mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
461 lines
13 KiB
C
461 lines
13 KiB
C
/* Copyright (c) 2001, Matej Pfajfar.
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2015, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
#define CRYPTO_S2K_PRIVATE
|
|
|
|
#include "crypto.h"
|
|
#include "util.h"
|
|
#include "compat.h"
|
|
#include "crypto_s2k.h"
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#ifdef HAVE_LIBSCRYPT_H
|
|
#define HAVE_SCRYPT
|
|
#include <libscrypt.h>
|
|
#endif
|
|
|
|
/* Encoded secrets take the form:
|
|
|
|
u8 type;
|
|
u8 salt_and_parameters[depends on type];
|
|
u8 key[depends on type];
|
|
|
|
As a special case, if the encoded secret is exactly 29 bytes long,
|
|
type 0 is understood.
|
|
|
|
Recognized types are:
|
|
00 -- RFC2440. salt_and_parameters is 9 bytes. key is 20 bytes.
|
|
salt_and_parameters is 8 bytes random salt,
|
|
1 byte iteration info.
|
|
01 -- PKBDF2_SHA1. salt_and_parameters is 17 bytes. key is 20 bytes.
|
|
salt_and_parameters is 16 bytes random salt,
|
|
1 byte iteration info.
|
|
02 -- SCRYPT_SALSA208_SHA256. salt_and_parameters is 18 bytes. key is
|
|
32 bytes.
|
|
salt_and_parameters is 18 bytes random salt, 2 bytes iteration
|
|
info.
|
|
*/
|
|
|
|
#define S2K_TYPE_RFC2440 0
|
|
#define S2K_TYPE_PBKDF2 1
|
|
#define S2K_TYPE_SCRYPT 2
|
|
|
|
#define PBKDF2_SPEC_LEN 17
|
|
#define PBKDF2_KEY_LEN 20
|
|
|
|
#define SCRYPT_SPEC_LEN 18
|
|
#define SCRYPT_KEY_LEN 32
|
|
|
|
/** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
|
|
* specifier part of it, without the prefix type byte. */
|
|
static int
|
|
secret_to_key_spec_len(uint8_t type)
|
|
{
|
|
switch (type) {
|
|
case S2K_TYPE_RFC2440:
|
|
return S2K_RFC2440_SPECIFIER_LEN;
|
|
case S2K_TYPE_PBKDF2:
|
|
return PBKDF2_SPEC_LEN;
|
|
case S2K_TYPE_SCRYPT:
|
|
return SCRYPT_SPEC_LEN;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
|
|
* its preferred output. */
|
|
static int
|
|
secret_to_key_key_len(uint8_t type)
|
|
{
|
|
switch (type) {
|
|
case S2K_TYPE_RFC2440:
|
|
return DIGEST_LEN;
|
|
case S2K_TYPE_PBKDF2:
|
|
return DIGEST_LEN;
|
|
case S2K_TYPE_SCRYPT:
|
|
return DIGEST256_LEN;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/** Given a specifier in <b>spec_and_key</b> of length
|
|
* <b>spec_and_key_len</b>, along with its prefix algorithm ID byte, and along
|
|
* with a key if <b>key_included</b> is true, check whether the whole
|
|
* specifier-and-key is of valid length, and return the algorithm type if it
|
|
* is. Set *<b>legacy_out</b> to 1 iff this is a legacy password hash or
|
|
* legacy specifier. Return an error code on failure.
|
|
*/
|
|
static int
|
|
secret_to_key_get_type(const uint8_t *spec_and_key, size_t spec_and_key_len,
|
|
int key_included, int *legacy_out)
|
|
{
|
|
size_t legacy_len = S2K_RFC2440_SPECIFIER_LEN;
|
|
uint8_t type;
|
|
int total_len;
|
|
|
|
if (key_included)
|
|
legacy_len += DIGEST_LEN;
|
|
|
|
if (spec_and_key_len == legacy_len) {
|
|
*legacy_out = 1;
|
|
return S2K_TYPE_RFC2440;
|
|
}
|
|
|
|
*legacy_out = 0;
|
|
if (spec_and_key_len == 0)
|
|
return S2K_BAD_LEN;
|
|
|
|
type = spec_and_key[0];
|
|
total_len = secret_to_key_spec_len(type);
|
|
if (total_len < 0)
|
|
return S2K_BAD_ALGORITHM;
|
|
if (key_included) {
|
|
int keylen = secret_to_key_key_len(type);
|
|
if (keylen < 0)
|
|
return S2K_BAD_ALGORITHM;
|
|
total_len += keylen;
|
|
}
|
|
|
|
if ((size_t)total_len + 1 == spec_and_key_len)
|
|
return type;
|
|
else
|
|
return S2K_BAD_LEN;
|
|
}
|
|
|
|
/**
|
|
* Write a new random s2k specifier of type <b>type</b>, without prefixing
|
|
* type byte, to <b>spec_out</b>, which must have enough room. May adjust
|
|
* parameter choice based on <b>flags</b>.
|
|
*/
|
|
static int
|
|
make_specifier(uint8_t *spec_out, uint8_t type, unsigned flags)
|
|
{
|
|
int speclen = secret_to_key_spec_len(type);
|
|
if (speclen < 0)
|
|
return S2K_BAD_ALGORITHM;
|
|
|
|
crypto_rand((char*)spec_out, speclen);
|
|
switch (type) {
|
|
case S2K_TYPE_RFC2440:
|
|
/* Hash 64 k of data. */
|
|
spec_out[S2K_RFC2440_SPECIFIER_LEN-1] = 96;
|
|
break;
|
|
case S2K_TYPE_PBKDF2:
|
|
/* 131 K iterations */
|
|
spec_out[PBKDF2_SPEC_LEN-1] = 17;
|
|
break;
|
|
case S2K_TYPE_SCRYPT:
|
|
if (flags & S2K_FLAG_LOW_MEM) {
|
|
/* N = 1<<12 */
|
|
spec_out[SCRYPT_SPEC_LEN-2] = 12;
|
|
} else {
|
|
/* N = 1<<15 */
|
|
spec_out[SCRYPT_SPEC_LEN-2] = 15;
|
|
}
|
|
/* r = 8; p = 2. */
|
|
spec_out[SCRYPT_SPEC_LEN-1] = (3u << 4) | (1u << 0);
|
|
break;
|
|
default:
|
|
tor_fragile_assert();
|
|
return S2K_BAD_ALGORITHM;
|
|
}
|
|
|
|
return speclen;
|
|
}
|
|
|
|
/** Implement RFC2440-style iterated-salted S2K conversion: convert the
|
|
* <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
|
|
* <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
|
|
* are a salt; the 9th byte describes how much iteration to do.
|
|
* If <b>key_out_len</b> > DIGEST_LEN, use HDKF to expand the result.
|
|
*/
|
|
void
|
|
secret_to_key_rfc2440(char *key_out, size_t key_out_len, const char *secret,
|
|
size_t secret_len, const char *s2k_specifier)
|
|
{
|
|
crypto_digest_t *d;
|
|
uint8_t c;
|
|
size_t count, tmplen;
|
|
char *tmp;
|
|
uint8_t buf[DIGEST_LEN];
|
|
tor_assert(key_out_len < SIZE_T_CEILING);
|
|
|
|
#define EXPBIAS 6
|
|
c = s2k_specifier[8];
|
|
count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
|
|
#undef EXPBIAS
|
|
|
|
d = crypto_digest_new();
|
|
tmplen = 8+secret_len;
|
|
tmp = tor_malloc(tmplen);
|
|
memcpy(tmp,s2k_specifier,8);
|
|
memcpy(tmp+8,secret,secret_len);
|
|
secret_len += 8;
|
|
while (count) {
|
|
if (count >= secret_len) {
|
|
crypto_digest_add_bytes(d, tmp, secret_len);
|
|
count -= secret_len;
|
|
} else {
|
|
crypto_digest_add_bytes(d, tmp, count);
|
|
count = 0;
|
|
}
|
|
}
|
|
crypto_digest_get_digest(d, (char*)buf, sizeof(buf));
|
|
|
|
if (key_out_len <= sizeof(buf)) {
|
|
memcpy(key_out, buf, key_out_len);
|
|
} else {
|
|
crypto_expand_key_material_rfc5869_sha256(buf, DIGEST_LEN,
|
|
(const uint8_t*)s2k_specifier, 8,
|
|
(const uint8_t*)"EXPAND", 6,
|
|
(uint8_t*)key_out, key_out_len);
|
|
}
|
|
memwipe(tmp, 0, tmplen);
|
|
memwipe(buf, 0, sizeof(buf));
|
|
tor_free(tmp);
|
|
crypto_digest_free(d);
|
|
}
|
|
|
|
/**
|
|
* Helper: given a valid specifier without prefix type byte in <b>spec</b>,
|
|
* whose length must be correct, and given a secret passphrase <b>secret</b>
|
|
* of length <b>secret_len</b>, compute the key and store it into
|
|
* <b>key_out</b>, which must have enough room for secret_to_key_key_len(type)
|
|
* bytes. Return the number of bytes written on success and an error code
|
|
* on failure.
|
|
*/
|
|
STATIC int
|
|
secret_to_key_compute_key(uint8_t *key_out, size_t key_out_len,
|
|
const uint8_t *spec, size_t spec_len,
|
|
const char *secret, size_t secret_len,
|
|
int type)
|
|
{
|
|
int rv;
|
|
if (key_out_len > INT_MAX)
|
|
return S2K_BAD_LEN;
|
|
|
|
switch (type) {
|
|
case S2K_TYPE_RFC2440:
|
|
secret_to_key_rfc2440((char*)key_out, key_out_len, secret, secret_len,
|
|
(const char*)spec);
|
|
return (int)key_out_len;
|
|
|
|
case S2K_TYPE_PBKDF2: {
|
|
uint8_t log_iters;
|
|
if (spec_len < 1 || secret_len > INT_MAX || spec_len > INT_MAX)
|
|
return S2K_BAD_LEN;
|
|
log_iters = spec[spec_len-1];
|
|
if (log_iters > 31)
|
|
return S2K_BAD_PARAMS;
|
|
rv = PKCS5_PBKDF2_HMAC_SHA1(secret, (int)secret_len,
|
|
spec, (int)spec_len-1,
|
|
(1<<log_iters),
|
|
(int)key_out_len, key_out);
|
|
if (rv < 0)
|
|
return S2K_FAILED;
|
|
return (int)key_out_len;
|
|
}
|
|
|
|
case S2K_TYPE_SCRYPT: {
|
|
#ifdef HAVE_SCRYPT
|
|
uint8_t log_N, log_r, log_p;
|
|
uint64_t N;
|
|
uint32_t r, p;
|
|
if (spec_len < 2)
|
|
return S2K_BAD_LEN;
|
|
log_N = spec[spec_len-2];
|
|
log_r = (spec[spec_len-1]) >> 4;
|
|
log_p = (spec[spec_len-1]) & 15;
|
|
if (log_N > 63)
|
|
return S2K_BAD_PARAMS;
|
|
N = ((uint64_t)1) << log_N;
|
|
r = 1u << log_r;
|
|
p = 1u << log_p;
|
|
rv = libscrypt_scrypt((const uint8_t*)secret, secret_len,
|
|
spec, spec_len-2, N, r, p, key_out, key_out_len);
|
|
if (rv != 0)
|
|
return S2K_FAILED;
|
|
return (int)key_out_len;
|
|
#else
|
|
return S2K_NO_SCRYPT_SUPPORT;
|
|
#endif
|
|
}
|
|
default:
|
|
return S2K_BAD_ALGORITHM;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a specifier previously constructed with secret_to_key_make_specifier
|
|
* in <b>spec</b> of length <b>spec_len</b>, and a secret password in
|
|
* <b>secret</b> of length <b>secret_len</b>, generate <b>key_out_len</b>
|
|
* bytes of cryptographic material in <b>key_out</b>. The native output of
|
|
* the secret-to-key function will be truncated if key_out_len is short, and
|
|
* expanded with HKDF if key_out_len is long. Returns S2K_OKAY on success,
|
|
* and an error code on failure.
|
|
*/
|
|
int
|
|
secret_to_key_derivekey(uint8_t *key_out, size_t key_out_len,
|
|
const uint8_t *spec, size_t spec_len,
|
|
const char *secret, size_t secret_len)
|
|
{
|
|
int legacy_format = 0;
|
|
int type = secret_to_key_get_type(spec, spec_len, 0, &legacy_format);
|
|
int r;
|
|
|
|
if (type < 0)
|
|
return type;
|
|
#ifndef HAVE_SCRYPT
|
|
if (type == S2K_TYPE_SCRYPT)
|
|
return S2K_NO_SCRYPT_SUPPORT;
|
|
#endif
|
|
|
|
if (! legacy_format) {
|
|
++spec;
|
|
--spec_len;
|
|
}
|
|
|
|
r = secret_to_key_compute_key(key_out, key_out_len, spec, spec_len,
|
|
secret, secret_len, type);
|
|
if (r < 0)
|
|
return r;
|
|
else
|
|
return S2K_OKAY;
|
|
}
|
|
|
|
/**
|
|
* Construct a new s2k algorithm specifier and salt in <b>buf</b>, according
|
|
* to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>. Up to
|
|
* <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Return the
|
|
* number of bytes used on success and an error code on failure.
|
|
*/
|
|
int
|
|
secret_to_key_make_specifier(uint8_t *buf, size_t buf_len, unsigned flags)
|
|
{
|
|
int rv;
|
|
int spec_len;
|
|
#ifdef HAVE_SCRYPT
|
|
uint8_t type = S2K_TYPE_SCRYPT;
|
|
#else
|
|
uint8_t type = S2K_TYPE_RFC2440;
|
|
#endif
|
|
|
|
if (flags & S2K_FLAG_NO_SCRYPT)
|
|
type = S2K_TYPE_RFC2440;
|
|
if (flags & S2K_FLAG_USE_PBKDF2)
|
|
type = S2K_TYPE_PBKDF2;
|
|
|
|
spec_len = secret_to_key_spec_len(type);
|
|
|
|
if ((int)buf_len < spec_len + 1)
|
|
return S2K_TRUNCATED;
|
|
|
|
buf[0] = type;
|
|
rv = make_specifier(buf+1, type, flags);
|
|
if (rv < 0)
|
|
return rv;
|
|
else
|
|
return rv + 1;
|
|
}
|
|
|
|
/**
|
|
* Hash a passphrase from <b>secret</b> of length <b>secret_len</b>, according
|
|
* to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>, and store the
|
|
* hash along with salt and hashing parameters into <b>buf</b>. Up to
|
|
* <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Set
|
|
* *<b>len_out</b> to the number of bytes used and return S2K_OKAY on success;
|
|
* and return an error code on failure.
|
|
*/
|
|
int
|
|
secret_to_key_new(uint8_t *buf,
|
|
size_t buf_len,
|
|
size_t *len_out,
|
|
const char *secret, size_t secret_len,
|
|
unsigned flags)
|
|
{
|
|
int key_len;
|
|
int spec_len;
|
|
int type;
|
|
int rv;
|
|
|
|
spec_len = secret_to_key_make_specifier(buf, buf_len, flags);
|
|
|
|
if (spec_len < 0)
|
|
return spec_len;
|
|
|
|
type = buf[0];
|
|
key_len = secret_to_key_key_len(type);
|
|
|
|
if (key_len < 0)
|
|
return key_len;
|
|
|
|
if ((int)buf_len < key_len + spec_len)
|
|
return S2K_TRUNCATED;
|
|
|
|
rv = secret_to_key_compute_key(buf + spec_len, key_len,
|
|
buf + 1, spec_len-1,
|
|
secret, secret_len, type);
|
|
if (rv < 0)
|
|
return rv;
|
|
|
|
*len_out = spec_len + key_len;
|
|
|
|
return S2K_OKAY;
|
|
}
|
|
|
|
/**
|
|
* Given a hashed passphrase in <b>spec_and_key</b> of length
|
|
* <b>spec_and_key_len</b> as generated by secret_to_key_new(), verify whether
|
|
* it is a hash of the passphrase <b>secret</b> of length <b>secret_len</b>.
|
|
* Return S2K_OKAY on a match, S2K_BAD_SECRET on a well-formed hash that
|
|
* doesn't match this secret, and another error code on other errors.
|
|
*/
|
|
int
|
|
secret_to_key_check(const uint8_t *spec_and_key, size_t spec_and_key_len,
|
|
const char *secret, size_t secret_len)
|
|
{
|
|
int is_legacy = 0;
|
|
int type = secret_to_key_get_type(spec_and_key, spec_and_key_len,
|
|
1, &is_legacy);
|
|
uint8_t buf[32];
|
|
int spec_len;
|
|
int key_len;
|
|
int rv;
|
|
|
|
if (type < 0)
|
|
return type;
|
|
|
|
if (! is_legacy) {
|
|
spec_and_key++;
|
|
spec_and_key_len--;
|
|
}
|
|
|
|
spec_len = secret_to_key_spec_len(type);
|
|
key_len = secret_to_key_key_len(type);
|
|
tor_assert(spec_len > 0);
|
|
tor_assert(key_len > 0);
|
|
tor_assert(key_len <= (int) sizeof(buf));
|
|
tor_assert((int)spec_and_key_len == spec_len + key_len);
|
|
rv = secret_to_key_compute_key(buf, key_len,
|
|
spec_and_key, spec_len,
|
|
secret, secret_len, type);
|
|
if (rv < 0)
|
|
goto done;
|
|
|
|
if (tor_memeq(buf, spec_and_key + spec_len, key_len))
|
|
rv = S2K_OKAY;
|
|
else
|
|
rv = S2K_BAD_SECRET;
|
|
|
|
done:
|
|
memwipe(buf, 0, sizeof(buf));
|
|
return rv;
|
|
}
|
|
|