 @@ public:
bool run() bool run()
{ {
static_assert(0 < T::loop_count, "T::loop_count must be greater than 0");
T test; T test;
if (!test.init()) if (!test.init())
return false; return false;
@ -106,11 +111,13 @@ public:
m_per_call_timers[i].pause(); m_per_call_timers[i].pause();
} }
m_elapsed = timer.elapsed_ms(); m_elapsed = timer.elapsed_ms();
m_stats.reset(new Stats<tools::PerformanceTimer, uint64_t>(m_per_call_timers));
return true; return true;
} }
int elapsed_time() const { return m_elapsed; } int elapsed_time() const { return m_elapsed; }
size_t get_size() const { return m_stats->get_size(); }
int time_per_call(int scale = 1) const int time_per_call(int scale = 1) const
{ {
@ -118,59 +125,19 @@ public:
return m_elapsed * scale / (T::loop_count * m_params.loop_multiplier); return m_elapsed * scale / (T::loop_count * m_params.loop_multiplier);
} }
uint64_t per_call_min() const uint64_t get_min() const { return m_stats->get_min(); }
{ uint64_t get_max() const { return m_stats->get_max(); }
uint64_t v = std::numeric_limits<uint64_t>::max(); double get_mean() const { return m_stats->get_mean(); }
for (const auto &pt: m_per_call_timers) uint64_t get_median() const { return m_stats->get_median(); }
v = std::min(v, pt.value()); double get_stddev() const { return m_stats->get_standard_deviation(); }
return v; double get_non_parametric_skew() const { return m_stats->get_non_parametric_skew(); }
} std::vector<uint64_t> get_quantiles(size_t n) const { return m_stats->get_quantiles(n); }
uint64_t per_call_max() const bool is_same_distribution(size_t npoints, double mean, double stddev) const
{ {
uint64_t v = std::numeric_limits<uint64_t>::min(); return m_stats->is_same_distribution_99(npoints, mean, stddev);
for (const auto &pt: m_per_call_timers)
v = std::max(v, pt.value());
return v;
} }
uint64_t per_call_mean() const
{
uint64_t v = 0;
for (const auto &pt: m_per_call_timers)
v += pt.value();
return v / m_per_call_timers.size();
}
uint64_t per_call_median() const
{
std::vector<uint64_t> values;
values.reserve(m_per_call_timers.size());
for (const auto &pt: m_per_call_timers)
values.push_back(pt.value());
return epee::misc_utils::median(values);
}
uint64_t per_call_stddev() const
{
if (m_per_call_timers.size() <= 1)
return 0;
const uint64_t mean = per_call_mean();
uint64_t acc = 0;
for (const auto &pt: m_per_call_timers)
{
int64_t dv = pt.value() - mean;
acc += dv * dv;
}
acc /= m_per_call_timers.size () - 1;
return sqrt(acc);
}
uint64_t min_time_ns() const { return tools::ticks_to_ns(per_call_min()); }
uint64_t max_time_ns() const { return tools::ticks_to_ns(per_call_max()); }
uint64_t median_time_ns() const { return tools::ticks_to_ns(per_call_median()); }
uint64_t standard_deviation_time_ns() const { return tools::ticks_to_ns(per_call_stddev()); }
private: private:
/** /**
* Warm up processor core, enabling turbo boost, etc. * Warm up processor core, enabling turbo boost, etc.
@ -191,10 +158,11 @@ private:
int m_elapsed; int m_elapsed;
Params m_params; Params m_params;
std::vector<tools::PerformanceTimer> m_per_call_timers; std::vector<tools::PerformanceTimer> m_per_call_timers;
std::unique_ptr<Stats<tools::PerformanceTimer, uint64_t>> m_stats;
}; };
template <typename T> template <typename T>
void run_test(const std::string &filter, const Params &params, const char* test_name) void run_test(const std::string &filter, Params &params, const char* test_name)
{ {
boost::smatch match; boost::smatch match;
if (!filter.empty() && !boost::regex_match(std::string(test_name), match, boost::regex(filter))) if (!filter.empty() && !boost::regex_match(std::string(test_name), match, boost::regex(filter)))
@ -210,10 +178,10 @@ void run_test(const std::string &filter, const Params &params, const char* test_
std::cout << " elapsed: " << runner.elapsed_time() << " ms\n"; std::cout << " elapsed: " << runner.elapsed_time() << " ms\n";
if (params.stats) if (params.stats)
{ {
std::cout << " min: " << runner.min_time_ns() << " ns\n"; std::cout << " min: " << runner.get_min() << " ns\n";
std::cout << " max: " << runner.max_time_ns() << " ns\n"; std::cout << " max: " << runner.get_max() << " ns\n";
std::cout << " median: " << runner.median_time_ns() << " ns\n"; std::cout << " median: " << runner.get_median() << " ns\n";
std::cout << " std dev: " << runner.standard_deviation_time_ns() << " ns\n"; std::cout << " std dev: " << runner.get_stddev() << " ns\n";
} }
} }
else else
@ -221,24 +189,48 @@ void run_test(const std::string &filter, const Params &params, const char* test_
std::cout << test_name << " (" << T::loop_count * params.loop_multiplier << " calls) - OK:"; std::cout << test_name << " (" << T::loop_count * params.loop_multiplier << " calls) - OK:";
} }
const char *unit = "ms"; const char *unit = "ms";
uint64_t scale = 1000000; double scale = 1000000;
int time_per_call = runner.time_per_call(); uint64_t time_per_call = runner.time_per_call();
if (time_per_call < 30000) { if (time_per_call < 100) {
scale = 1000;
time_per_call = runner.time_per_call(1000); time_per_call = runner.time_per_call(1000);
#ifdef _WIN32 #ifdef _WIN32
unit = "\xb5s"; unit = "\xb5s";
#else #else
unit = "µs"; unit = "µs";
#endif #endif
scale = 1000;
} }
const auto quantiles = runner.get_quantiles(10);
double min = runner.get_min();
double max = runner.get_max();
double med = runner.get_median();
double mean = runner.get_mean();
double stddev = runner.get_stddev();
double npskew = runner.get_non_parametric_skew();
std::vector<TimingsDatabase::instance> prev_instances = params.td.get(test_name);
params.td.add(test_name, {time(NULL), runner.get_size(), min, max, mean, med, stddev, npskew, quantiles});
std::cout << (params.verbose ? " time per call: " : " ") << time_per_call << " " << unit << "/call" << (params.verbose ? "\n" : ""); std::cout << (params.verbose ? " time per call: " : " ") << time_per_call << " " << unit << "/call" << (params.verbose ? "\n" : "");
if (params.stats) if (params.stats)
{ {
uint64_t min_ns = runner.min_time_ns() / scale; uint64_t mins = min / scale;
uint64_t med_ns = runner.median_time_ns() / scale; uint64_t maxs = max / scale;
uint64_t stddev_ns = runner.standard_deviation_time_ns() / scale; uint64_t meds = med / scale;
std::cout << " (min " << min_ns << " " << unit << ", median " << med_ns << " " << unit << ", std dev " << stddev_ns << " " << unit << ")"; uint64_t p95s = quantiles[9] / scale;
uint64_t stddevs = stddev / scale;
std::string cmp;
if (!prev_instances.empty())
{
const TimingsDatabase::instance &prev_instance = prev_instances.back();
if (!runner.is_same_distribution(prev_instance.npoints, prev_instance.mean, prev_instance.stddev))
{
double pc = fabs(100. * (prev_instance.mean - runner.get_mean()) / prev_instance.mean);
cmp = ", " + std::to_string(pc) + "% " + (mean > prev_instance.mean ? "slower" : "faster");
}
cmp += " -- " + std::to_string(prev_instance.mean);
}
std::cout << " (min " << mins << " " << unit << ", 90th " << p95s << " " << unit << ", median " << meds << " " << unit << ", std dev " << stddevs << " " << unit << ")" << cmp;
} }
std::cout << std::endl; std::cout << std::endl;
} }