mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
5e4b9c6b61
svn:r799
1071 lines
23 KiB
C
1071 lines
23 KiB
C
/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/opensslv.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#include "crypto.h"
|
|
#include "../or/or.h"
|
|
#include "log.h"
|
|
#include "aes.h"
|
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x00905000l
|
|
#error "We require openssl >= 0.9.5"
|
|
#elif OPENSSL_VERSION_NUMBER < 0x00906000l
|
|
#define OPENSSL_095
|
|
#endif
|
|
|
|
/*
|
|
* Certain functions that return a success code in OpenSSL 0.9.6 return void
|
|
* (and don't indicate errors) in OpenSSL version 0.9.5.
|
|
*
|
|
* [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.]
|
|
*/
|
|
#ifdef OPENSSL_095
|
|
#define RETURN_SSL_OUTCOME(exp) (exp); return 0
|
|
#else
|
|
#define RETURN_SSL_OUTCOME(exp) return !(exp)
|
|
#endif
|
|
|
|
struct crypto_pk_env_t
|
|
{
|
|
int type;
|
|
int refs; /* reference counting; so we don't have to copy keys */
|
|
unsigned char *key;
|
|
/* auxiliary data structure(s) used by the underlying crypto library */
|
|
unsigned char *aux;
|
|
};
|
|
|
|
struct crypto_cipher_env_t
|
|
{
|
|
int type;
|
|
unsigned char *key;
|
|
unsigned char *iv;
|
|
/* auxiliary data structure(s) used by the underlying crypto library */
|
|
unsigned char *aux;
|
|
};
|
|
|
|
/* static INLINE const EVP_CIPHER *
|
|
crypto_cipher_evp_cipher(int type, int enc);
|
|
*/
|
|
|
|
static INLINE int
|
|
crypto_cipher_iv_length(int type) {
|
|
/*
|
|
printf("%d -> %d IV\n",type, EVP_CIPHER_iv_length(
|
|
crypto_cipher_evp_cipher(type,0)));
|
|
*/
|
|
switch(type)
|
|
{
|
|
case CRYPTO_CIPHER_IDENTITY: return 0;
|
|
case CRYPTO_CIPHER_DES: return 8;
|
|
case CRYPTO_CIPHER_RC4: return 16;
|
|
case CRYPTO_CIPHER_3DES: return 8;
|
|
case CRYPTO_CIPHER_AES_CTR: return 0;
|
|
default: assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
static INLINE int
|
|
crypto_cipher_key_length(int type) {
|
|
/*
|
|
printf("%d -> %d\n",type, EVP_CIPHER_key_length(
|
|
crypto_cipher_evp_cipher(type,0)));
|
|
*/
|
|
switch(type)
|
|
{
|
|
case CRYPTO_CIPHER_IDENTITY: return 0;
|
|
case CRYPTO_CIPHER_DES: return 8;
|
|
case CRYPTO_CIPHER_RC4: return 16;
|
|
case CRYPTO_CIPHER_3DES: return 16;
|
|
case CRYPTO_CIPHER_AES_CTR: return 16;
|
|
default: assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
static INLINE const EVP_CIPHER *
|
|
crypto_cipher_evp_cipher(int type, int enc) {
|
|
switch(type)
|
|
{
|
|
case CRYPTO_CIPHER_IDENTITY: return EVP_enc_null();
|
|
case CRYPTO_CIPHER_DES: return EVP_des_ofb();
|
|
case CRYPTO_CIPHER_RC4: return EVP_rc4();
|
|
case CRYPTO_CIPHER_3DES: return EVP_des_ede_ofb();
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
static int _crypto_global_initialized = 0;
|
|
|
|
int crypto_global_init()
|
|
{
|
|
if (!_crypto_global_initialized) {
|
|
ERR_load_crypto_strings();
|
|
_crypto_global_initialized = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int crypto_global_cleanup()
|
|
{
|
|
ERR_free_strings();
|
|
return 0;
|
|
}
|
|
|
|
crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa)
|
|
{
|
|
crypto_pk_env_t *env;
|
|
assert(rsa);
|
|
env = (crypto_pk_env_t *)tor_malloc(sizeof(crypto_pk_env_t));
|
|
env->type = CRYPTO_PK_RSA;
|
|
env->refs = 1;
|
|
env->key = (unsigned char*)rsa;
|
|
env->aux = NULL;
|
|
return env;
|
|
}
|
|
|
|
RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env)
|
|
{
|
|
if (env->type != CRYPTO_PK_RSA)
|
|
return NULL;
|
|
return (RSA*)env->key;
|
|
}
|
|
|
|
EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env)
|
|
{
|
|
RSA *key = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
if (env->type != CRYPTO_PK_RSA)
|
|
return NULL;
|
|
assert(env->key);
|
|
if (!(key = RSAPrivateKey_dup((RSA*)env->key)))
|
|
goto error;
|
|
if (!(pkey = EVP_PKEY_new()))
|
|
goto error;
|
|
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
|
goto error;
|
|
return pkey;
|
|
error:
|
|
if (pkey)
|
|
EVP_PKEY_free(pkey);
|
|
if (key)
|
|
RSA_free(key);
|
|
return NULL;
|
|
}
|
|
|
|
crypto_pk_env_t *crypto_new_pk_env(int type)
|
|
{
|
|
RSA *rsa;
|
|
|
|
switch(type) {
|
|
case CRYPTO_PK_RSA:
|
|
rsa = RSA_new();
|
|
if (!rsa) return NULL;
|
|
return _crypto_new_pk_env_rsa(rsa);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void crypto_free_pk_env(crypto_pk_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
if(--env->refs > 0)
|
|
return;
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (env->key)
|
|
RSA_free((RSA *)env->key);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
free(env);
|
|
}
|
|
|
|
|
|
/* Create a new crypto_cipher_env_t for a given onion cipher type, key,
|
|
* iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object
|
|
* on success; NULL on failure.
|
|
*/
|
|
crypto_cipher_env_t *
|
|
crypto_create_init_cipher(int cipher_type, char *key, char *iv, int encrypt_mode)
|
|
{
|
|
int r;
|
|
crypto_cipher_env_t *crypto = NULL;
|
|
|
|
if (! (crypto = crypto_new_cipher_env(cipher_type))) {
|
|
log_fn(LOG_WARN, "Unable to allocate crypto object");
|
|
return NULL;
|
|
}
|
|
|
|
if (crypto_cipher_set_key(crypto, key)) {
|
|
log_fn(LOG_WARN, "Unable to set key: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
|
|
if (crypto_cipher_set_iv(crypto, iv)) {
|
|
log_fn(LOG_WARN, "Unable to set iv: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
|
|
if (encrypt_mode)
|
|
r = crypto_cipher_encrypt_init_cipher(crypto);
|
|
else
|
|
r = crypto_cipher_decrypt_init_cipher(crypto);
|
|
|
|
if (r) {
|
|
log_fn(LOG_WARN, "Unable to initialize cipher: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
return crypto;
|
|
|
|
error:
|
|
if (crypto)
|
|
crypto_free_cipher_env(crypto);
|
|
return NULL;
|
|
}
|
|
|
|
crypto_cipher_env_t *crypto_new_cipher_env(int type)
|
|
{
|
|
crypto_cipher_env_t *env;
|
|
int iv_len, key_len;
|
|
|
|
env = (crypto_cipher_env_t *)tor_malloc(sizeof(crypto_cipher_env_t));
|
|
|
|
env->type = type;
|
|
env->key = NULL;
|
|
env->iv = NULL;
|
|
env->aux = NULL;
|
|
|
|
iv_len = crypto_cipher_iv_length(type);
|
|
key_len = crypto_cipher_key_length(type);
|
|
|
|
if (type == CRYPTO_CIPHER_AES_CTR) {
|
|
env->aux = (unsigned char *)aes_new_cipher();
|
|
} else if (! crypto_cipher_evp_cipher(type,0))
|
|
/* This is not an openssl cipher */
|
|
goto err;
|
|
else {
|
|
env->aux = (unsigned char *)tor_malloc(sizeof(EVP_CIPHER_CTX));
|
|
EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux);
|
|
}
|
|
|
|
if(iv_len)
|
|
env->iv = (unsigned char *)tor_malloc(iv_len);
|
|
|
|
if(key_len)
|
|
env->key = (unsigned char *)tor_malloc(key_len);
|
|
|
|
return env;
|
|
err:
|
|
if (env->key)
|
|
free(env->key);
|
|
if (env->iv)
|
|
free(env->iv);
|
|
if (env->aux)
|
|
free(env->aux);
|
|
if (env)
|
|
free(env);
|
|
return NULL;
|
|
}
|
|
|
|
void crypto_free_cipher_env(crypto_cipher_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
assert(env->aux);
|
|
aes_free_cipher((aes_cnt_cipher_t*)env->aux);
|
|
env->aux = NULL;
|
|
} else if (crypto_cipher_evp_cipher(env->type,0)) {
|
|
/* This is an openssl cipher */
|
|
assert(env->aux);
|
|
EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux);
|
|
}
|
|
|
|
if (env->aux)
|
|
free((void *)env->aux);
|
|
if (env->iv)
|
|
free((void *)env->iv);
|
|
if (env->key)
|
|
free((void *)env->key);
|
|
|
|
free((void *)env);
|
|
}
|
|
|
|
/* public key crypto */
|
|
int crypto_pk_generate_key(crypto_pk_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (env->key)
|
|
RSA_free((RSA *)env->key);
|
|
env->key = (unsigned char *)RSA_generate_key(1024,65537, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src)
|
|
{
|
|
assert(env && src);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (env->key)
|
|
RSA_free((RSA *)env->key);
|
|
env->key = (unsigned char *)PEM_read_RSAPrivateKey(src, NULL, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
break;
|
|
default :
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile)
|
|
{
|
|
FILE *f_pr;
|
|
|
|
assert(env && keyfile);
|
|
|
|
if(strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) != strlen(keyfile)) {
|
|
/* filename contains nonlegal characters */
|
|
return -1;
|
|
}
|
|
|
|
/* open the keyfile */
|
|
f_pr=fopen(keyfile,"rb");
|
|
if (!f_pr)
|
|
return -1;
|
|
|
|
/* read the private key */
|
|
if(crypto_pk_read_private_key_from_file(env, f_pr) < 0) {
|
|
log_fn(LOG_WARN,"Error reading private key : %s",crypto_perror());
|
|
fclose(f_pr);
|
|
return -1;
|
|
}
|
|
fclose(f_pr);
|
|
|
|
/* check the private key */
|
|
switch(crypto_pk_check_key(env)) {
|
|
case 0:
|
|
log_fn(LOG_WARN,"Private key read but is invalid : %s.", crypto_perror());
|
|
return -1;
|
|
case -1:
|
|
log_fn(LOG_WARN,"Private key read but validity checking failed : %s",crypto_perror());
|
|
return -1;
|
|
/* case 1: fall through */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src)
|
|
{
|
|
assert(env && src);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if(env->key)
|
|
RSA_free((RSA *)env->key);
|
|
env->key = (unsigned char *)PEM_read_RSAPublicKey(src, NULL, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
break;
|
|
default :
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
|
|
BUF_MEM *buf;
|
|
BIO *b;
|
|
|
|
assert(env && env->key && dest);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
/* Now you can treat b as if it were a file. Just use the
|
|
* PEM_*_bio_* functions instead of the non-bio variants.
|
|
*/
|
|
if(!PEM_write_bio_RSAPublicKey(b, (RSA *)env->key))
|
|
return -1;
|
|
|
|
BIO_get_mem_ptr(b, &buf);
|
|
BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
|
|
BIO_free(b);
|
|
|
|
*dest = tor_malloc(buf->length+1);
|
|
memcpy(*dest, buf->data, buf->length);
|
|
(*dest)[buf->length] = 0; /* null terminate it */
|
|
*len = buf->length;
|
|
BUF_MEM_free(buf);
|
|
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, char *src, int len) {
|
|
BIO *b;
|
|
|
|
assert(env && src);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
BIO_write(b, src, len);
|
|
|
|
RSA_free((RSA *)env->key);
|
|
env->key = (unsigned char *)PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
|
|
if(!env->key)
|
|
return -1;
|
|
|
|
BIO_free(b);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
|
|
const char *fname)
|
|
{
|
|
BIO *bio;
|
|
char *cp;
|
|
long len;
|
|
char *s;
|
|
int r;
|
|
assert(env->type == CRYPTO_PK_RSA);
|
|
if (!(bio = BIO_new(BIO_s_mem())))
|
|
return -1;
|
|
if (PEM_write_bio_RSAPrivateKey(bio, (RSA*)env->key, NULL,NULL,0,NULL,NULL)
|
|
== 0) {
|
|
BIO_free(bio);
|
|
return -1;
|
|
}
|
|
len = BIO_get_mem_data(bio, &cp);
|
|
s = tor_malloc(len+1);
|
|
strncpy(s, cp, len);
|
|
s[len] = '\0';
|
|
r = write_str_to_file(fname, s);
|
|
BIO_free(bio);
|
|
free(s);
|
|
return r;
|
|
}
|
|
|
|
int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest)
|
|
{
|
|
assert(env && dest);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (!env->key)
|
|
return -1;
|
|
if (PEM_write_RSAPrivateKey(dest, (RSA *)env->key, NULL, NULL, 0,0, NULL) == 0)
|
|
return -1;
|
|
break;
|
|
default :
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest)
|
|
{
|
|
assert(env && dest);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (!env->key)
|
|
return -1;
|
|
if (PEM_write_RSAPublicKey(dest, (RSA *)env->key) == 0)
|
|
return -1;
|
|
break;
|
|
default :
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_check_key(crypto_pk_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
return RSA_check_key((RSA *)env->key);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
|
|
int result;
|
|
|
|
if (!a || !b)
|
|
return -1;
|
|
|
|
if (!a->key || !b->key)
|
|
return -1;
|
|
|
|
if (a->type != b->type)
|
|
return -1;
|
|
|
|
switch(a->type) {
|
|
case CRYPTO_PK_RSA:
|
|
assert(((RSA *)a->key)->n && ((RSA *)a->key)->e && ((RSA *)b->key)->n && ((RSA *)b->key)->e);
|
|
result = BN_cmp(((RSA *)a->key)->n, ((RSA *)b->key)->n);
|
|
if (result)
|
|
return result;
|
|
return BN_cmp(((RSA *)a->key)->e, ((RSA *)b->key)->e);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_pk_keysize(crypto_pk_env_t *env)
|
|
{
|
|
assert(env && env->key);
|
|
|
|
return RSA_size((RSA *)env->key);
|
|
}
|
|
|
|
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
|
|
assert(env && env->key);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
env->refs++;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return env;
|
|
}
|
|
|
|
int crypto_pk_public_encrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding)
|
|
{
|
|
assert(env && from && to);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
return RSA_public_encrypt(fromlen, from, to, (RSA *)env->key, padding);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_pk_private_decrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding)
|
|
{
|
|
assert(env && from && to);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (!(((RSA*)env->key)->p))
|
|
return -1;
|
|
return RSA_private_decrypt(fromlen, from, to, (RSA *)env->key, padding);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_pk_public_checksig(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to)
|
|
{
|
|
assert(env && from && to);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
return RSA_public_decrypt(fromlen, from, to, (RSA *)env->key,
|
|
RSA_PKCS1_PADDING);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_pk_private_sign(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to)
|
|
{
|
|
assert(env && from && to);
|
|
|
|
switch(env->type) {
|
|
case CRYPTO_PK_RSA:
|
|
if (!(((RSA*)env->key)->p))
|
|
return -1;
|
|
return RSA_private_encrypt(fromlen, from, to, (RSA *)env->key,
|
|
RSA_PKCS1_PADDING);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out)
|
|
{
|
|
unsigned char *buf, *bufp;
|
|
unsigned char digest[20];
|
|
int len;
|
|
int i;
|
|
assert(pk->type == CRYPTO_PK_RSA);
|
|
len = i2d_RSAPublicKey((RSA*)pk->key, NULL);
|
|
if (len < 0)
|
|
return -1;
|
|
if (len<FINGERPRINT_LEN+1) len = FINGERPRINT_LEN+1;
|
|
buf = bufp = tor_malloc(len+1);
|
|
len = i2d_RSAPublicKey((RSA*)pk->key, &bufp);
|
|
if (len < 0) {
|
|
free(buf);
|
|
return -1;
|
|
}
|
|
if (crypto_SHA_digest(buf, len, digest) < 0) {
|
|
free(buf);
|
|
return -1;
|
|
}
|
|
bufp = buf;
|
|
for (i = 0; i < 20; ++i) {
|
|
sprintf(bufp,"%02X",digest[i]);
|
|
bufp += 2;
|
|
if (i%2 && i != 19) {
|
|
*bufp++ = ' ';
|
|
}
|
|
}
|
|
*bufp = '\0';
|
|
assert(strlen(buf) == FINGERPRINT_LEN);
|
|
assert(crypto_pk_check_fingerprint_syntax(buf));
|
|
strcpy(fp_out, buf);
|
|
free(buf);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_pk_check_fingerprint_syntax(const char *s)
|
|
{
|
|
int i;
|
|
for (i = 0; i < FINGERPRINT_LEN; ++i) {
|
|
if ((i%5) == 4) {
|
|
if (!isspace(s[i])) return 0;
|
|
} else {
|
|
if (!isxdigit(s[i])) return 0;
|
|
}
|
|
}
|
|
if (s[FINGERPRINT_LEN]) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* symmetric crypto */
|
|
int crypto_cipher_generate_key(crypto_cipher_env_t *env)
|
|
{
|
|
int key_len;
|
|
assert(env);
|
|
|
|
key_len = crypto_cipher_key_length(env->type);
|
|
|
|
if (key_len > 0)
|
|
return crypto_rand(key_len, env->key);
|
|
else if (key_len == 0)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int crypto_cipher_set_iv(crypto_cipher_env_t *env, unsigned char *iv)
|
|
{
|
|
int iv_len;
|
|
assert(env && iv);
|
|
|
|
iv_len = crypto_cipher_iv_length(env->type);
|
|
if (!iv_len)
|
|
return 0;
|
|
|
|
if (!env->iv)
|
|
return -1;
|
|
|
|
memcpy((void*)env->iv, (void*)iv, iv_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_set_key(crypto_cipher_env_t *env, unsigned char *key)
|
|
{
|
|
int key_len;
|
|
assert(env && key);
|
|
|
|
key_len = crypto_cipher_key_length(env->type);
|
|
if (!key_len)
|
|
return 0;
|
|
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
memcpy((void*)env->key, (void*)key, key_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
if (crypto_cipher_evp_cipher(env->type, 1)) {
|
|
RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux,
|
|
crypto_cipher_evp_cipher(env->type, 1),
|
|
env->key, env->iv));
|
|
} else if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
aes_set_key((aes_cnt_cipher_t*)env->aux, env->key, 128);
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
assert(env);
|
|
|
|
if (crypto_cipher_evp_cipher(env->type, 0)) {
|
|
RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux,
|
|
crypto_cipher_evp_cipher(env->type, 0),
|
|
env->key, env->iv));
|
|
} else if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
aes_set_key((aes_cnt_cipher_t*)env->aux, env->key, 128);
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int crypto_cipher_encrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to)
|
|
{
|
|
int tolen;
|
|
|
|
assert(env && from && to);
|
|
|
|
if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
aes_crypt((aes_cnt_cipher_t*)env->aux, from, fromlen, to);
|
|
return 0;
|
|
} else {
|
|
RETURN_SSL_OUTCOME(EVP_EncryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen));
|
|
}
|
|
}
|
|
|
|
int crypto_cipher_decrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to)
|
|
{
|
|
int tolen;
|
|
|
|
assert(env && from && to);
|
|
|
|
if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
aes_crypt((aes_cnt_cipher_t*)env->aux, from, fromlen, to);
|
|
return 0;
|
|
} else {
|
|
RETURN_SSL_OUTCOME(EVP_DecryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen));
|
|
}
|
|
}
|
|
|
|
int
|
|
crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
|
|
{
|
|
if (env->type == CRYPTO_CIPHER_AES_CTR) {
|
|
aes_adjust_counter((aes_cnt_cipher_t*)env->aux, delta);
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
/* SHA-1 */
|
|
int crypto_SHA_digest(unsigned char *m, int len, unsigned char *digest)
|
|
{
|
|
assert(m && digest);
|
|
return (SHA1(m,len,digest) == NULL);
|
|
}
|
|
|
|
static BIGNUM *dh_param_p = NULL;
|
|
static BIGNUM *dh_param_g = NULL;
|
|
|
|
|
|
static void init_dh_param() {
|
|
BIGNUM *p, *g;
|
|
int r;
|
|
if (dh_param_p && dh_param_g)
|
|
return;
|
|
|
|
p = BN_new();
|
|
g = BN_new();
|
|
assert(p && g);
|
|
|
|
#if 0
|
|
/* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe
|
|
prime, and supposedly it equals:
|
|
2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
|
|
*/
|
|
r = BN_hex2bn(&p,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF");
|
|
#endif
|
|
|
|
/* This is from rfc2409, section 6.2. It's a safe prime, and
|
|
supposedly it equals:
|
|
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
|
|
*/
|
|
/* See also rfc 3536 */
|
|
r = BN_hex2bn(&p,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF");
|
|
assert(r);
|
|
|
|
r = BN_set_word(g, 2);
|
|
assert(r);
|
|
dh_param_p = p;
|
|
dh_param_g = g;
|
|
}
|
|
|
|
crypto_dh_env_t *crypto_dh_new()
|
|
{
|
|
crypto_dh_env_t *res = NULL;
|
|
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
|
|
res = tor_malloc(sizeof(crypto_dh_env_t));
|
|
res->dh = NULL;
|
|
|
|
if (!(res->dh = DH_new()))
|
|
goto err;
|
|
|
|
if (!(res->dh->p = BN_dup(dh_param_p)))
|
|
goto err;
|
|
|
|
if (!(res->dh->g = BN_dup(dh_param_g)))
|
|
goto err;
|
|
|
|
return res;
|
|
err:
|
|
if (res && res->dh) DH_free(res->dh); /* frees p and g too */
|
|
if (res) free(res);
|
|
return NULL;
|
|
}
|
|
int crypto_dh_get_bytes(crypto_dh_env_t *dh)
|
|
{
|
|
assert(dh);
|
|
return DH_size(dh->dh);
|
|
}
|
|
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
|
|
{
|
|
int bytes;
|
|
assert(dh);
|
|
if (!DH_generate_key(dh->dh))
|
|
return -1;
|
|
|
|
assert(dh->dh->pub_key);
|
|
bytes = BN_num_bytes(dh->dh->pub_key);
|
|
if (pubkey_len < bytes)
|
|
return -1;
|
|
|
|
memset(pubkey, 0, pubkey_len);
|
|
BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef MIN
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
int crypto_dh_compute_secret(crypto_dh_env_t *dh,
|
|
char *pubkey, int pubkey_len,
|
|
char *secret_out, int secret_bytes_out)
|
|
{
|
|
unsigned char hash[20];
|
|
unsigned char *secret_tmp = NULL;
|
|
BIGNUM *pubkey_bn = NULL;
|
|
int secret_len;
|
|
int i;
|
|
assert(dh);
|
|
assert(secret_bytes_out/20 <= 255);
|
|
|
|
if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL)))
|
|
goto error;
|
|
secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1);
|
|
secret_len = DH_compute_key(secret_tmp, pubkey_bn, dh->dh);
|
|
for (i = 0; i < secret_bytes_out; i += 20) {
|
|
secret_tmp[secret_len] = (unsigned char) i/20;
|
|
if (crypto_SHA_digest(secret_tmp, secret_len+1, hash))
|
|
goto error;
|
|
memcpy(secret_out+i, hash, MIN(20, secret_bytes_out-i));
|
|
}
|
|
secret_len = secret_bytes_out;
|
|
|
|
goto done;
|
|
error:
|
|
secret_len = -1;
|
|
done:
|
|
if (pubkey_bn)
|
|
BN_free(pubkey_bn);
|
|
if (secret_tmp)
|
|
free(secret_tmp);
|
|
return secret_len;
|
|
}
|
|
void crypto_dh_free(crypto_dh_env_t *dh)
|
|
{
|
|
assert(dh && dh->dh);
|
|
DH_free(dh->dh);
|
|
free(dh);
|
|
}
|
|
|
|
/* random numbers */
|
|
int crypto_seed_rng()
|
|
{
|
|
static char *filenames[] = {
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
};
|
|
int i, n;
|
|
char buf[21];
|
|
FILE *f;
|
|
|
|
for (i = 0; filenames[i]; ++i) {
|
|
f = fopen(filenames[i], "rb");
|
|
if (!f) continue;
|
|
log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]);
|
|
n = fread(buf, 1, 20, f);
|
|
fclose(f);
|
|
if (n != 20) {
|
|
log_fn(LOG_WARN, "Error reading from entropy source");
|
|
return -1;
|
|
}
|
|
RAND_seed(buf, 20);
|
|
return 0;
|
|
}
|
|
|
|
log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found.");
|
|
return -1;
|
|
}
|
|
|
|
int crypto_rand(unsigned int n, unsigned char *to)
|
|
{
|
|
assert(to);
|
|
return (RAND_bytes(to, n) != 1);
|
|
}
|
|
|
|
void crypto_pseudo_rand(unsigned int n, unsigned char *to)
|
|
{
|
|
assert(to);
|
|
if (RAND_pseudo_bytes(to, n) == -1) {
|
|
log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly.");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int crypto_pseudo_rand_int(unsigned int max) {
|
|
unsigned int val;
|
|
unsigned int cutoff;
|
|
assert(max < UINT_MAX);
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
while(1) {
|
|
crypto_pseudo_rand(sizeof(val), (unsigned char*) &val);
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/* errors */
|
|
char *crypto_perror()
|
|
{
|
|
return (char *)ERR_reason_error_string(ERR_get_error());
|
|
}
|
|
|
|
int
|
|
base64_encode(char *dest, int destlen, char *src, int srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
|
|
/* 48 bytes of input -> 64 bytes of output plus newline.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/48)+1)*66)
|
|
return -1;
|
|
|
|
EVP_EncodeInit(&ctx);
|
|
EVP_EncodeUpdate(&ctx, dest, &len, src, srclen);
|
|
EVP_EncodeFinal(&ctx, dest+len, &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
int
|
|
base64_decode(char *dest, int destlen, char *src, int srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
/* 64 bytes of input -> *up to* 48 bytes of output.
|
|
Plus one more byte, in caes I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/64)+1)*49)
|
|
return -1;
|
|
|
|
EVP_DecodeInit(&ctx);
|
|
EVP_DecodeUpdate(&ctx, dest, &len, src, srclen);
|
|
EVP_DecodeFinal(&ctx, dest, &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
|