mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 21:53:48 +01:00
fd6749203e
Incidentally, this business here where I make crypto_rand mockable: this is exactly the kind of thing that would make me never want to include test-support stuff in production builds.
3107 lines
86 KiB
C
3107 lines
86 KiB
C
/* Copyright (c) 2001, Matej Pfajfar.
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2013, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file crypto.c
|
|
* \brief Wrapper functions to present a consistent interface to
|
|
* public-key and symmetric cryptography operations from OpenSSL.
|
|
**/
|
|
|
|
#include "orconfig.h"
|
|
|
|
#ifdef _WIN32
|
|
#ifndef _WIN32_WINNT
|
|
#define _WIN32_WINNT 0x0501
|
|
#endif
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#include <wincrypt.h>
|
|
/* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually
|
|
* use either definition. */
|
|
#undef OCSP_RESPONSE
|
|
#endif
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/opensslv.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/conf.h>
|
|
#include <openssl/hmac.h>
|
|
|
|
#ifdef HAVE_CTYPE_H
|
|
#include <ctype.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_FCNTL_H
|
|
#include <sys/fcntl.h>
|
|
#endif
|
|
|
|
#define CRYPTO_PRIVATE
|
|
#include "crypto.h"
|
|
#include "../common/torlog.h"
|
|
#include "aes.h"
|
|
#include "../common/util.h"
|
|
#include "container.h"
|
|
#include "compat.h"
|
|
|
|
#if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(0,9,8)
|
|
#error "We require OpenSSL >= 0.9.8"
|
|
#endif
|
|
|
|
#ifdef ANDROID
|
|
/* Android's OpenSSL seems to have removed all of its Engine support. */
|
|
#define DISABLE_ENGINES
|
|
#endif
|
|
|
|
/** Longest recognized */
|
|
#define MAX_DNS_LABEL_SIZE 63
|
|
|
|
/** Macro: is k a valid RSA public or private key? */
|
|
#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
|
|
/** Macro: is k a valid RSA private key? */
|
|
#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p)
|
|
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
/** A number of preallocated mutexes for use by OpenSSL. */
|
|
static tor_mutex_t **openssl_mutexes_ = NULL;
|
|
/** How many mutexes have we allocated for use by OpenSSL? */
|
|
static int n_openssl_mutexes_ = 0;
|
|
#endif
|
|
|
|
/** A public key, or a public/private key-pair. */
|
|
struct crypto_pk_t
|
|
{
|
|
int refs; /**< reference count, so we don't have to copy keys */
|
|
RSA *key; /**< The key itself */
|
|
};
|
|
|
|
/** Key and stream information for a stream cipher. */
|
|
struct crypto_cipher_t
|
|
{
|
|
char key[CIPHER_KEY_LEN]; /**< The raw key. */
|
|
char iv[CIPHER_IV_LEN]; /**< The initial IV. */
|
|
aes_cnt_cipher_t *cipher; /**< The key in format usable for counter-mode AES
|
|
* encryption */
|
|
};
|
|
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
* while we're waiting for the second.*/
|
|
struct crypto_dh_t {
|
|
DH *dh; /**< The openssl DH object */
|
|
};
|
|
|
|
static int setup_openssl_threading(void);
|
|
static int tor_check_dh_key(int severity, BIGNUM *bn);
|
|
|
|
/** Return the number of bytes added by padding method <b>padding</b>.
|
|
*/
|
|
static INLINE int
|
|
crypto_get_rsa_padding_overhead(int padding)
|
|
{
|
|
switch (padding)
|
|
{
|
|
case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
|
|
*/
|
|
static INLINE int
|
|
crypto_get_rsa_padding(int padding)
|
|
{
|
|
switch (padding)
|
|
{
|
|
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
/** Boolean: has OpenSSL's crypto been initialized? */
|
|
static int crypto_global_initialized_ = 0;
|
|
|
|
/** Log all pending crypto errors at level <b>severity</b>. Use
|
|
* <b>doing</b> to describe our current activities.
|
|
*/
|
|
static void
|
|
crypto_log_errors(int severity, const char *doing)
|
|
{
|
|
unsigned long err;
|
|
const char *msg, *lib, *func;
|
|
while ((err = ERR_get_error()) != 0) {
|
|
msg = (const char*)ERR_reason_error_string(err);
|
|
lib = (const char*)ERR_lib_error_string(err);
|
|
func = (const char*)ERR_func_error_string(err);
|
|
if (!msg) msg = "(null)";
|
|
if (!lib) lib = "(null)";
|
|
if (!func) func = "(null)";
|
|
if (doing) {
|
|
tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
|
|
doing, msg, lib, func);
|
|
} else {
|
|
tor_log(severity, LD_CRYPTO, "crypto error: %s (in %s:%s)",
|
|
msg, lib, func);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
/** Log any OpenSSL engines we're using at NOTICE. */
|
|
static void
|
|
log_engine(const char *fn, ENGINE *e)
|
|
{
|
|
if (e) {
|
|
const char *name, *id;
|
|
name = ENGINE_get_name(e);
|
|
id = ENGINE_get_id(e);
|
|
log_notice(LD_CRYPTO, "Using OpenSSL engine %s [%s] for %s",
|
|
name?name:"?", id?id:"?", fn);
|
|
} else {
|
|
log_info(LD_CRYPTO, "Using default implementation for %s", fn);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
/** Try to load an engine in a shared library via fully qualified path.
|
|
*/
|
|
static ENGINE *
|
|
try_load_engine(const char *path, const char *engine)
|
|
{
|
|
ENGINE *e = ENGINE_by_id("dynamic");
|
|
if (e) {
|
|
if (!ENGINE_ctrl_cmd_string(e, "ID", engine, 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "DIR_LOAD", "2", 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "DIR_ADD", path, 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) {
|
|
ENGINE_free(e);
|
|
e = NULL;
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
#endif
|
|
|
|
static char *crypto_openssl_version_str = NULL;
|
|
/* Return a human-readable version of the run-time openssl version number. */
|
|
const char *
|
|
crypto_openssl_get_version_str(void)
|
|
{
|
|
if (crypto_openssl_version_str == NULL) {
|
|
const char *raw_version = SSLeay_version(SSLEAY_VERSION);
|
|
const char *end_of_version = NULL;
|
|
/* The output should be something like "OpenSSL 1.0.0b 10 May 2012. Let's
|
|
trim that down. */
|
|
if (!strcmpstart(raw_version, "OpenSSL ")) {
|
|
raw_version += strlen("OpenSSL ");
|
|
end_of_version = strchr(raw_version, ' ');
|
|
}
|
|
|
|
if (end_of_version)
|
|
crypto_openssl_version_str = tor_strndup(raw_version,
|
|
end_of_version-raw_version);
|
|
else
|
|
crypto_openssl_version_str = tor_strdup(raw_version);
|
|
}
|
|
return crypto_openssl_version_str;
|
|
}
|
|
|
|
/** Initialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
|
|
{
|
|
if (!crypto_global_initialized_) {
|
|
ERR_load_crypto_strings();
|
|
OpenSSL_add_all_algorithms();
|
|
crypto_global_initialized_ = 1;
|
|
setup_openssl_threading();
|
|
|
|
if (SSLeay() == OPENSSL_VERSION_NUMBER &&
|
|
!strcmp(SSLeay_version(SSLEAY_VERSION), OPENSSL_VERSION_TEXT)) {
|
|
log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
|
|
"(%lx: %s).", SSLeay(), SSLeay_version(SSLEAY_VERSION));
|
|
} else {
|
|
log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
|
|
"version we're running with. If you get weird crashes, that "
|
|
"might be why. (Compiled with %lx: %s; running with %lx: %s).",
|
|
(unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
|
|
SSLeay(), SSLeay_version(SSLEAY_VERSION));
|
|
}
|
|
|
|
if (SSLeay() < OPENSSL_V_SERIES(1,0,0)) {
|
|
log_notice(LD_CRYPTO,
|
|
"Your OpenSSL version seems to be %s. We recommend 1.0.0 "
|
|
"or later.",
|
|
crypto_openssl_get_version_str());
|
|
}
|
|
|
|
if (useAccel > 0) {
|
|
#ifdef DISABLE_ENGINES
|
|
(void)accelName;
|
|
(void)accelDir;
|
|
log_warn(LD_CRYPTO, "No OpenSSL hardware acceleration support enabled.");
|
|
#else
|
|
ENGINE *e = NULL;
|
|
|
|
log_info(LD_CRYPTO, "Initializing OpenSSL engine support.");
|
|
ENGINE_load_builtin_engines();
|
|
ENGINE_register_all_complete();
|
|
|
|
if (accelName) {
|
|
if (accelDir) {
|
|
log_info(LD_CRYPTO, "Trying to load dynamic OpenSSL engine \"%s\""
|
|
" via path \"%s\".", accelName, accelDir);
|
|
e = try_load_engine(accelName, accelDir);
|
|
} else {
|
|
log_info(LD_CRYPTO, "Initializing dynamic OpenSSL engine \"%s\""
|
|
" acceleration support.", accelName);
|
|
e = ENGINE_by_id(accelName);
|
|
}
|
|
if (!e) {
|
|
log_warn(LD_CRYPTO, "Unable to load dynamic OpenSSL engine \"%s\".",
|
|
accelName);
|
|
} else {
|
|
log_info(LD_CRYPTO, "Loaded dynamic OpenSSL engine \"%s\".",
|
|
accelName);
|
|
}
|
|
}
|
|
if (e) {
|
|
log_info(LD_CRYPTO, "Loaded OpenSSL hardware acceleration engine,"
|
|
" setting default ciphers.");
|
|
ENGINE_set_default(e, ENGINE_METHOD_ALL);
|
|
}
|
|
log_engine("RSA", ENGINE_get_default_RSA());
|
|
log_engine("DH", ENGINE_get_default_DH());
|
|
log_engine("RAND", ENGINE_get_default_RAND());
|
|
log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
|
|
log_engine("3DES", ENGINE_get_cipher_engine(NID_des_ede3_ecb));
|
|
log_engine("AES", ENGINE_get_cipher_engine(NID_aes_128_ecb));
|
|
#endif
|
|
} else {
|
|
log_info(LD_CRYPTO, "NOT using OpenSSL engine support.");
|
|
}
|
|
|
|
evaluate_evp_for_aes(-1);
|
|
evaluate_ctr_for_aes();
|
|
|
|
return crypto_seed_rng(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Free crypto resources held by this thread. */
|
|
void
|
|
crypto_thread_cleanup(void)
|
|
{
|
|
ERR_remove_state(0);
|
|
}
|
|
|
|
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
|
|
crypto_pk_t *
|
|
crypto_new_pk_from_rsa_(RSA *rsa)
|
|
{
|
|
crypto_pk_t *env;
|
|
tor_assert(rsa);
|
|
env = tor_malloc(sizeof(crypto_pk_t));
|
|
env->refs = 1;
|
|
env->key = rsa;
|
|
return env;
|
|
}
|
|
|
|
/** Helper, used by tor-checkkey.c and tor-gencert.c. Return the RSA from a
|
|
* crypto_pk_t. */
|
|
RSA *
|
|
crypto_pk_get_rsa_(crypto_pk_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
|
|
* private is set, include the private-key portion of the key. */
|
|
EVP_PKEY *
|
|
crypto_pk_get_evp_pkey_(crypto_pk_t *env, int private)
|
|
{
|
|
RSA *key = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
tor_assert(env->key);
|
|
if (private) {
|
|
if (!(key = RSAPrivateKey_dup(env->key)))
|
|
goto error;
|
|
} else {
|
|
if (!(key = RSAPublicKey_dup(env->key)))
|
|
goto error;
|
|
}
|
|
if (!(pkey = EVP_PKEY_new()))
|
|
goto error;
|
|
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
|
goto error;
|
|
return pkey;
|
|
error:
|
|
if (pkey)
|
|
EVP_PKEY_free(pkey);
|
|
if (key)
|
|
RSA_free(key);
|
|
return NULL;
|
|
}
|
|
|
|
/** Used by tortls.c: Get the DH* from a crypto_dh_t.
|
|
*/
|
|
DH *
|
|
crypto_dh_get_dh_(crypto_dh_t *dh)
|
|
{
|
|
return dh->dh;
|
|
}
|
|
|
|
/** Allocate and return storage for a public key. The key itself will not yet
|
|
* be set.
|
|
*/
|
|
crypto_pk_t *
|
|
crypto_pk_new(void)
|
|
{
|
|
RSA *rsa;
|
|
|
|
rsa = RSA_new();
|
|
tor_assert(rsa);
|
|
return crypto_new_pk_from_rsa_(rsa);
|
|
}
|
|
|
|
/** Release a reference to an asymmetric key; when all the references
|
|
* are released, free the key.
|
|
*/
|
|
void
|
|
crypto_pk_free(crypto_pk_t *env)
|
|
{
|
|
if (!env)
|
|
return;
|
|
|
|
if (--env->refs > 0)
|
|
return;
|
|
tor_assert(env->refs == 0);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
tor_free(env);
|
|
}
|
|
|
|
/** Allocate and return a new symmetric cipher using the provided key and iv.
|
|
* The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes. If you
|
|
* provide NULL in place of either one, it is generated at random.
|
|
*/
|
|
crypto_cipher_t *
|
|
crypto_cipher_new_with_iv(const char *key, const char *iv)
|
|
{
|
|
crypto_cipher_t *env;
|
|
|
|
env = tor_malloc_zero(sizeof(crypto_cipher_t));
|
|
|
|
if (key == NULL)
|
|
crypto_rand(env->key, CIPHER_KEY_LEN);
|
|
else
|
|
memcpy(env->key, key, CIPHER_KEY_LEN);
|
|
if (iv == NULL)
|
|
crypto_rand(env->iv, CIPHER_IV_LEN);
|
|
else
|
|
memcpy(env->iv, iv, CIPHER_IV_LEN);
|
|
|
|
env->cipher = aes_new_cipher(env->key, env->iv);
|
|
|
|
return env;
|
|
}
|
|
|
|
/** Return a new crypto_cipher_t with the provided <b>key</b> and an IV of all
|
|
* zero bytes. */
|
|
crypto_cipher_t *
|
|
crypto_cipher_new(const char *key)
|
|
{
|
|
char zeroiv[CIPHER_IV_LEN];
|
|
memset(zeroiv, 0, sizeof(zeroiv));
|
|
return crypto_cipher_new_with_iv(key, zeroiv);
|
|
}
|
|
|
|
/** Free a symmetric cipher.
|
|
*/
|
|
void
|
|
crypto_cipher_free(crypto_cipher_t *env)
|
|
{
|
|
if (!env)
|
|
return;
|
|
|
|
tor_assert(env->cipher);
|
|
aes_cipher_free(env->cipher);
|
|
memwipe(env, 0, sizeof(crypto_cipher_t));
|
|
tor_free(env);
|
|
}
|
|
|
|
/* public key crypto */
|
|
|
|
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_generate_key_with_bits(crypto_pk_t *env, int bits)
|
|
{
|
|
tor_assert(env);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
{
|
|
BIGNUM *e = BN_new();
|
|
RSA *r = NULL;
|
|
if (!e)
|
|
goto done;
|
|
if (! BN_set_word(e, 65537))
|
|
goto done;
|
|
r = RSA_new();
|
|
if (!r)
|
|
goto done;
|
|
if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
|
|
goto done;
|
|
|
|
env->key = r;
|
|
r = NULL;
|
|
done:
|
|
if (e)
|
|
BN_free(e);
|
|
if (r)
|
|
RSA_free(r);
|
|
}
|
|
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "generating RSA key");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
|
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
|
* the string is nul-terminated.
|
|
*/
|
|
/* Used here, and used for testing. */
|
|
int
|
|
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
|
const char *s, ssize_t len)
|
|
{
|
|
BIO *b;
|
|
|
|
tor_assert(env);
|
|
tor_assert(s);
|
|
tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
|
|
|
|
/* Create a read-only memory BIO, backed by the string 's' */
|
|
b = BIO_new_mem_buf((char*)s, (int)len);
|
|
if (!b)
|
|
return -1;
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,NULL,NULL);
|
|
|
|
BIO_free(b);
|
|
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "Error parsing private key");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Read a PEM-encoded private key from the file named by
|
|
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
|
const char *keyfile)
|
|
{
|
|
char *contents;
|
|
int r;
|
|
|
|
/* Read the file into a string. */
|
|
contents = read_file_to_str(keyfile, 0, NULL);
|
|
if (!contents) {
|
|
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
|
return -1;
|
|
}
|
|
|
|
/* Try to parse it. */
|
|
r = crypto_pk_read_private_key_from_string(env, contents, -1);
|
|
memwipe(contents, 0, strlen(contents));
|
|
tor_free(contents);
|
|
if (r)
|
|
return -1; /* read_private_key_from_string already warned, so we don't.*/
|
|
|
|
/* Make sure it's valid. */
|
|
if (crypto_pk_check_key(env) <= 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Helper function to implement crypto_pk_write_*_key_to_string. */
|
|
static int
|
|
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
|
|
size_t *len, int is_public)
|
|
{
|
|
BUF_MEM *buf;
|
|
BIO *b;
|
|
int r;
|
|
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
tor_assert(dest);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
if (!b)
|
|
return -1;
|
|
|
|
/* Now you can treat b as if it were a file. Just use the
|
|
* PEM_*_bio_* functions instead of the non-bio variants.
|
|
*/
|
|
if (is_public)
|
|
r = PEM_write_bio_RSAPublicKey(b, env->key);
|
|
else
|
|
r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
|
|
|
|
if (!r) {
|
|
crypto_log_errors(LOG_WARN, "writing RSA key to string");
|
|
BIO_free(b);
|
|
return -1;
|
|
}
|
|
|
|
BIO_get_mem_ptr(b, &buf);
|
|
(void)BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
|
|
BIO_free(b);
|
|
|
|
*dest = tor_malloc(buf->length+1);
|
|
memcpy(*dest, buf->data, buf->length);
|
|
(*dest)[buf->length] = 0; /* nul terminate it */
|
|
*len = buf->length;
|
|
BUF_MEM_free(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
|
* newly allocated string. On success, set *<b>dest</b> to the new
|
|
* string, *<b>len</b> to the string's length, and return 0. On
|
|
* failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
|
|
size_t *len)
|
|
{
|
|
return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
|
|
}
|
|
|
|
/** PEM-encode the private key portion of <b>env</b> and write it to a
|
|
* newly allocated string. On success, set *<b>dest</b> to the new
|
|
* string, *<b>len</b> to the string's length, and return 0. On
|
|
* failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
|
|
size_t *len)
|
|
{
|
|
return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
|
|
}
|
|
|
|
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
|
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
|
* failure.
|
|
*/
|
|
int
|
|
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
|
|
size_t len)
|
|
{
|
|
BIO *b;
|
|
|
|
tor_assert(env);
|
|
tor_assert(src);
|
|
tor_assert(len<INT_MAX);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
if (!b)
|
|
return -1;
|
|
|
|
BIO_write(b, src, (int)len);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
|
|
BIO_free(b);
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "reading public key from string");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
|
* PEM-encoded. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
|
const char *fname)
|
|
{
|
|
BIO *bio;
|
|
char *cp;
|
|
long len;
|
|
char *s;
|
|
int r;
|
|
|
|
tor_assert(PRIVATE_KEY_OK(env));
|
|
|
|
if (!(bio = BIO_new(BIO_s_mem())))
|
|
return -1;
|
|
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
|
== 0) {
|
|
crypto_log_errors(LOG_WARN, "writing private key");
|
|
BIO_free(bio);
|
|
return -1;
|
|
}
|
|
len = BIO_get_mem_data(bio, &cp);
|
|
tor_assert(len >= 0);
|
|
s = tor_malloc(len+1);
|
|
memcpy(s, cp, len);
|
|
s[len]='\0';
|
|
r = write_str_to_file(fname, s, 0);
|
|
BIO_free(bio);
|
|
memwipe(s, 0, strlen(s));
|
|
tor_free(s);
|
|
return r;
|
|
}
|
|
|
|
/** Return true iff <b>env</b> has a valid key.
|
|
*/
|
|
int
|
|
crypto_pk_check_key(crypto_pk_t *env)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
|
|
r = RSA_check_key(env->key);
|
|
if (r <= 0)
|
|
crypto_log_errors(LOG_WARN,"checking RSA key");
|
|
return r;
|
|
}
|
|
|
|
/** Return true iff <b>key</b> contains the private-key portion of the RSA
|
|
* key. */
|
|
int
|
|
crypto_pk_key_is_private(const crypto_pk_t *key)
|
|
{
|
|
tor_assert(key);
|
|
return PRIVATE_KEY_OK(key);
|
|
}
|
|
|
|
/** Return true iff <b>env</b> contains a public key whose public exponent
|
|
* equals 65537.
|
|
*/
|
|
int
|
|
crypto_pk_public_exponent_ok(crypto_pk_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
return BN_is_word(env->key->e, 65537);
|
|
}
|
|
|
|
/** Compare the public-key components of a and b. Return less than 0
|
|
* if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
|
|
* considered to be less than all non-NULL keys, and equal to itself.
|
|
*
|
|
* Note that this may leak information about the keys through timing.
|
|
*/
|
|
int
|
|
crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b)
|
|
{
|
|
int result;
|
|
char a_is_non_null = (a != NULL) && (a->key != NULL);
|
|
char b_is_non_null = (b != NULL) && (b->key != NULL);
|
|
char an_argument_is_null = !a_is_non_null | !b_is_non_null;
|
|
|
|
result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
|
|
if (an_argument_is_null)
|
|
return result;
|
|
|
|
tor_assert(PUBLIC_KEY_OK(a));
|
|
tor_assert(PUBLIC_KEY_OK(b));
|
|
result = BN_cmp((a->key)->n, (b->key)->n);
|
|
if (result)
|
|
return result;
|
|
return BN_cmp((a->key)->e, (b->key)->e);
|
|
}
|
|
|
|
/** Compare the public-key components of a and b. Return non-zero iff
|
|
* a==b. A NULL key is considered to be distinct from all non-NULL
|
|
* keys, and equal to itself.
|
|
*
|
|
* Note that this may leak information about the keys through timing.
|
|
*/
|
|
int
|
|
crypto_pk_eq_keys(crypto_pk_t *a, crypto_pk_t *b)
|
|
{
|
|
return (crypto_pk_cmp_keys(a, b) == 0);
|
|
}
|
|
|
|
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
|
|
size_t
|
|
crypto_pk_keysize(crypto_pk_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
return (size_t) RSA_size(env->key);
|
|
}
|
|
|
|
/** Return the size of the public key modulus of <b>env</b>, in bits. */
|
|
int
|
|
crypto_pk_num_bits(crypto_pk_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
tor_assert(env->key->n);
|
|
|
|
return BN_num_bits(env->key->n);
|
|
}
|
|
|
|
/** Increase the reference count of <b>env</b>, and return it.
|
|
*/
|
|
crypto_pk_t *
|
|
crypto_pk_dup_key(crypto_pk_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
env->refs++;
|
|
return env;
|
|
}
|
|
|
|
/** Make a real honest-to-goodness copy of <b>env</b>, and return it. */
|
|
crypto_pk_t *
|
|
crypto_pk_copy_full(crypto_pk_t *env)
|
|
{
|
|
RSA *new_key;
|
|
int privatekey = 0;
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
if (PRIVATE_KEY_OK(env)) {
|
|
new_key = RSAPrivateKey_dup(env->key);
|
|
privatekey = 1;
|
|
} else {
|
|
new_key = RSAPublicKey_dup(env->key);
|
|
}
|
|
if (!new_key) {
|
|
log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
|
|
privatekey?"private":"public");
|
|
crypto_log_errors(LOG_ERR,
|
|
privatekey ? "Duplicating a private key" :
|
|
"Duplicating a public key");
|
|
tor_fragile_assert();
|
|
return NULL;
|
|
}
|
|
|
|
return crypto_new_pk_from_rsa_(new_key);
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
|
|
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
* write the result to <b>to</b>, and return the number of bytes
|
|
* written. On failure, return -1.
|
|
*
|
|
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
* at least the length of the modulus of <b>env</b>.
|
|
*/
|
|
int
|
|
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
|
|
const char *from, size_t fromlen, int padding)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen<INT_MAX);
|
|
tor_assert(tolen >= crypto_pk_keysize(env));
|
|
|
|
r = RSA_public_encrypt((int)fromlen,
|
|
(unsigned char*)from, (unsigned char*)to,
|
|
env->key, crypto_get_rsa_padding(padding));
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "performing RSA encryption");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
|
|
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
* write the result to <b>to</b>, and return the number of bytes
|
|
* written. On failure, return -1.
|
|
*
|
|
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
* at least the length of the modulus of <b>env</b>.
|
|
*/
|
|
int
|
|
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
|
|
size_t tolen,
|
|
const char *from, size_t fromlen,
|
|
int padding, int warnOnFailure)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(env->key);
|
|
tor_assert(fromlen<INT_MAX);
|
|
tor_assert(tolen >= crypto_pk_keysize(env));
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
r = RSA_private_decrypt((int)fromlen,
|
|
(unsigned char*)from, (unsigned char*)to,
|
|
env->key, crypto_get_rsa_padding(padding));
|
|
|
|
if (r<0) {
|
|
crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
|
|
"performing RSA decryption");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
|
|
* public key in <b>env</b>, using PKCS1 padding. On success, write the
|
|
* signed data to <b>to</b>, and return the number of bytes written.
|
|
* On failure, return -1.
|
|
*
|
|
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
* at least the length of the modulus of <b>env</b>.
|
|
*/
|
|
int
|
|
crypto_pk_public_checksig(crypto_pk_t *env, char *to,
|
|
size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
tor_assert(tolen >= crypto_pk_keysize(env));
|
|
r = RSA_public_decrypt((int)fromlen,
|
|
(unsigned char*)from, (unsigned char*)to,
|
|
env->key, RSA_PKCS1_PADDING);
|
|
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "checking RSA signature");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Check a siglen-byte long signature at <b>sig</b> against
|
|
* <b>datalen</b> bytes of data at <b>data</b>, using the public key
|
|
* in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
|
|
* SHA1(data). Else return -1.
|
|
*/
|
|
int
|
|
crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data,
|
|
size_t datalen, const char *sig, size_t siglen)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
char *buf;
|
|
size_t buflen;
|
|
int r;
|
|
|
|
tor_assert(env);
|
|
tor_assert(data);
|
|
tor_assert(sig);
|
|
tor_assert(datalen < SIZE_T_CEILING);
|
|
tor_assert(siglen < SIZE_T_CEILING);
|
|
|
|
if (crypto_digest(digest,data,datalen)<0) {
|
|
log_warn(LD_BUG, "couldn't compute digest");
|
|
return -1;
|
|
}
|
|
buflen = crypto_pk_keysize(env);
|
|
buf = tor_malloc(buflen);
|
|
r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
|
|
if (r != DIGEST_LEN) {
|
|
log_warn(LD_CRYPTO, "Invalid signature");
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
if (tor_memneq(buf, digest, DIGEST_LEN)) {
|
|
log_warn(LD_CRYPTO, "Signature mismatched with digest.");
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
tor_free(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
|
|
* <b>env</b>, using PKCS1 padding. On success, write the signature to
|
|
* <b>to</b>, and return the number of bytes written. On failure, return
|
|
* -1.
|
|
*
|
|
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
* at least the length of the modulus of <b>env</b>.
|
|
*/
|
|
int
|
|
crypto_pk_private_sign(crypto_pk_t *env, char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
tor_assert(tolen >= crypto_pk_keysize(env));
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
r = RSA_private_encrypt((int)fromlen,
|
|
(unsigned char*)from, (unsigned char*)to,
|
|
env->key, RSA_PKCS1_PADDING);
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "generating RSA signature");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
|
|
* <b>from</b>; sign the data with the private key in <b>env</b>, and
|
|
* store it in <b>to</b>. Return the number of bytes written on
|
|
* success, and -1 on failure.
|
|
*
|
|
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
* at least the length of the modulus of <b>env</b>.
|
|
*/
|
|
int
|
|
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
int r;
|
|
char digest[DIGEST_LEN];
|
|
if (crypto_digest(digest,from,fromlen)<0)
|
|
return -1;
|
|
r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
|
|
memwipe(digest, 0, sizeof(digest));
|
|
return r;
|
|
}
|
|
|
|
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
|
|
* bytes of data from <b>from</b>, with padding type 'padding',
|
|
* storing the results on <b>to</b>.
|
|
*
|
|
* Returns the number of bytes written on success, -1 on failure.
|
|
*
|
|
* The encrypted data consists of:
|
|
* - The source data, padded and encrypted with the public key, if the
|
|
* padded source data is no longer than the public key, and <b>force</b>
|
|
* is false, OR
|
|
* - The beginning of the source data prefixed with a 16-byte symmetric key,
|
|
* padded and encrypted with the public key; followed by the rest of
|
|
* the source data encrypted in AES-CTR mode with the symmetric key.
|
|
*/
|
|
int
|
|
crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
|
|
char *to, size_t tolen,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int force)
|
|
{
|
|
int overhead, outlen, r;
|
|
size_t pkeylen, symlen;
|
|
crypto_cipher_t *cipher = NULL;
|
|
char *buf = NULL;
|
|
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (!force && fromlen+overhead <= pkeylen) {
|
|
/* It all fits in a single encrypt. */
|
|
return crypto_pk_public_encrypt(env,to,
|
|
tolen,
|
|
from,fromlen,padding);
|
|
}
|
|
tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
|
|
tor_assert(tolen >= pkeylen);
|
|
|
|
cipher = crypto_cipher_new(NULL); /* generate a new key. */
|
|
|
|
buf = tor_malloc(pkeylen+1);
|
|
memcpy(buf, cipher->key, CIPHER_KEY_LEN);
|
|
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
/* Length of symmetrically encrypted data. */
|
|
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
|
|
if (outlen!=(int)pkeylen) {
|
|
goto err;
|
|
}
|
|
r = crypto_cipher_encrypt(cipher, to+outlen,
|
|
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);
|
|
|
|
if (r<0) goto err;
|
|
memwipe(buf, 0, pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
tor_assert(outlen+symlen < INT_MAX);
|
|
return (int)(outlen + symlen);
|
|
err:
|
|
|
|
memwipe(buf, 0, pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** Invert crypto_pk_public_hybrid_encrypt. */
|
|
int
|
|
crypto_pk_private_hybrid_decrypt(crypto_pk_t *env,
|
|
char *to,
|
|
size_t tolen,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int warnOnFailure)
|
|
{
|
|
int outlen, r;
|
|
size_t pkeylen;
|
|
crypto_cipher_t *cipher = NULL;
|
|
char *buf = NULL;
|
|
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (fromlen <= pkeylen) {
|
|
return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
|
|
warnOnFailure);
|
|
}
|
|
|
|
buf = tor_malloc(pkeylen);
|
|
outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
|
|
warnOnFailure);
|
|
if (outlen<0) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
|
|
"Error decrypting public-key data");
|
|
goto err;
|
|
}
|
|
if (outlen < CIPHER_KEY_LEN) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
|
|
"No room for a symmetric key");
|
|
goto err;
|
|
}
|
|
cipher = crypto_cipher_new(buf);
|
|
if (!cipher) {
|
|
goto err;
|
|
}
|
|
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
|
|
outlen -= CIPHER_KEY_LEN;
|
|
tor_assert(tolen - outlen >= fromlen - pkeylen);
|
|
r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
|
|
if (r<0)
|
|
goto err;
|
|
memwipe(buf,0,pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
tor_assert(outlen + fromlen < INT_MAX);
|
|
return (int)(outlen + (fromlen-pkeylen));
|
|
err:
|
|
memwipe(buf,0,pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
|
|
* Return -1 on error, or the number of characters used on success.
|
|
*/
|
|
int
|
|
crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len)
|
|
{
|
|
int len;
|
|
unsigned char *buf = NULL;
|
|
|
|
len = i2d_RSAPublicKey(pk->key, &buf);
|
|
if (len < 0 || buf == NULL)
|
|
return -1;
|
|
|
|
if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
|
|
OPENSSL_free(buf);
|
|
return -1;
|
|
}
|
|
/* We don't encode directly into 'dest', because that would be illegal
|
|
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
|
*/
|
|
memcpy(dest,buf,len);
|
|
OPENSSL_free(buf);
|
|
return len;
|
|
}
|
|
|
|
/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
|
|
* success and NULL on failure.
|
|
*/
|
|
crypto_pk_t *
|
|
crypto_pk_asn1_decode(const char *str, size_t len)
|
|
{
|
|
RSA *rsa;
|
|
unsigned char *buf;
|
|
const unsigned char *cp;
|
|
cp = buf = tor_malloc(len);
|
|
memcpy(buf,str,len);
|
|
rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
|
tor_free(buf);
|
|
if (!rsa) {
|
|
crypto_log_errors(LOG_WARN,"decoding public key");
|
|
return NULL;
|
|
}
|
|
return crypto_new_pk_from_rsa_(rsa);
|
|
}
|
|
|
|
/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
|
|
* public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_get_digest(crypto_pk_t *pk, char *digest_out)
|
|
{
|
|
unsigned char *buf = NULL;
|
|
int len;
|
|
|
|
len = i2d_RSAPublicKey(pk->key, &buf);
|
|
if (len < 0 || buf == NULL)
|
|
return -1;
|
|
if (crypto_digest(digest_out, (char*)buf, len) < 0) {
|
|
OPENSSL_free(buf);
|
|
return -1;
|
|
}
|
|
OPENSSL_free(buf);
|
|
return 0;
|
|
}
|
|
|
|
/** Compute all digests of the DER encoding of <b>pk</b>, and store them
|
|
* in <b>digests_out</b>. Return 0 on success, -1 on failure. */
|
|
int
|
|
crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out)
|
|
{
|
|
unsigned char *buf = NULL;
|
|
int len;
|
|
|
|
len = i2d_RSAPublicKey(pk->key, &buf);
|
|
if (len < 0 || buf == NULL)
|
|
return -1;
|
|
if (crypto_digest_all(digests_out, (char*)buf, len) < 0) {
|
|
OPENSSL_free(buf);
|
|
return -1;
|
|
}
|
|
OPENSSL_free(buf);
|
|
return 0;
|
|
}
|
|
|
|
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
|
|
* every four spaces. */
|
|
void
|
|
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
|
|
{
|
|
int n = 0;
|
|
char *end = out+outlen;
|
|
tor_assert(outlen < SIZE_T_CEILING);
|
|
|
|
while (*in && out<end) {
|
|
*out++ = *in++;
|
|
if (++n == 4 && *in && out<end) {
|
|
n = 0;
|
|
*out++ = ' ';
|
|
}
|
|
}
|
|
tor_assert(out<end);
|
|
*out = '\0';
|
|
}
|
|
|
|
/** Given a private or public key <b>pk</b>, put a fingerprint of the
|
|
* public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
|
|
* space). Return 0 on success, -1 on failure.
|
|
*
|
|
* Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
|
|
* of the public key, converted to hexadecimal, in upper case, with a
|
|
* space after every four digits.
|
|
*
|
|
* If <b>add_space</b> is false, omit the spaces.
|
|
*/
|
|
int
|
|
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
char hexdigest[HEX_DIGEST_LEN+1];
|
|
if (crypto_pk_get_digest(pk, digest)) {
|
|
return -1;
|
|
}
|
|
base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
|
|
if (add_space) {
|
|
crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
|
|
} else {
|
|
strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* symmetric crypto */
|
|
|
|
/** Return a pointer to the key set for the cipher in <b>env</b>.
|
|
*/
|
|
const char *
|
|
crypto_cipher_get_key(crypto_cipher_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->cipher);
|
|
tor_assert(from);
|
|
tor_assert(fromlen);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
|
|
* on success, return 0. On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
|
|
{
|
|
tor_assert(len < SIZE_T_CEILING);
|
|
aes_crypt_inplace(env->cipher, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
|
|
* <b>key</b> to the buffer in <b>to</b> of length
|
|
* <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> plus
|
|
* CIPHER_IV_LEN bytes for the initialization vector. On success, return the
|
|
* number of bytes written, on failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt_with_iv(const char *key,
|
|
char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
crypto_cipher_t *cipher;
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
|
|
if (fromlen < 1)
|
|
return -1;
|
|
if (tolen < fromlen + CIPHER_IV_LEN)
|
|
return -1;
|
|
|
|
cipher = crypto_cipher_new_with_iv(key, NULL);
|
|
|
|
memcpy(to, cipher->iv, CIPHER_IV_LEN);
|
|
crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen);
|
|
crypto_cipher_free(cipher);
|
|
return (int)(fromlen + CIPHER_IV_LEN);
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes (at least 1+CIPHER_IV_LEN) from <b>from</b>
|
|
* with the key in <b>key</b> to the buffer in <b>to</b> of length
|
|
* <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> minus
|
|
* CIPHER_IV_LEN bytes for the initialization vector. On success, return the
|
|
* number of bytes written, on failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt_with_iv(const char *key,
|
|
char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
crypto_cipher_t *cipher;
|
|
tor_assert(key);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
|
|
if (fromlen <= CIPHER_IV_LEN)
|
|
return -1;
|
|
if (tolen < fromlen - CIPHER_IV_LEN)
|
|
return -1;
|
|
|
|
cipher = crypto_cipher_new_with_iv(key, from);
|
|
|
|
crypto_cipher_encrypt(cipher, to, from+CIPHER_IV_LEN, fromlen-CIPHER_IV_LEN);
|
|
crypto_cipher_free(cipher);
|
|
return (int)(fromlen - CIPHER_IV_LEN);
|
|
}
|
|
|
|
/* SHA-1 */
|
|
|
|
/** Compute the SHA1 digest of the <b>len</b> bytes on data stored in
|
|
* <b>m</b>. Write the DIGEST_LEN byte result into <b>digest</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_digest(char *digest, const char *m, size_t len)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
return (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
|
|
}
|
|
|
|
/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
|
|
* using the algorithm <b>algorithm</b>. Write the DIGEST_LEN256-byte result
|
|
* into <b>digest</b>. Return 0 on success, -1 on failure. */
|
|
int
|
|
crypto_digest256(char *digest, const char *m, size_t len,
|
|
digest_algorithm_t algorithm)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
tor_assert(algorithm == DIGEST_SHA256);
|
|
return (SHA256((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
|
|
}
|
|
|
|
/** Set the digests_t in <b>ds_out</b> to contain every digest on the
|
|
* <b>len</b> bytes in <b>m</b> that we know how to compute. Return 0 on
|
|
* success, -1 on failure. */
|
|
int
|
|
crypto_digest_all(digests_t *ds_out, const char *m, size_t len)
|
|
{
|
|
int i;
|
|
tor_assert(ds_out);
|
|
memset(ds_out, 0, sizeof(*ds_out));
|
|
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
|
|
return -1;
|
|
for (i = DIGEST_SHA256; i < N_DIGEST_ALGORITHMS; ++i) {
|
|
if (crypto_digest256(ds_out->d[i], m, len, i) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Return the name of an algorithm, as used in directory documents. */
|
|
const char *
|
|
crypto_digest_algorithm_get_name(digest_algorithm_t alg)
|
|
{
|
|
switch (alg) {
|
|
case DIGEST_SHA1:
|
|
return "sha1";
|
|
case DIGEST_SHA256:
|
|
return "sha256";
|
|
default:
|
|
tor_fragile_assert();
|
|
return "??unknown_digest??";
|
|
}
|
|
}
|
|
|
|
/** Given the name of a digest algorithm, return its integer value, or -1 if
|
|
* the name is not recognized. */
|
|
int
|
|
crypto_digest_algorithm_parse_name(const char *name)
|
|
{
|
|
if (!strcmp(name, "sha1"))
|
|
return DIGEST_SHA1;
|
|
else if (!strcmp(name, "sha256"))
|
|
return DIGEST_SHA256;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/** Intermediate information about the digest of a stream of data. */
|
|
struct crypto_digest_t {
|
|
union {
|
|
SHA_CTX sha1; /**< state for SHA1 */
|
|
SHA256_CTX sha2; /**< state for SHA256 */
|
|
} d; /**< State for the digest we're using. Only one member of the
|
|
* union is usable, depending on the value of <b>algorithm</b>. */
|
|
ENUM_BF(digest_algorithm_t) algorithm : 8; /**< Which algorithm is in use? */
|
|
};
|
|
|
|
/** Allocate and return a new digest object to compute SHA1 digests.
|
|
*/
|
|
crypto_digest_t *
|
|
crypto_digest_new(void)
|
|
{
|
|
crypto_digest_t *r;
|
|
r = tor_malloc(sizeof(crypto_digest_t));
|
|
SHA1_Init(&r->d.sha1);
|
|
r->algorithm = DIGEST_SHA1;
|
|
return r;
|
|
}
|
|
|
|
/** Allocate and return a new digest object to compute 256-bit digests
|
|
* using <b>algorithm</b>. */
|
|
crypto_digest_t *
|
|
crypto_digest256_new(digest_algorithm_t algorithm)
|
|
{
|
|
crypto_digest_t *r;
|
|
tor_assert(algorithm == DIGEST_SHA256);
|
|
r = tor_malloc(sizeof(crypto_digest_t));
|
|
SHA256_Init(&r->d.sha2);
|
|
r->algorithm = algorithm;
|
|
return r;
|
|
}
|
|
|
|
/** Deallocate a digest object.
|
|
*/
|
|
void
|
|
crypto_digest_free(crypto_digest_t *digest)
|
|
{
|
|
if (!digest)
|
|
return;
|
|
memwipe(digest, 0, sizeof(crypto_digest_t));
|
|
tor_free(digest);
|
|
}
|
|
|
|
/** Add <b>len</b> bytes from <b>data</b> to the digest object.
|
|
*/
|
|
void
|
|
crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
|
|
size_t len)
|
|
{
|
|
tor_assert(digest);
|
|
tor_assert(data);
|
|
/* Using the SHA*_*() calls directly means we don't support doing
|
|
* SHA in hardware. But so far the delay of getting the question
|
|
* to the hardware, and hearing the answer, is likely higher than
|
|
* just doing it ourselves. Hashes are fast.
|
|
*/
|
|
switch (digest->algorithm) {
|
|
case DIGEST_SHA1:
|
|
SHA1_Update(&digest->d.sha1, (void*)data, len);
|
|
break;
|
|
case DIGEST_SHA256:
|
|
SHA256_Update(&digest->d.sha2, (void*)data, len);
|
|
break;
|
|
default:
|
|
tor_fragile_assert();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/** Compute the hash of the data that has been passed to the digest
|
|
* object; write the first out_len bytes of the result to <b>out</b>.
|
|
* <b>out_len</b> must be \<= DIGEST256_LEN.
|
|
*/
|
|
void
|
|
crypto_digest_get_digest(crypto_digest_t *digest,
|
|
char *out, size_t out_len)
|
|
{
|
|
unsigned char r[DIGEST256_LEN];
|
|
crypto_digest_t tmpenv;
|
|
tor_assert(digest);
|
|
tor_assert(out);
|
|
/* memcpy into a temporary ctx, since SHA*_Final clears the context */
|
|
memcpy(&tmpenv, digest, sizeof(crypto_digest_t));
|
|
switch (digest->algorithm) {
|
|
case DIGEST_SHA1:
|
|
tor_assert(out_len <= DIGEST_LEN);
|
|
SHA1_Final(r, &tmpenv.d.sha1);
|
|
break;
|
|
case DIGEST_SHA256:
|
|
tor_assert(out_len <= DIGEST256_LEN);
|
|
SHA256_Final(r, &tmpenv.d.sha2);
|
|
break;
|
|
default:
|
|
log_warn(LD_BUG, "Called with unknown algorithm %d", digest->algorithm);
|
|
/* If fragile_assert is not enabled, then we should at least not
|
|
* leak anything. */
|
|
memset(r, 0xff, sizeof(r));
|
|
tor_fragile_assert();
|
|
break;
|
|
}
|
|
memcpy(out, r, out_len);
|
|
memwipe(r, 0, sizeof(r));
|
|
}
|
|
|
|
/** Allocate and return a new digest object with the same state as
|
|
* <b>digest</b>
|
|
*/
|
|
crypto_digest_t *
|
|
crypto_digest_dup(const crypto_digest_t *digest)
|
|
{
|
|
crypto_digest_t *r;
|
|
tor_assert(digest);
|
|
r = tor_malloc(sizeof(crypto_digest_t));
|
|
memcpy(r,digest,sizeof(crypto_digest_t));
|
|
return r;
|
|
}
|
|
|
|
/** Replace the state of the digest object <b>into</b> with the state
|
|
* of the digest object <b>from</b>.
|
|
*/
|
|
void
|
|
crypto_digest_assign(crypto_digest_t *into,
|
|
const crypto_digest_t *from)
|
|
{
|
|
tor_assert(into);
|
|
tor_assert(from);
|
|
memcpy(into,from,sizeof(crypto_digest_t));
|
|
}
|
|
|
|
/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
|
|
* at <b>digest_out</b> to the hash of the concatenation of those strings,
|
|
* plus the optional string <b>append</b>, computed with the algorithm
|
|
* <b>alg</b>.
|
|
* <b>out_len</b> must be \<= DIGEST256_LEN. */
|
|
void
|
|
crypto_digest_smartlist(char *digest_out, size_t len_out,
|
|
const smartlist_t *lst, const char *append,
|
|
digest_algorithm_t alg)
|
|
{
|
|
crypto_digest_t *d;
|
|
if (alg == DIGEST_SHA1)
|
|
d = crypto_digest_new();
|
|
else
|
|
d = crypto_digest256_new(alg);
|
|
SMARTLIST_FOREACH(lst, const char *, cp,
|
|
crypto_digest_add_bytes(d, cp, strlen(cp)));
|
|
if (append)
|
|
crypto_digest_add_bytes(d, append, strlen(append));
|
|
crypto_digest_get_digest(d, digest_out, len_out);
|
|
crypto_digest_free(d);
|
|
}
|
|
|
|
/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
|
|
* the <b>key</b> of length <b>key_len</b>. Store the DIGEST256_LEN-byte
|
|
* result in <b>hmac_out</b>.
|
|
*/
|
|
void
|
|
crypto_hmac_sha256(char *hmac_out,
|
|
const char *key, size_t key_len,
|
|
const char *msg, size_t msg_len)
|
|
{
|
|
/* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
|
|
tor_assert(key_len < INT_MAX);
|
|
tor_assert(msg_len < INT_MAX);
|
|
HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
|
|
(unsigned char*)hmac_out, NULL);
|
|
}
|
|
|
|
/* DH */
|
|
|
|
/** Our DH 'g' parameter */
|
|
#define DH_GENERATOR 2
|
|
|
|
/** Shared P parameter for our circuit-crypto DH key exchanges. */
|
|
static BIGNUM *dh_param_p = NULL;
|
|
/** Shared P parameter for our TLS DH key exchanges. */
|
|
static BIGNUM *dh_param_p_tls = NULL;
|
|
/** Shared G parameter for our DH key exchanges. */
|
|
static BIGNUM *dh_param_g = NULL;
|
|
|
|
/** Generate and return a reasonable and safe DH parameter p. */
|
|
static BIGNUM *
|
|
crypto_generate_dynamic_dh_modulus(void)
|
|
{
|
|
BIGNUM *dynamic_dh_modulus;
|
|
DH *dh_parameters;
|
|
int r, dh_codes;
|
|
char *s;
|
|
|
|
dynamic_dh_modulus = BN_new();
|
|
tor_assert(dynamic_dh_modulus);
|
|
|
|
dh_parameters = DH_generate_parameters(DH_BYTES*8, DH_GENERATOR, NULL, NULL);
|
|
tor_assert(dh_parameters);
|
|
|
|
r = DH_check(dh_parameters, &dh_codes);
|
|
tor_assert(r && !dh_codes);
|
|
|
|
BN_copy(dynamic_dh_modulus, dh_parameters->p);
|
|
tor_assert(dynamic_dh_modulus);
|
|
|
|
DH_free(dh_parameters);
|
|
|
|
{ /* log the dynamic DH modulus: */
|
|
s = BN_bn2hex(dynamic_dh_modulus);
|
|
tor_assert(s);
|
|
log_info(LD_OR, "Dynamic DH modulus generated: [%s]", s);
|
|
OPENSSL_free(s);
|
|
}
|
|
|
|
return dynamic_dh_modulus;
|
|
}
|
|
|
|
/** Store our dynamic DH modulus (and its group parameters) to
|
|
<b>fname</b> for future use. */
|
|
static int
|
|
crypto_store_dynamic_dh_modulus(const char *fname)
|
|
{
|
|
int len, new_len;
|
|
DH *dh = NULL;
|
|
unsigned char *dh_string_repr = NULL;
|
|
char *base64_encoded_dh = NULL;
|
|
char *file_string = NULL;
|
|
int retval = -1;
|
|
static const char file_header[] = "# This file contains stored Diffie-"
|
|
"Hellman parameters for future use.\n# You *do not* need to edit this "
|
|
"file.\n\n";
|
|
|
|
tor_assert(fname);
|
|
|
|
if (!dh_param_p_tls) {
|
|
log_info(LD_CRYPTO, "Tried to store a DH modulus that does not exist.");
|
|
goto done;
|
|
}
|
|
|
|
if (!(dh = DH_new()))
|
|
goto done;
|
|
if (!(dh->p = BN_dup(dh_param_p_tls)))
|
|
goto done;
|
|
if (!(dh->g = BN_new()))
|
|
goto done;
|
|
if (!BN_set_word(dh->g, DH_GENERATOR))
|
|
goto done;
|
|
|
|
len = i2d_DHparams(dh, &dh_string_repr);
|
|
if ((len < 0) || (dh_string_repr == NULL)) {
|
|
log_warn(LD_CRYPTO, "Error occured while DER encoding DH modulus (2).");
|
|
goto done;
|
|
}
|
|
|
|
base64_encoded_dh = tor_malloc_zero(len * 2); /* should be enough */
|
|
new_len = base64_encode(base64_encoded_dh, len * 2,
|
|
(char *)dh_string_repr, len);
|
|
if (new_len < 0) {
|
|
log_warn(LD_CRYPTO, "Error occured while base64-encoding DH modulus.");
|
|
goto done;
|
|
}
|
|
|
|
/* concatenate file header and the dh parameters blob */
|
|
new_len = tor_asprintf(&file_string, "%s%s", file_header, base64_encoded_dh);
|
|
|
|
/* write to file */
|
|
if (write_bytes_to_new_file(fname, file_string, new_len, 0) < 0) {
|
|
log_info(LD_CRYPTO, "'%s' was already occupied.", fname);
|
|
goto done;
|
|
}
|
|
|
|
retval = 0;
|
|
|
|
done:
|
|
if (dh)
|
|
DH_free(dh);
|
|
if (dh_string_repr)
|
|
OPENSSL_free(dh_string_repr);
|
|
tor_free(base64_encoded_dh);
|
|
tor_free(file_string);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/** Return the dynamic DH modulus stored in <b>fname</b>. If there is no
|
|
dynamic DH modulus stored in <b>fname</b>, return NULL. */
|
|
static BIGNUM *
|
|
crypto_get_stored_dynamic_dh_modulus(const char *fname)
|
|
{
|
|
int retval;
|
|
char *contents = NULL;
|
|
const char *contents_tmp = NULL;
|
|
int dh_codes;
|
|
DH *stored_dh = NULL;
|
|
BIGNUM *dynamic_dh_modulus = NULL;
|
|
int length = 0;
|
|
unsigned char *base64_decoded_dh = NULL;
|
|
const unsigned char *cp = NULL;
|
|
|
|
tor_assert(fname);
|
|
|
|
contents = read_file_to_str(fname, RFTS_IGNORE_MISSING, NULL);
|
|
if (!contents) {
|
|
log_info(LD_CRYPTO, "Could not open file '%s'", fname);
|
|
goto done; /*usually means that ENOENT. don't try to move file to broken.*/
|
|
}
|
|
|
|
/* skip the file header */
|
|
contents_tmp = eat_whitespace(contents);
|
|
if (!*contents_tmp) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH modulus file "
|
|
"seems corrupted (eat_whitespace).");
|
|
goto err;
|
|
}
|
|
|
|
/* 'fname' contains the DH parameters stored in base64-ed DER
|
|
* format. We are only interested in the DH modulus.
|
|
* NOTE: We allocate more storage here than we need. Since we're already
|
|
* doing that, we can also add 1 byte extra to appease Coverity's
|
|
* scanner. */
|
|
|
|
cp = base64_decoded_dh = tor_malloc_zero(strlen(contents_tmp) + 1);
|
|
length = base64_decode((char *)base64_decoded_dh, strlen(contents_tmp),
|
|
contents_tmp, strlen(contents_tmp));
|
|
if (length < 0) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (base64).");
|
|
goto err;
|
|
}
|
|
|
|
stored_dh = d2i_DHparams(NULL, &cp, length);
|
|
if ((!stored_dh) || (cp - base64_decoded_dh != length)) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (d2i).");
|
|
goto err;
|
|
}
|
|
|
|
{ /* check the cryptographic qualities of the stored dynamic DH modulus: */
|
|
retval = DH_check(stored_dh, &dh_codes);
|
|
if (!retval || dh_codes) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH modulus is not a safe prime.");
|
|
goto err;
|
|
}
|
|
|
|
retval = DH_size(stored_dh);
|
|
if (retval < DH_BYTES) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH modulus is smaller "
|
|
"than '%d' bits.", DH_BYTES*8);
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_is_word(stored_dh->g, 2)) {
|
|
log_warn(LD_CRYPTO, "Stored dynamic DH parameters do not use '2' "
|
|
"as the group generator.");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
{ /* log the dynamic DH modulus: */
|
|
char *s = BN_bn2hex(stored_dh->p);
|
|
tor_assert(s);
|
|
log_info(LD_OR, "Found stored dynamic DH modulus: [%s]", s);
|
|
OPENSSL_free(s);
|
|
}
|
|
|
|
goto done;
|
|
|
|
err:
|
|
|
|
{
|
|
/* move broken prime to $filename.broken */
|
|
char *fname_new=NULL;
|
|
tor_asprintf(&fname_new, "%s.broken", fname);
|
|
|
|
log_warn(LD_CRYPTO, "Moving broken dynamic DH prime to '%s'.", fname_new);
|
|
|
|
if (replace_file(fname, fname_new))
|
|
log_notice(LD_CRYPTO, "Error while moving '%s' to '%s'.",
|
|
fname, fname_new);
|
|
|
|
tor_free(fname_new);
|
|
}
|
|
|
|
if (stored_dh) {
|
|
DH_free(stored_dh);
|
|
stored_dh = NULL;
|
|
}
|
|
|
|
done:
|
|
tor_free(contents);
|
|
tor_free(base64_decoded_dh);
|
|
|
|
if (stored_dh) {
|
|
dynamic_dh_modulus = BN_dup(stored_dh->p);
|
|
DH_free(stored_dh);
|
|
}
|
|
|
|
return dynamic_dh_modulus;
|
|
}
|
|
|
|
/** Set the global TLS Diffie-Hellman modulus.
|
|
* If <b>dynamic_dh_modulus_fname</b> is set, try to read a dynamic DH modulus
|
|
* off it and use it as the DH modulus. If that's not possible,
|
|
* generate a new dynamic DH modulus.
|
|
* If <b>dynamic_dh_modulus_fname</b> is NULL, use the Apache mod_ssl DH
|
|
* modulus. */
|
|
void
|
|
crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname)
|
|
{
|
|
BIGNUM *tls_prime = NULL;
|
|
int store_dh_prime_afterwards = 0;
|
|
int r;
|
|
|
|
/* If the space is occupied, free the previous TLS DH prime */
|
|
if (dh_param_p_tls) {
|
|
BN_free(dh_param_p_tls);
|
|
dh_param_p_tls = NULL;
|
|
}
|
|
|
|
if (dynamic_dh_modulus_fname) { /* use dynamic DH modulus: */
|
|
log_info(LD_OR, "Using stored dynamic DH modulus.");
|
|
tls_prime = crypto_get_stored_dynamic_dh_modulus(dynamic_dh_modulus_fname);
|
|
|
|
if (!tls_prime) {
|
|
log_notice(LD_OR, "Generating fresh dynamic DH modulus. "
|
|
"This might take a while...");
|
|
tls_prime = crypto_generate_dynamic_dh_modulus();
|
|
|
|
store_dh_prime_afterwards++;
|
|
}
|
|
} else { /* use the static DH prime modulus used by Apache in mod_ssl: */
|
|
tls_prime = BN_new();
|
|
tor_assert(tls_prime);
|
|
|
|
/* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
|
|
* modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
|
|
* prime.
|
|
*/
|
|
r =BN_hex2bn(&tls_prime,
|
|
"D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
|
|
"BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
|
|
"467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
|
|
"DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
|
|
"B0E7393E0F24218EB3");
|
|
tor_assert(r);
|
|
}
|
|
|
|
tor_assert(tls_prime);
|
|
|
|
dh_param_p_tls = tls_prime;
|
|
|
|
if (store_dh_prime_afterwards)
|
|
/* save the new dynamic DH modulus to disk. */
|
|
if (crypto_store_dynamic_dh_modulus(dynamic_dh_modulus_fname)) {
|
|
log_notice(LD_CRYPTO, "Failed while storing dynamic DH modulus. "
|
|
"Make sure your data directory is sane.");
|
|
}
|
|
}
|
|
|
|
/** Initialize dh_param_p and dh_param_g if they are not already
|
|
* set. */
|
|
static void
|
|
init_dh_param(void)
|
|
{
|
|
BIGNUM *circuit_dh_prime, *generator;
|
|
int r;
|
|
if (dh_param_p && dh_param_g)
|
|
return;
|
|
|
|
circuit_dh_prime = BN_new();
|
|
generator = BN_new();
|
|
tor_assert(circuit_dh_prime && generator);
|
|
|
|
/* Set our generator for all DH parameters */
|
|
r = BN_set_word(generator, DH_GENERATOR);
|
|
tor_assert(r);
|
|
|
|
/* This is from rfc2409, section 6.2. It's a safe prime, and
|
|
supposedly it equals:
|
|
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
|
|
*/
|
|
r = BN_hex2bn(&circuit_dh_prime,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF");
|
|
tor_assert(r);
|
|
|
|
/* Set the new values as the global DH parameters. */
|
|
dh_param_p = circuit_dh_prime;
|
|
dh_param_g = generator;
|
|
|
|
/* Ensure that we have TLS DH parameters set up, too, even if we're
|
|
going to change them soon. */
|
|
if (!dh_param_p_tls) {
|
|
crypto_set_tls_dh_prime(NULL);
|
|
}
|
|
}
|
|
|
|
/** Number of bits to use when choosing the x or y value in a Diffie-Hellman
|
|
* handshake. Since we exponentiate by this value, choosing a smaller one
|
|
* lets our handhake go faster.
|
|
*/
|
|
#define DH_PRIVATE_KEY_BITS 320
|
|
|
|
/** Allocate and return a new DH object for a key exchange.
|
|
*/
|
|
crypto_dh_t *
|
|
crypto_dh_new(int dh_type)
|
|
{
|
|
crypto_dh_t *res = tor_malloc_zero(sizeof(crypto_dh_t));
|
|
|
|
tor_assert(dh_type == DH_TYPE_CIRCUIT || dh_type == DH_TYPE_TLS ||
|
|
dh_type == DH_TYPE_REND);
|
|
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
|
|
if (!(res->dh = DH_new()))
|
|
goto err;
|
|
|
|
if (dh_type == DH_TYPE_TLS) {
|
|
if (!(res->dh->p = BN_dup(dh_param_p_tls)))
|
|
goto err;
|
|
} else {
|
|
if (!(res->dh->p = BN_dup(dh_param_p)))
|
|
goto err;
|
|
}
|
|
|
|
if (!(res->dh->g = BN_dup(dh_param_g)))
|
|
goto err;
|
|
|
|
res->dh->length = DH_PRIVATE_KEY_BITS;
|
|
|
|
return res;
|
|
err:
|
|
crypto_log_errors(LOG_WARN, "creating DH object");
|
|
if (res->dh) DH_free(res->dh); /* frees p and g too */
|
|
tor_free(res);
|
|
return NULL;
|
|
}
|
|
|
|
/** Return a copy of <b>dh</b>, sharing its internal state. */
|
|
crypto_dh_t *
|
|
crypto_dh_dup(const crypto_dh_t *dh)
|
|
{
|
|
crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
|
|
dh_new->dh = dh->dh;
|
|
DH_up_ref(dh->dh);
|
|
return dh_new;
|
|
}
|
|
|
|
/** Return the length of the DH key in <b>dh</b>, in bytes.
|
|
*/
|
|
int
|
|
crypto_dh_get_bytes(crypto_dh_t *dh)
|
|
{
|
|
tor_assert(dh);
|
|
return DH_size(dh->dh);
|
|
}
|
|
|
|
/** Generate \<x,g^x\> for our part of the key exchange. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_dh_generate_public(crypto_dh_t *dh)
|
|
{
|
|
again:
|
|
if (!DH_generate_key(dh->dh)) {
|
|
crypto_log_errors(LOG_WARN, "generating DH key");
|
|
return -1;
|
|
}
|
|
if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) {
|
|
log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
|
|
"the-universe chances really do happen. Trying again.");
|
|
/* Free and clear the keys, so OpenSSL will actually try again. */
|
|
BN_free(dh->dh->pub_key);
|
|
BN_free(dh->dh->priv_key);
|
|
dh->dh->pub_key = dh->dh->priv_key = NULL;
|
|
goto again;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Generate g^x as necessary, and write the g^x for the key exchange
|
|
* as a <b>pubkey_len</b>-byte value into <b>pubkey</b>. Return 0 on
|
|
* success, -1 on failure. <b>pubkey_len</b> must be \>= DH_BYTES.
|
|
*/
|
|
int
|
|
crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
|
|
{
|
|
int bytes;
|
|
tor_assert(dh);
|
|
if (!dh->dh->pub_key) {
|
|
if (crypto_dh_generate_public(dh)<0)
|
|
return -1;
|
|
}
|
|
|
|
tor_assert(dh->dh->pub_key);
|
|
bytes = BN_num_bytes(dh->dh->pub_key);
|
|
tor_assert(bytes >= 0);
|
|
if (pubkey_len < (size_t)bytes) {
|
|
log_warn(LD_CRYPTO,
|
|
"Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)",
|
|
(int) pubkey_len, bytes);
|
|
return -1;
|
|
}
|
|
|
|
memset(pubkey, 0, pubkey_len);
|
|
BN_bn2bin(dh->dh->pub_key, (unsigned char*)(pubkey+(pubkey_len-bytes)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Check for bad Diffie-Hellman public keys (g^x). Return 0 if the key is
|
|
* okay (in the subgroup [2,p-2]), or -1 if it's bad.
|
|
* See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
|
|
*/
|
|
static int
|
|
tor_check_dh_key(int severity, BIGNUM *bn)
|
|
{
|
|
BIGNUM *x;
|
|
char *s;
|
|
tor_assert(bn);
|
|
x = BN_new();
|
|
tor_assert(x);
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
BN_set_word(x, 1);
|
|
if (BN_cmp(bn,x)<=0) {
|
|
log_fn(severity, LD_CRYPTO, "DH key must be at least 2.");
|
|
goto err;
|
|
}
|
|
BN_copy(x,dh_param_p);
|
|
BN_sub_word(x, 1);
|
|
if (BN_cmp(bn,x)>=0) {
|
|
log_fn(severity, LD_CRYPTO, "DH key must be at most p-2.");
|
|
goto err;
|
|
}
|
|
BN_free(x);
|
|
return 0;
|
|
err:
|
|
BN_free(x);
|
|
s = BN_bn2hex(bn);
|
|
log_fn(severity, LD_CRYPTO, "Rejecting insecure DH key [%s]", s);
|
|
OPENSSL_free(s);
|
|
return -1;
|
|
}
|
|
|
|
#undef MIN
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
/** Given a DH key exchange object, and our peer's value of g^y (as a
|
|
* <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
|
|
* <b>secret_bytes_out</b> bytes of shared key material and write them
|
|
* to <b>secret_out</b>. Return the number of bytes generated on success,
|
|
* or -1 on failure.
|
|
*
|
|
* (We generate key material by computing
|
|
* SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
|
|
* where || is concatenation.)
|
|
*/
|
|
ssize_t
|
|
crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
|
|
const char *pubkey, size_t pubkey_len,
|
|
char *secret_out, size_t secret_bytes_out)
|
|
{
|
|
char *secret_tmp = NULL;
|
|
BIGNUM *pubkey_bn = NULL;
|
|
size_t secret_len=0, secret_tmp_len=0;
|
|
int result=0;
|
|
tor_assert(dh);
|
|
tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
|
|
tor_assert(pubkey_len < INT_MAX);
|
|
|
|
if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey,
|
|
(int)pubkey_len, NULL)))
|
|
goto error;
|
|
if (tor_check_dh_key(severity, pubkey_bn)<0) {
|
|
/* Check for invalid public keys. */
|
|
log_fn(severity, LD_CRYPTO,"Rejected invalid g^x");
|
|
goto error;
|
|
}
|
|
secret_tmp_len = crypto_dh_get_bytes(dh);
|
|
secret_tmp = tor_malloc(secret_tmp_len);
|
|
result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh);
|
|
if (result < 0) {
|
|
log_warn(LD_CRYPTO,"DH_compute_key() failed.");
|
|
goto error;
|
|
}
|
|
secret_len = result;
|
|
if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len,
|
|
(uint8_t*)secret_out, secret_bytes_out)<0)
|
|
goto error;
|
|
secret_len = secret_bytes_out;
|
|
|
|
goto done;
|
|
error:
|
|
result = -1;
|
|
done:
|
|
crypto_log_errors(LOG_WARN, "completing DH handshake");
|
|
if (pubkey_bn)
|
|
BN_free(pubkey_bn);
|
|
if (secret_tmp) {
|
|
memwipe(secret_tmp, 0, secret_tmp_len);
|
|
tor_free(secret_tmp);
|
|
}
|
|
if (result < 0)
|
|
return result;
|
|
else
|
|
return secret_len;
|
|
}
|
|
|
|
/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
|
|
* ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
|
|
* <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
|
|
* H(K | [00]) | H(K | [01]) | ....
|
|
*
|
|
* This is the key expansion algorithm used in the "TAP" circuit extension
|
|
* mechanism; it shouldn't be used for new protocols.
|
|
*
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
|
|
uint8_t *key_out, size_t key_out_len)
|
|
{
|
|
int i;
|
|
uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
|
|
uint8_t digest[DIGEST_LEN];
|
|
|
|
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
|
|
tor_assert(key_out_len <= DIGEST_LEN*256);
|
|
|
|
memcpy(tmp, key_in, key_in_len);
|
|
for (cp = key_out, i=0; cp < key_out+key_out_len;
|
|
++i, cp += DIGEST_LEN) {
|
|
tmp[key_in_len] = i;
|
|
if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1))
|
|
goto err;
|
|
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
|
|
}
|
|
memwipe(tmp, 0, key_in_len+1);
|
|
tor_free(tmp);
|
|
memwipe(digest, 0, sizeof(digest));
|
|
return 0;
|
|
|
|
err:
|
|
memwipe(tmp, 0, key_in_len+1);
|
|
tor_free(tmp);
|
|
memwipe(digest, 0, sizeof(digest));
|
|
return -1;
|
|
}
|
|
|
|
/** Expand some secret key material according to RFC5869, using SHA256 as the
|
|
* underlying hash. The <b>key_in_len</b> bytes at <b>key_in</b> are the
|
|
* secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
|
|
* <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
|
|
* and "info" parameters respectively. On success, write <b>key_out_len</b>
|
|
* bytes to <b>key_out</b> and return 0. On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_expand_key_material_rfc5869_sha256(
|
|
const uint8_t *key_in, size_t key_in_len,
|
|
const uint8_t *salt_in, size_t salt_in_len,
|
|
const uint8_t *info_in, size_t info_in_len,
|
|
uint8_t *key_out, size_t key_out_len)
|
|
{
|
|
uint8_t prk[DIGEST256_LEN];
|
|
uint8_t tmp[DIGEST256_LEN + 128 + 1];
|
|
uint8_t mac[DIGEST256_LEN];
|
|
int i;
|
|
uint8_t *outp;
|
|
size_t tmp_len;
|
|
|
|
crypto_hmac_sha256((char*)prk,
|
|
(const char*)salt_in, salt_in_len,
|
|
(const char*)key_in, key_in_len);
|
|
|
|
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
|
|
tor_assert(key_out_len <= DIGEST256_LEN * 256);
|
|
tor_assert(info_in_len <= 128);
|
|
memset(tmp, 0, sizeof(tmp));
|
|
outp = key_out;
|
|
i = 1;
|
|
|
|
while (key_out_len) {
|
|
size_t n;
|
|
if (i > 1) {
|
|
memcpy(tmp, mac, DIGEST256_LEN);
|
|
memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
|
|
tmp[DIGEST256_LEN+info_in_len] = i;
|
|
tmp_len = DIGEST256_LEN + info_in_len + 1;
|
|
} else {
|
|
memcpy(tmp, info_in, info_in_len);
|
|
tmp[info_in_len] = i;
|
|
tmp_len = info_in_len + 1;
|
|
}
|
|
crypto_hmac_sha256((char*)mac,
|
|
(const char*)prk, DIGEST256_LEN,
|
|
(const char*)tmp, tmp_len);
|
|
n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
|
|
memcpy(outp, mac, n);
|
|
key_out_len -= n;
|
|
outp += n;
|
|
++i;
|
|
}
|
|
|
|
memwipe(tmp, 0, sizeof(tmp));
|
|
memwipe(mac, 0, sizeof(mac));
|
|
return 0;
|
|
}
|
|
|
|
/** Free a DH key exchange object.
|
|
*/
|
|
void
|
|
crypto_dh_free(crypto_dh_t *dh)
|
|
{
|
|
if (!dh)
|
|
return;
|
|
tor_assert(dh->dh);
|
|
DH_free(dh->dh);
|
|
tor_free(dh);
|
|
}
|
|
|
|
/* random numbers */
|
|
|
|
/** How many bytes of entropy we add at once.
|
|
*
|
|
* This is how much entropy OpenSSL likes to add right now, so maybe it will
|
|
* work for us too. */
|
|
#define ADD_ENTROPY 32
|
|
|
|
/** True iff it's safe to use RAND_poll after setup.
|
|
*
|
|
* Versions of OpenSSL prior to 0.9.7k and 0.9.8c had a bug where RAND_poll
|
|
* would allocate an fd_set on the stack, open a new file, and try to FD_SET
|
|
* that fd without checking whether it fit in the fd_set. Thus, if the
|
|
* system has not just been started up, it is unsafe to call */
|
|
#define RAND_POLL_IS_SAFE \
|
|
(OPENSSL_VERSION_NUMBER >= OPENSSL_V(0,9,8,'c'))
|
|
|
|
/** Set the seed of the weak RNG to a random value. */
|
|
void
|
|
crypto_seed_weak_rng(tor_weak_rng_t *rng)
|
|
{
|
|
unsigned seed;
|
|
crypto_rand((void*)&seed, sizeof(seed));
|
|
tor_init_weak_random(rng, seed);
|
|
}
|
|
|
|
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
* storing it into <b>out</b>.
|
|
*/
|
|
int
|
|
crypto_strongest_rand(uint8_t *out, size_t out_len)
|
|
{
|
|
#ifdef _WIN32
|
|
static int provider_set = 0;
|
|
static HCRYPTPROV provider;
|
|
#else
|
|
static const char *filenames[] = {
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
};
|
|
int fd, i;
|
|
size_t n;
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
if (!provider_set) {
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
CRYPT_VERIFYCONTEXT)) {
|
|
if ((unsigned long)GetLastError() != (unsigned long)NTE_BAD_KEYSET) {
|
|
log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
|
|
return -1;
|
|
}
|
|
}
|
|
provider_set = 1;
|
|
}
|
|
if (!CryptGenRandom(provider, out_len, out)) {
|
|
log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI.");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
#else
|
|
for (i = 0; filenames[i]; ++i) {
|
|
fd = open(filenames[i], O_RDONLY, 0);
|
|
if (fd<0) continue;
|
|
log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
|
|
n = read_all(fd, (char*)out, out_len, 0);
|
|
close(fd);
|
|
if (n != out_len) {
|
|
log_warn(LD_CRYPTO,
|
|
"Error reading from entropy source (read only %lu bytes).",
|
|
(unsigned long)n);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found.");
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/** Seed OpenSSL's random number generator with bytes from the operating
|
|
* system. <b>startup</b> should be true iff we have just started Tor and
|
|
* have not yet allocated a bunch of fds. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_seed_rng(int startup)
|
|
{
|
|
int rand_poll_ok = 0, load_entropy_ok = 0;
|
|
uint8_t buf[ADD_ENTROPY];
|
|
|
|
/* OpenSSL has a RAND_poll function that knows about more kinds of
|
|
* entropy than we do. We'll try calling that, *and* calling our own entropy
|
|
* functions. If one succeeds, we'll accept the RNG as seeded. */
|
|
if (startup || RAND_POLL_IS_SAFE) {
|
|
rand_poll_ok = RAND_poll();
|
|
if (rand_poll_ok == 0)
|
|
log_warn(LD_CRYPTO, "RAND_poll() failed.");
|
|
}
|
|
|
|
load_entropy_ok = !crypto_strongest_rand(buf, sizeof(buf));
|
|
if (load_entropy_ok) {
|
|
RAND_seed(buf, sizeof(buf));
|
|
}
|
|
|
|
memwipe(buf, 0, sizeof(buf));
|
|
|
|
if (rand_poll_ok || load_entropy_ok)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
MOCK_IMPL(int,
|
|
crypto_rand, (char *to, size_t n))
|
|
{
|
|
int r;
|
|
tor_assert(n < INT_MAX);
|
|
tor_assert(to);
|
|
r = RAND_bytes((unsigned char*)to, (int)n);
|
|
if (r == 0)
|
|
crypto_log_errors(LOG_WARN, "generating random data");
|
|
return (r == 1) ? 0 : -1;
|
|
}
|
|
|
|
/** Return a pseudorandom integer, chosen uniformly from the values
|
|
* between 0 and <b>max</b>-1 inclusive. <b>max</b> must be between 1 and
|
|
* INT_MAX+1, inclusive. */
|
|
int
|
|
crypto_rand_int(unsigned int max)
|
|
{
|
|
unsigned int val;
|
|
unsigned int cutoff;
|
|
tor_assert(max <= ((unsigned int)INT_MAX)+1);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
|
|
* between 0 and <b>max</b>-1. */
|
|
uint64_t
|
|
crypto_rand_uint64(uint64_t max)
|
|
{
|
|
uint64_t val;
|
|
uint64_t cutoff;
|
|
tor_assert(max < UINT64_MAX);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT64_MAX - (UINT64_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a pseudorandom double d, chosen uniformly from the range
|
|
* 0.0 <= d < 1.0.
|
|
*/
|
|
double
|
|
crypto_rand_double(void)
|
|
{
|
|
/* We just use an unsigned int here; we don't really care about getting
|
|
* more than 32 bits of resolution */
|
|
unsigned int uint;
|
|
crypto_rand((char*)&uint, sizeof(uint));
|
|
#if SIZEOF_INT == 4
|
|
#define UINT_MAX_AS_DOUBLE 4294967296.0
|
|
#elif SIZEOF_INT == 8
|
|
#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
|
|
#else
|
|
#error SIZEOF_INT is neither 4 nor 8
|
|
#endif
|
|
return ((double)uint) / UINT_MAX_AS_DOUBLE;
|
|
}
|
|
|
|
/** Generate and return a new random hostname starting with <b>prefix</b>,
|
|
* ending with <b>suffix</b>, and containing no fewer than
|
|
* <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
|
|
* characters between.
|
|
*
|
|
* Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
|
|
**/
|
|
char *
|
|
crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
|
|
const char *suffix)
|
|
{
|
|
char *result, *rand_bytes;
|
|
int randlen, rand_bytes_len;
|
|
size_t resultlen, prefixlen;
|
|
|
|
if (max_rand_len > MAX_DNS_LABEL_SIZE)
|
|
max_rand_len = MAX_DNS_LABEL_SIZE;
|
|
if (min_rand_len > max_rand_len)
|
|
min_rand_len = max_rand_len;
|
|
|
|
randlen = min_rand_len + crypto_rand_int(max_rand_len - min_rand_len + 1);
|
|
|
|
prefixlen = strlen(prefix);
|
|
resultlen = prefixlen + strlen(suffix) + randlen + 16;
|
|
|
|
rand_bytes_len = ((randlen*5)+7)/8;
|
|
if (rand_bytes_len % 5)
|
|
rand_bytes_len += 5 - (rand_bytes_len%5);
|
|
rand_bytes = tor_malloc(rand_bytes_len);
|
|
crypto_rand(rand_bytes, rand_bytes_len);
|
|
|
|
result = tor_malloc(resultlen);
|
|
memcpy(result, prefix, prefixlen);
|
|
base32_encode(result+prefixlen, resultlen-prefixlen,
|
|
rand_bytes, rand_bytes_len);
|
|
tor_free(rand_bytes);
|
|
strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
|
|
* is empty. */
|
|
void *
|
|
smartlist_choose(const smartlist_t *sl)
|
|
{
|
|
int len = smartlist_len(sl);
|
|
if (len)
|
|
return smartlist_get(sl,crypto_rand_int(len));
|
|
return NULL; /* no elements to choose from */
|
|
}
|
|
|
|
/** Scramble the elements of <b>sl</b> into a random order. */
|
|
void
|
|
smartlist_shuffle(smartlist_t *sl)
|
|
{
|
|
int i;
|
|
/* From the end of the list to the front, choose at random from the
|
|
positions we haven't looked at yet, and swap that position into the
|
|
current position. Remember to give "no swap" the same probability as
|
|
any other swap. */
|
|
for (i = smartlist_len(sl)-1; i > 0; --i) {
|
|
int j = crypto_rand_int(i+1);
|
|
smartlist_swap(sl, i, j);
|
|
}
|
|
}
|
|
|
|
/** Base64 encode <b>srclen</b> bytes of data from <b>src</b>. Write
|
|
* the result into <b>dest</b>, if it will fit within <b>destlen</b>
|
|
* bytes. Return the number of bytes written on success; -1 if
|
|
* destlen is too short, or other failure.
|
|
*/
|
|
int
|
|
base64_encode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
/* FFFF we might want to rewrite this along the lines of base64_decode, if
|
|
* it ever shows up in the profile. */
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
tor_assert(srclen < INT_MAX);
|
|
|
|
/* 48 bytes of input -> 64 bytes of output plus newline.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/48)+1)*66)
|
|
return -1;
|
|
if (destlen > SIZE_T_CEILING)
|
|
return -1;
|
|
|
|
EVP_EncodeInit(&ctx);
|
|
EVP_EncodeUpdate(&ctx, (unsigned char*)dest, &len,
|
|
(unsigned char*)src, (int)srclen);
|
|
EVP_EncodeFinal(&ctx, (unsigned char*)(dest+len), &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
|
|
/** @{ */
|
|
/** Special values used for the base64_decode_table */
|
|
#define X 255
|
|
#define SP 64
|
|
#define PAD 65
|
|
/** @} */
|
|
/** Internal table mapping byte values to what they represent in base64.
|
|
* Numbers 0..63 are 6-bit integers. SPs are spaces, and should be
|
|
* skipped. Xs are invalid and must not appear in base64. PAD indicates
|
|
* end-of-string. */
|
|
static const uint8_t base64_decode_table[256] = {
|
|
X, X, X, X, X, X, X, X, X, SP, SP, SP, X, SP, X, X, /* */
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
SP, X, X, X, X, X, X, X, X, X, X, 62, X, X, X, 63,
|
|
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, X, X, X, PAD, X, X,
|
|
X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X, X, X, X, X,
|
|
X, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
|
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
|
|
};
|
|
|
|
/** Base64 decode <b>srclen</b> bytes of data from <b>src</b>. Write
|
|
* the result into <b>dest</b>, if it will fit within <b>destlen</b>
|
|
* bytes. Return the number of bytes written on success; -1 if
|
|
* destlen is too short, or other failure.
|
|
*
|
|
* NOTE 1: destlen is checked conservatively, as though srclen contained no
|
|
* spaces or padding.
|
|
*
|
|
* NOTE 2: This implementation does not check for the correct number of
|
|
* padding "=" characters at the end of the string, and does not check
|
|
* for internal padding characters.
|
|
*/
|
|
int
|
|
base64_decode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
#ifdef USE_OPENSSL_BASE64
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
/* 64 bytes of input -> *up to* 48 bytes of output.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/64)+1)*49)
|
|
return -1;
|
|
if (destlen > SIZE_T_CEILING)
|
|
return -1;
|
|
|
|
EVP_DecodeInit(&ctx);
|
|
EVP_DecodeUpdate(&ctx, (unsigned char*)dest, &len,
|
|
(unsigned char*)src, srclen);
|
|
EVP_DecodeFinal(&ctx, (unsigned char*)dest, &ret);
|
|
ret += len;
|
|
return ret;
|
|
#else
|
|
const char *eos = src+srclen;
|
|
uint32_t n=0;
|
|
int n_idx=0;
|
|
char *dest_orig = dest;
|
|
|
|
/* Max number of bits == srclen*6.
|
|
* Number of bytes required to hold all bits == (srclen*6)/8.
|
|
* Yes, we want to round down: anything that hangs over the end of a
|
|
* byte is padding. */
|
|
if (destlen < (srclen*3)/4)
|
|
return -1;
|
|
if (destlen > SIZE_T_CEILING)
|
|
return -1;
|
|
|
|
/* Iterate over all the bytes in src. Each one will add 0 or 6 bits to the
|
|
* value we're decoding. Accumulate bits in <b>n</b>, and whenever we have
|
|
* 24 bits, batch them into 3 bytes and flush those bytes to dest.
|
|
*/
|
|
for ( ; src < eos; ++src) {
|
|
unsigned char c = (unsigned char) *src;
|
|
uint8_t v = base64_decode_table[c];
|
|
switch (v) {
|
|
case X:
|
|
/* This character isn't allowed in base64. */
|
|
return -1;
|
|
case SP:
|
|
/* This character is whitespace, and has no effect. */
|
|
continue;
|
|
case PAD:
|
|
/* We've hit an = character: the data is over. */
|
|
goto end_of_loop;
|
|
default:
|
|
/* We have an actual 6-bit value. Append it to the bits in n. */
|
|
n = (n<<6) | v;
|
|
if ((++n_idx) == 4) {
|
|
/* We've accumulated 24 bits in n. Flush them. */
|
|
*dest++ = (n>>16);
|
|
*dest++ = (n>>8) & 0xff;
|
|
*dest++ = (n) & 0xff;
|
|
n_idx = 0;
|
|
n = 0;
|
|
}
|
|
}
|
|
}
|
|
end_of_loop:
|
|
/* If we have leftover bits, we need to cope. */
|
|
switch (n_idx) {
|
|
case 0:
|
|
default:
|
|
/* No leftover bits. We win. */
|
|
break;
|
|
case 1:
|
|
/* 6 leftover bits. That's invalid; we can't form a byte out of that. */
|
|
return -1;
|
|
case 2:
|
|
/* 12 leftover bits: The last 4 are padding and the first 8 are data. */
|
|
*dest++ = n >> 4;
|
|
break;
|
|
case 3:
|
|
/* 18 leftover bits: The last 2 are padding and the first 16 are data. */
|
|
*dest++ = n >> 10;
|
|
*dest++ = n >> 2;
|
|
}
|
|
|
|
tor_assert((dest-dest_orig) <= (ssize_t)destlen);
|
|
tor_assert((dest-dest_orig) <= INT_MAX);
|
|
|
|
return (int)(dest-dest_orig);
|
|
#endif
|
|
}
|
|
#undef X
|
|
#undef SP
|
|
#undef PAD
|
|
|
|
/** Base64 encode DIGEST_LINE bytes from <b>digest</b>, remove the trailing =
|
|
* and newline characters, and store the nul-terminated result in the first
|
|
* BASE64_DIGEST_LEN+1 bytes of <b>d64</b>. */
|
|
int
|
|
digest_to_base64(char *d64, const char *digest)
|
|
{
|
|
char buf[256];
|
|
base64_encode(buf, sizeof(buf), digest, DIGEST_LEN);
|
|
buf[BASE64_DIGEST_LEN] = '\0';
|
|
memcpy(d64, buf, BASE64_DIGEST_LEN+1);
|
|
return 0;
|
|
}
|
|
|
|
/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without
|
|
* trailing newline or = characters), decode it and store the result in the
|
|
* first DIGEST_LEN bytes at <b>digest</b>. */
|
|
int
|
|
digest_from_base64(char *digest, const char *d64)
|
|
{
|
|
#ifdef USE_OPENSSL_BASE64
|
|
char buf_in[BASE64_DIGEST_LEN+3];
|
|
char buf[256];
|
|
if (strlen(d64) != BASE64_DIGEST_LEN)
|
|
return -1;
|
|
memcpy(buf_in, d64, BASE64_DIGEST_LEN);
|
|
memcpy(buf_in+BASE64_DIGEST_LEN, "=\n\0", 3);
|
|
if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST_LEN)
|
|
return -1;
|
|
memcpy(digest, buf, DIGEST_LEN);
|
|
return 0;
|
|
#else
|
|
if (base64_decode(digest, DIGEST_LEN, d64, strlen(d64)) == DIGEST_LEN)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/** Base64 encode DIGEST256_LINE bytes from <b>digest</b>, remove the
|
|
* trailing = and newline characters, and store the nul-terminated result in
|
|
* the first BASE64_DIGEST256_LEN+1 bytes of <b>d64</b>. */
|
|
int
|
|
digest256_to_base64(char *d64, const char *digest)
|
|
{
|
|
char buf[256];
|
|
base64_encode(buf, sizeof(buf), digest, DIGEST256_LEN);
|
|
buf[BASE64_DIGEST256_LEN] = '\0';
|
|
memcpy(d64, buf, BASE64_DIGEST256_LEN+1);
|
|
return 0;
|
|
}
|
|
|
|
/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without
|
|
* trailing newline or = characters), decode it and store the result in the
|
|
* first DIGEST256_LEN bytes at <b>digest</b>. */
|
|
int
|
|
digest256_from_base64(char *digest, const char *d64)
|
|
{
|
|
#ifdef USE_OPENSSL_BASE64
|
|
char buf_in[BASE64_DIGEST256_LEN+3];
|
|
char buf[256];
|
|
if (strlen(d64) != BASE64_DIGEST256_LEN)
|
|
return -1;
|
|
memcpy(buf_in, d64, BASE64_DIGEST256_LEN);
|
|
memcpy(buf_in+BASE64_DIGEST256_LEN, "=\n\0", 3);
|
|
if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST256_LEN)
|
|
return -1;
|
|
memcpy(digest, buf, DIGEST256_LEN);
|
|
return 0;
|
|
#else
|
|
if (base64_decode(digest, DIGEST256_LEN, d64, strlen(d64)) == DIGEST256_LEN)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/** Implements base32 encoding as in RFC 4648. Limitation: Requires
|
|
* that srclen*8 is a multiple of 5.
|
|
*/
|
|
void
|
|
base32_encode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
unsigned int i, v, u;
|
|
size_t nbits = srclen * 8, bit;
|
|
|
|
tor_assert(srclen < SIZE_T_CEILING/8);
|
|
tor_assert((nbits%5) == 0); /* We need an even multiple of 5 bits. */
|
|
tor_assert((nbits/5)+1 <= destlen); /* We need enough space. */
|
|
tor_assert(destlen < SIZE_T_CEILING);
|
|
|
|
for (i=0,bit=0; bit < nbits; ++i, bit+=5) {
|
|
/* set v to the 16-bit value starting at src[bits/8], 0-padded. */
|
|
v = ((uint8_t)src[bit/8]) << 8;
|
|
if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1];
|
|
/* set u to the 5-bit value at the bit'th bit of src. */
|
|
u = (v >> (11-(bit%8))) & 0x1F;
|
|
dest[i] = BASE32_CHARS[u];
|
|
}
|
|
dest[i] = '\0';
|
|
}
|
|
|
|
/** Implements base32 decoding as in RFC 4648. Limitation: Requires
|
|
* that srclen*5 is a multiple of 8. Returns 0 if successful, -1 otherwise.
|
|
*/
|
|
int
|
|
base32_decode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
/* XXXX we might want to rewrite this along the lines of base64_decode, if
|
|
* it ever shows up in the profile. */
|
|
unsigned int i;
|
|
size_t nbits, j, bit;
|
|
char *tmp;
|
|
nbits = srclen * 5;
|
|
|
|
tor_assert(srclen < SIZE_T_CEILING / 5);
|
|
tor_assert((nbits%8) == 0); /* We need an even multiple of 8 bits. */
|
|
tor_assert((nbits/8) <= destlen); /* We need enough space. */
|
|
tor_assert(destlen < SIZE_T_CEILING);
|
|
|
|
/* Convert base32 encoded chars to the 5-bit values that they represent. */
|
|
tmp = tor_malloc_zero(srclen);
|
|
for (j = 0; j < srclen; ++j) {
|
|
if (src[j] > 0x60 && src[j] < 0x7B) tmp[j] = src[j] - 0x61;
|
|
else if (src[j] > 0x31 && src[j] < 0x38) tmp[j] = src[j] - 0x18;
|
|
else if (src[j] > 0x40 && src[j] < 0x5B) tmp[j] = src[j] - 0x41;
|
|
else {
|
|
log_warn(LD_BUG, "illegal character in base32 encoded string");
|
|
tor_free(tmp);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Assemble result byte-wise by applying five possible cases. */
|
|
for (i = 0, bit = 0; bit < nbits; ++i, bit += 8) {
|
|
switch (bit % 40) {
|
|
case 0:
|
|
dest[i] = (((uint8_t)tmp[(bit/5)]) << 3) +
|
|
(((uint8_t)tmp[(bit/5)+1]) >> 2);
|
|
break;
|
|
case 8:
|
|
dest[i] = (((uint8_t)tmp[(bit/5)]) << 6) +
|
|
(((uint8_t)tmp[(bit/5)+1]) << 1) +
|
|
(((uint8_t)tmp[(bit/5)+2]) >> 4);
|
|
break;
|
|
case 16:
|
|
dest[i] = (((uint8_t)tmp[(bit/5)]) << 4) +
|
|
(((uint8_t)tmp[(bit/5)+1]) >> 1);
|
|
break;
|
|
case 24:
|
|
dest[i] = (((uint8_t)tmp[(bit/5)]) << 7) +
|
|
(((uint8_t)tmp[(bit/5)+1]) << 2) +
|
|
(((uint8_t)tmp[(bit/5)+2]) >> 3);
|
|
break;
|
|
case 32:
|
|
dest[i] = (((uint8_t)tmp[(bit/5)]) << 5) +
|
|
((uint8_t)tmp[(bit/5)+1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
memwipe(tmp, 0, srclen);
|
|
tor_free(tmp);
|
|
tmp = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/** Implement RFC2440-style iterated-salted S2K conversion: convert the
|
|
* <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
|
|
* <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
|
|
* are a salt; the 9th byte describes how much iteration to do.
|
|
* Does not support <b>key_out_len</b> > DIGEST_LEN.
|
|
*/
|
|
void
|
|
secret_to_key(char *key_out, size_t key_out_len, const char *secret,
|
|
size_t secret_len, const char *s2k_specifier)
|
|
{
|
|
crypto_digest_t *d;
|
|
uint8_t c;
|
|
size_t count, tmplen;
|
|
char *tmp;
|
|
tor_assert(key_out_len < SIZE_T_CEILING);
|
|
|
|
#define EXPBIAS 6
|
|
c = s2k_specifier[8];
|
|
count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
|
|
#undef EXPBIAS
|
|
|
|
tor_assert(key_out_len <= DIGEST_LEN);
|
|
|
|
d = crypto_digest_new();
|
|
tmplen = 8+secret_len;
|
|
tmp = tor_malloc(tmplen);
|
|
memcpy(tmp,s2k_specifier,8);
|
|
memcpy(tmp+8,secret,secret_len);
|
|
secret_len += 8;
|
|
while (count) {
|
|
if (count >= secret_len) {
|
|
crypto_digest_add_bytes(d, tmp, secret_len);
|
|
count -= secret_len;
|
|
} else {
|
|
crypto_digest_add_bytes(d, tmp, count);
|
|
count = 0;
|
|
}
|
|
}
|
|
crypto_digest_get_digest(d, key_out, key_out_len);
|
|
memwipe(tmp, 0, tmplen);
|
|
tor_free(tmp);
|
|
crypto_digest_free(d);
|
|
}
|
|
|
|
/**
|
|
* Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
|
|
* the value <b>byte</b>.
|
|
*
|
|
* This function is preferable to memset, since many compilers will happily
|
|
* optimize out memset() when they can convince themselves that the data being
|
|
* cleared will never be read.
|
|
*
|
|
* Right now, our convention is to use this function when we are wiping data
|
|
* that's about to become inaccessible, such as stack buffers that are about
|
|
* to go out of scope or structures that are about to get freed. (In
|
|
* practice, it appears that the compilers we're currently using will optimize
|
|
* out the memset()s for stack-allocated buffers, but not those for
|
|
* about-to-be-freed structures. That could change, though, so we're being
|
|
* wary.) If there are live reads for the data, then you can just use
|
|
* memset().
|
|
*/
|
|
void
|
|
memwipe(void *mem, uint8_t byte, size_t sz)
|
|
{
|
|
/* Because whole-program-optimization exists, we may not be able to just
|
|
* have this function call "memset". A smart compiler could inline it, then
|
|
* eliminate dead memsets, and declare itself to be clever. */
|
|
|
|
/* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
|
|
* based on the pointer value, then uses that junk to update a global
|
|
* variable. It's an elaborate ruse to trick the compiler into not
|
|
* optimizing out the "wipe this memory" code. Read it if you like zany
|
|
* programming tricks! In later versions of Tor, we should look for better
|
|
* not-optimized-out memory wiping stuff. */
|
|
OPENSSL_cleanse(mem, sz);
|
|
/* Just in case some caller of memwipe() is relying on getting a buffer
|
|
* filled with a particular value, fill the buffer.
|
|
*
|
|
* If this function gets inlined, this memset might get eliminated, but
|
|
* that's okay: We only care about this particular memset in the case where
|
|
* the caller should have been using memset(), and the memset() wouldn't get
|
|
* eliminated. In other words, this is here so that we won't break anything
|
|
* if somebody accidentally calls memwipe() instead of memset().
|
|
**/
|
|
memset(mem, byte, sz);
|
|
}
|
|
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
|
|
#ifndef OPENSSL_THREADS
|
|
#error OpenSSL has been built without thread support. Tor requires an \
|
|
OpenSSL library with thread support enabled.
|
|
#endif
|
|
|
|
/** Helper: OpenSSL uses this callback to manipulate mutexes. */
|
|
static void
|
|
openssl_locking_cb_(int mode, int n, const char *file, int line)
|
|
{
|
|
(void)file;
|
|
(void)line;
|
|
if (!openssl_mutexes_)
|
|
/* This is not a really good fix for the
|
|
* "release-freed-lock-from-separate-thread-on-shutdown" problem, but
|
|
* it can't hurt. */
|
|
return;
|
|
if (mode & CRYPTO_LOCK)
|
|
tor_mutex_acquire(openssl_mutexes_[n]);
|
|
else
|
|
tor_mutex_release(openssl_mutexes_[n]);
|
|
}
|
|
|
|
/** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it
|
|
* as a lock. */
|
|
struct CRYPTO_dynlock_value {
|
|
tor_mutex_t *lock;
|
|
};
|
|
|
|
/** OpenSSL callback function to allocate a lock: see CRYPTO_set_dynlock_*
|
|
* documentation in OpenSSL's docs for more info. */
|
|
static struct CRYPTO_dynlock_value *
|
|
openssl_dynlock_create_cb_(const char *file, int line)
|
|
{
|
|
struct CRYPTO_dynlock_value *v;
|
|
(void)file;
|
|
(void)line;
|
|
v = tor_malloc(sizeof(struct CRYPTO_dynlock_value));
|
|
v->lock = tor_mutex_new();
|
|
return v;
|
|
}
|
|
|
|
/** OpenSSL callback function to acquire or release a lock: see
|
|
* CRYPTO_set_dynlock_* documentation in OpenSSL's docs for more info. */
|
|
static void
|
|
openssl_dynlock_lock_cb_(int mode, struct CRYPTO_dynlock_value *v,
|
|
const char *file, int line)
|
|
{
|
|
(void)file;
|
|
(void)line;
|
|
if (mode & CRYPTO_LOCK)
|
|
tor_mutex_acquire(v->lock);
|
|
else
|
|
tor_mutex_release(v->lock);
|
|
}
|
|
|
|
/** OpenSSL callback function to free a lock: see CRYPTO_set_dynlock_*
|
|
* documentation in OpenSSL's docs for more info. */
|
|
static void
|
|
openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v,
|
|
const char *file, int line)
|
|
{
|
|
(void)file;
|
|
(void)line;
|
|
tor_mutex_free(v->lock);
|
|
tor_free(v);
|
|
}
|
|
|
|
/** @{ */
|
|
/** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being
|
|
* multithreaded. */
|
|
static int
|
|
setup_openssl_threading(void)
|
|
{
|
|
int i;
|
|
int n = CRYPTO_num_locks();
|
|
n_openssl_mutexes_ = n;
|
|
openssl_mutexes_ = tor_malloc(n*sizeof(tor_mutex_t *));
|
|
for (i=0; i < n; ++i)
|
|
openssl_mutexes_[i] = tor_mutex_new();
|
|
CRYPTO_set_locking_callback(openssl_locking_cb_);
|
|
CRYPTO_set_id_callback(tor_get_thread_id);
|
|
CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_);
|
|
CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_);
|
|
CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_);
|
|
return 0;
|
|
}
|
|
#else
|
|
static int
|
|
setup_openssl_threading(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/** Uninitialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_global_cleanup(void)
|
|
{
|
|
EVP_cleanup();
|
|
ERR_remove_state(0);
|
|
ERR_free_strings();
|
|
|
|
if (dh_param_p)
|
|
BN_free(dh_param_p);
|
|
if (dh_param_p_tls)
|
|
BN_free(dh_param_p_tls);
|
|
if (dh_param_g)
|
|
BN_free(dh_param_g);
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
ENGINE_cleanup();
|
|
#endif
|
|
|
|
CONF_modules_unload(1);
|
|
CRYPTO_cleanup_all_ex_data();
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
if (n_openssl_mutexes_) {
|
|
int n = n_openssl_mutexes_;
|
|
tor_mutex_t **ms = openssl_mutexes_;
|
|
int i;
|
|
openssl_mutexes_ = NULL;
|
|
n_openssl_mutexes_ = 0;
|
|
for (i=0;i<n;++i) {
|
|
tor_mutex_free(ms[i]);
|
|
}
|
|
tor_free(ms);
|
|
}
|
|
#endif
|
|
tor_free(crypto_openssl_version_str);
|
|
return 0;
|
|
}
|
|
|
|
/** @} */
|
|
|