tor/src/or/policies.c
2017-08-03 08:56:35 -04:00

3093 lines
107 KiB
C

/* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file policies.c
* \brief Code to parse and use address policies and exit policies.
*
* We have two key kinds of address policy: full and compressed. A full
* policy is an array of accept/reject patterns, to be applied in order.
* A short policy is simply a list of ports. This module handles both
* kinds, including generic functions to apply them to addresses, and
* also including code to manage the global policies that we apply to
* incoming and outgoing connections.
**/
#define POLICIES_PRIVATE
#include "or.h"
#include "config.h"
#include "dirserv.h"
#include "microdesc.h"
#include "networkstatus.h"
#include "nodelist.h"
#include "policies.h"
#include "router.h"
#include "routerparse.h"
#include "geoip.h"
#include "ht.h"
/** Policy that addresses for incoming SOCKS connections must match. */
static smartlist_t *socks_policy = NULL;
/** Policy that addresses for incoming directory connections must match. */
static smartlist_t *dir_policy = NULL;
/** Policy that addresses for incoming router descriptors must match in order
* to be published by us. */
static smartlist_t *authdir_reject_policy = NULL;
/** Policy that addresses for incoming router descriptors must match in order
* to be marked as valid in our networkstatus. */
static smartlist_t *authdir_invalid_policy = NULL;
/** Policy that addresses for incoming router descriptors must <b>not</b>
* match in order to not be marked as BadExit. */
static smartlist_t *authdir_badexit_policy = NULL;
/** Parsed addr_policy_t describing which addresses we believe we can start
* circuits at. */
static smartlist_t *reachable_or_addr_policy = NULL;
/** Parsed addr_policy_t describing which addresses we believe we can connect
* to directories at. */
static smartlist_t *reachable_dir_addr_policy = NULL;
/** Element of an exit policy summary */
typedef struct policy_summary_item_t {
uint16_t prt_min; /**< Lowest port number to accept/reject. */
uint16_t prt_max; /**< Highest port number to accept/reject. */
uint64_t reject_count; /**< Number of IP-Addresses that are rejected to
this port range. */
unsigned int accepted:1; /** Has this port already been accepted */
} policy_summary_item_t;
/** Private networks. This list is used in two places, once to expand the
* "private" keyword when parsing our own exit policy, secondly to ignore
* just such networks when building exit policy summaries. It is important
* that all authorities agree on that list when creating summaries, so don't
* just change this without a proper migration plan and a proposal and stuff.
*/
static const char *private_nets[] = {
"0.0.0.0/8", "169.254.0.0/16",
"127.0.0.0/8", "192.168.0.0/16", "10.0.0.0/8", "172.16.0.0/12",
"[::]/8",
"[fc00::]/7", "[fe80::]/10", "[fec0::]/10", "[ff00::]/8", "[::]/127",
NULL
};
static int policies_parse_exit_policy_internal(
config_line_t *cfg,
smartlist_t **dest,
int ipv6_exit,
int rejectprivate,
const smartlist_t *configured_addresses,
int reject_interface_addresses,
int reject_configured_port_addresses,
int add_default_policy);
/** Replace all "private" entries in *<b>policy</b> with their expanded
* equivalents. */
void
policy_expand_private(smartlist_t **policy)
{
uint16_t port_min, port_max;
int i;
smartlist_t *tmp;
if (!*policy) /*XXXX disallow NULL policies? */
return;
tmp = smartlist_new();
SMARTLIST_FOREACH_BEGIN(*policy, addr_policy_t *, p) {
if (! p->is_private) {
smartlist_add(tmp, p);
continue;
}
for (i = 0; private_nets[i]; ++i) {
addr_policy_t newpolicy;
memcpy(&newpolicy, p, sizeof(addr_policy_t));
newpolicy.is_private = 0;
newpolicy.is_canonical = 0;
if (tor_addr_parse_mask_ports(private_nets[i], 0,
&newpolicy.addr,
&newpolicy.maskbits, &port_min, &port_max)<0) {
tor_assert_unreached();
}
smartlist_add(tmp, addr_policy_get_canonical_entry(&newpolicy));
}
addr_policy_free(p);
} SMARTLIST_FOREACH_END(p);
smartlist_free(*policy);
*policy = tmp;
}
/** Expand each of the AF_UNSPEC elements in *<b>policy</b> (which indicate
* protocol-neutral wildcards) into a pair of wildcard elements: one IPv4-
* specific and one IPv6-specific. */
void
policy_expand_unspec(smartlist_t **policy)
{
smartlist_t *tmp;
if (!*policy)
return;
tmp = smartlist_new();
SMARTLIST_FOREACH_BEGIN(*policy, addr_policy_t *, p) {
sa_family_t family = tor_addr_family(&p->addr);
if (family == AF_INET6 || family == AF_INET || p->is_private) {
smartlist_add(tmp, p);
} else if (family == AF_UNSPEC) {
addr_policy_t newpolicy_ipv4;
addr_policy_t newpolicy_ipv6;
memcpy(&newpolicy_ipv4, p, sizeof(addr_policy_t));
memcpy(&newpolicy_ipv6, p, sizeof(addr_policy_t));
newpolicy_ipv4.is_canonical = 0;
newpolicy_ipv6.is_canonical = 0;
if (p->maskbits != 0) {
log_warn(LD_BUG, "AF_UNSPEC policy with maskbits==%d", p->maskbits);
newpolicy_ipv4.maskbits = 0;
newpolicy_ipv6.maskbits = 0;
}
tor_addr_from_ipv4h(&newpolicy_ipv4.addr, 0);
tor_addr_from_ipv6_bytes(&newpolicy_ipv6.addr,
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0");
smartlist_add(tmp, addr_policy_get_canonical_entry(&newpolicy_ipv4));
smartlist_add(tmp, addr_policy_get_canonical_entry(&newpolicy_ipv6));
addr_policy_free(p);
} else {
log_warn(LD_BUG, "Funny-looking address policy with family %d", family);
smartlist_add(tmp, p);
}
} SMARTLIST_FOREACH_END(p);
smartlist_free(*policy);
*policy = tmp;
}
/**
* Given a linked list of config lines containing "accept[6]" and "reject[6]"
* tokens, parse them and append the result to <b>dest</b>. Return -1
* if any tokens are malformed (and don't append any), else return 0.
*
* If <b>assume_action</b> is nonnegative, then insert its action
* (ADDR_POLICY_ACCEPT or ADDR_POLICY_REJECT) for items that specify no
* action.
*/
static int
parse_addr_policy(config_line_t *cfg, smartlist_t **dest,
int assume_action)
{
smartlist_t *result;
smartlist_t *entries;
addr_policy_t *item;
int malformed_list;
int r = 0;
if (!cfg)
return 0;
result = smartlist_new();
entries = smartlist_new();
for (; cfg; cfg = cfg->next) {
smartlist_split_string(entries, cfg->value, ",",
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, 0);
SMARTLIST_FOREACH_BEGIN(entries, const char *, ent) {
log_debug(LD_CONFIG,"Adding new entry '%s'",ent);
malformed_list = 0;
item = router_parse_addr_policy_item_from_string(ent, assume_action,
&malformed_list);
if (item) {
smartlist_add(result, item);
} else if (malformed_list) {
/* the error is so severe the entire list should be discarded */
log_warn(LD_CONFIG, "Malformed policy '%s'. Discarding entire policy "
"list.", ent);
r = -1;
} else {
/* the error is minor: don't add the item, but keep processing the
* rest of the policies in the list */
log_debug(LD_CONFIG, "Ignored policy '%s' due to non-fatal error. "
"The remainder of the policy list will be used.",
ent);
}
} SMARTLIST_FOREACH_END(ent);
SMARTLIST_FOREACH(entries, char *, ent, tor_free(ent));
smartlist_clear(entries);
}
smartlist_free(entries);
if (r == -1) {
addr_policy_list_free(result);
} else {
policy_expand_private(&result);
policy_expand_unspec(&result);
if (*dest) {
smartlist_add_all(*dest, result);
smartlist_free(result);
} else {
*dest = result;
}
}
return r;
}
/** Helper: parse the Reachable(Dir|OR)?Addresses fields into
* reachable_(or|dir)_addr_policy. The options should already have
* been validated by validate_addr_policies.
*/
static int
parse_reachable_addresses(void)
{
const or_options_t *options = get_options();
int ret = 0;
if (options->ReachableDirAddresses &&
options->ReachableORAddresses &&
options->ReachableAddresses) {
log_warn(LD_CONFIG,
"Both ReachableDirAddresses and ReachableORAddresses are set. "
"ReachableAddresses setting will be ignored.");
}
addr_policy_list_free(reachable_or_addr_policy);
reachable_or_addr_policy = NULL;
if (!options->ReachableORAddresses && options->ReachableAddresses)
log_info(LD_CONFIG,
"Using ReachableAddresses as ReachableORAddresses.");
if (parse_addr_policy(options->ReachableORAddresses ?
options->ReachableORAddresses :
options->ReachableAddresses,
&reachable_or_addr_policy, ADDR_POLICY_ACCEPT)) {
log_warn(LD_CONFIG,
"Error parsing Reachable%sAddresses entry; ignoring.",
options->ReachableORAddresses ? "OR" : "");
ret = -1;
}
addr_policy_list_free(reachable_dir_addr_policy);
reachable_dir_addr_policy = NULL;
if (!options->ReachableDirAddresses && options->ReachableAddresses)
log_info(LD_CONFIG,
"Using ReachableAddresses as ReachableDirAddresses");
if (parse_addr_policy(options->ReachableDirAddresses ?
options->ReachableDirAddresses :
options->ReachableAddresses,
&reachable_dir_addr_policy, ADDR_POLICY_ACCEPT)) {
if (options->ReachableDirAddresses)
log_warn(LD_CONFIG,
"Error parsing ReachableDirAddresses entry; ignoring.");
ret = -1;
}
/* We ignore ReachableAddresses for relays */
if (!server_mode(options)) {
if (policy_is_reject_star(reachable_or_addr_policy, AF_UNSPEC, 0)
|| policy_is_reject_star(reachable_dir_addr_policy, AF_UNSPEC,0)) {
log_warn(LD_CONFIG, "Tor cannot connect to the Internet if "
"ReachableAddresses, ReachableORAddresses, or "
"ReachableDirAddresses reject all addresses. Please accept "
"some addresses in these options.");
} else if (options->ClientUseIPv4 == 1
&& (policy_is_reject_star(reachable_or_addr_policy, AF_INET, 0)
|| policy_is_reject_star(reachable_dir_addr_policy, AF_INET, 0))) {
log_warn(LD_CONFIG, "You have set ClientUseIPv4 1, but "
"ReachableAddresses, ReachableORAddresses, or "
"ReachableDirAddresses reject all IPv4 addresses. "
"Tor will not connect using IPv4.");
} else if (fascist_firewall_use_ipv6(options)
&& (policy_is_reject_star(reachable_or_addr_policy, AF_INET6, 0)
|| policy_is_reject_star(reachable_dir_addr_policy, AF_INET6, 0))) {
log_warn(LD_CONFIG, "You have configured tor to use or prefer IPv6 "
"(or UseBridges 1), but "
"ReachableAddresses, ReachableORAddresses, or "
"ReachableDirAddresses reject all IPv6 addresses. "
"Tor will not connect using IPv6.");
}
}
return ret;
}
/* Return true iff ClientUseIPv4 0 or ClientUseIPv6 0 might block any OR or Dir
* address:port combination. */
static int
firewall_is_fascist_impl(void)
{
const or_options_t *options = get_options();
/* Assume every non-bridge relay has an IPv4 address.
* Clients which use bridges may only know the IPv6 address of their
* bridge, but they will connect regardless of the ClientUseIPv6 setting. */
return options->ClientUseIPv4 == 0;
}
/** Return true iff the firewall options, including ClientUseIPv4 0 and
* ClientUseIPv6 0, might block any OR address:port combination.
* Address preferences may still change which address is selected even if
* this function returns false.
*/
int
firewall_is_fascist_or(void)
{
return (reachable_or_addr_policy != NULL || firewall_is_fascist_impl());
}
/** Return true iff the firewall options, including ClientUseIPv4 0 and
* ClientUseIPv6 0, might block any Dir address:port combination.
* Address preferences may still change which address is selected even if
* this function returns false.
*/
int
firewall_is_fascist_dir(void)
{
return (reachable_dir_addr_policy != NULL || firewall_is_fascist_impl());
}
/** Return true iff <b>policy</b> (possibly NULL) will allow a
* connection to <b>addr</b>:<b>port</b>.
*/
static int
addr_policy_permits_tor_addr(const tor_addr_t *addr, uint16_t port,
smartlist_t *policy)
{
addr_policy_result_t p;
p = compare_tor_addr_to_addr_policy(addr, port, policy);
switch (p) {
case ADDR_POLICY_PROBABLY_ACCEPTED:
case ADDR_POLICY_ACCEPTED:
return 1;
case ADDR_POLICY_PROBABLY_REJECTED:
case ADDR_POLICY_REJECTED:
return 0;
default:
log_warn(LD_BUG, "Unexpected result: %d", (int)p);
return 0;
}
}
/** Return true iff <b> policy</b> (possibly NULL) will allow a connection to
* <b>addr</b>:<b>port</b>. <b>addr</b> is an IPv4 address given in host
* order. */
/* XXXX deprecate when possible. */
static int
addr_policy_permits_address(uint32_t addr, uint16_t port,
smartlist_t *policy)
{
tor_addr_t a;
tor_addr_from_ipv4h(&a, addr);
return addr_policy_permits_tor_addr(&a, port, policy);
}
/** Return true iff we think our firewall will let us make a connection to
* addr:port.
*
* If we are configured as a server, ignore any address family preference and
* just use IPv4.
* Otherwise:
* - return false for all IPv4 addresses:
* - if ClientUseIPv4 is 0, or
* if pref_only and pref_ipv6 are both true;
* - return false for all IPv6 addresses:
* - if fascist_firewall_use_ipv6() is 0, or
* - if pref_only is true and pref_ipv6 is false.
*
* Return false if addr is NULL or tor_addr_is_null(), or if port is 0. */
STATIC int
fascist_firewall_allows_address(const tor_addr_t *addr,
uint16_t port,
smartlist_t *firewall_policy,
int pref_only, int pref_ipv6)
{
const or_options_t *options = get_options();
const int client_mode = !server_mode(options);
if (!addr || tor_addr_is_null(addr) || !port) {
return 0;
}
/* Clients stop using IPv4 if it's disabled. In most cases, clients also
* stop using IPv4 if it's not preferred.
* Servers must have IPv4 enabled and preferred. */
if (tor_addr_family(addr) == AF_INET && client_mode &&
(!options->ClientUseIPv4 || (pref_only && pref_ipv6))) {
return 0;
}
/* Clients and Servers won't use IPv6 unless it's enabled (and in most
* cases, IPv6 must also be preferred before it will be used). */
if (tor_addr_family(addr) == AF_INET6 &&
(!fascist_firewall_use_ipv6(options) || (pref_only && !pref_ipv6))) {
return 0;
}
return addr_policy_permits_tor_addr(addr, port,
firewall_policy);
}
/** Is this client configured to use IPv6?
* Returns true if the client might use IPv6 for some of its connections
* (including dual-stack and IPv6-only clients), and false if it will never
* use IPv6 for any connections.
* Use node_ipv6_or/dir_preferred() when checking a specific node and OR/Dir
* port: it supports bridge client per-node IPv6 preferences.
*/
int
fascist_firewall_use_ipv6(const or_options_t *options)
{
/* Clients use IPv6 if it's set, or they use bridges, or they don't use
* IPv4, or they prefer it.
* ClientPreferIPv6DirPort is deprecated, but check it anyway. */
return (options->ClientUseIPv6 == 1 || options->ClientUseIPv4 == 0 ||
options->ClientPreferIPv6ORPort == 1 ||
options->ClientPreferIPv6DirPort == 1 || options->UseBridges == 1);
}
/** Do we prefer to connect to IPv6, ignoring ClientPreferIPv6ORPort and
* ClientPreferIPv6DirPort?
* If we're unsure, return -1, otherwise, return 1 for IPv6 and 0 for IPv4.
*/
static int
fascist_firewall_prefer_ipv6_impl(const or_options_t *options)
{
/*
Cheap implementation of config options ClientUseIPv4 & ClientUseIPv6 --
If we're a server or IPv6 is disabled, use IPv4.
If IPv4 is disabled, use IPv6.
*/
if (server_mode(options) || !fascist_firewall_use_ipv6(options)) {
return 0;
}
if (!options->ClientUseIPv4) {
return 1;
}
return -1;
}
/** Do we prefer to connect to IPv6 ORPorts?
* Use node_ipv6_or_preferred() whenever possible: it supports bridge client
* per-node IPv6 preferences.
*/
int
fascist_firewall_prefer_ipv6_orport(const or_options_t *options)
{
int pref_ipv6 = fascist_firewall_prefer_ipv6_impl(options);
if (pref_ipv6 >= 0) {
return pref_ipv6;
}
/* We can use both IPv4 and IPv6 - which do we prefer? */
if (options->ClientPreferIPv6ORPort == 1) {
return 1;
}
return 0;
}
/** Do we prefer to connect to IPv6 DirPorts?
*
* (node_ipv6_dir_preferred() doesn't support bridge client per-node IPv6
* preferences. There's no reason to use it instead of this function.)
*/
int
fascist_firewall_prefer_ipv6_dirport(const or_options_t *options)
{
int pref_ipv6 = fascist_firewall_prefer_ipv6_impl(options);
if (pref_ipv6 >= 0) {
return pref_ipv6;
}
/* We can use both IPv4 and IPv6 - which do we prefer? */
if (options->ClientPreferIPv6DirPort == 1) {
return 1;
}
return 0;
}
/** Return true iff we think our firewall will let us make a connection to
* addr:port. Uses ReachableORAddresses or ReachableDirAddresses based on
* fw_connection.
* If pref_only is true, return true if addr is in the client's preferred
* address family, which is IPv6 if pref_ipv6 is true, and IPv4 otherwise.
* If pref_only is false, ignore pref_ipv6, and return true if addr is allowed.
*/
int
fascist_firewall_allows_address_addr(const tor_addr_t *addr, uint16_t port,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
if (fw_connection == FIREWALL_OR_CONNECTION) {
return fascist_firewall_allows_address(addr, port,
reachable_or_addr_policy,
pref_only, pref_ipv6);
} else if (fw_connection == FIREWALL_DIR_CONNECTION) {
return fascist_firewall_allows_address(addr, port,
reachable_dir_addr_policy,
pref_only, pref_ipv6);
} else {
log_warn(LD_BUG, "Bad firewall_connection_t value %d.",
fw_connection);
return 0;
}
}
/** Return true iff we think our firewall will let us make a connection to
* addr:port (ap). Uses ReachableORAddresses or ReachableDirAddresses based on
* fw_connection.
* pref_only and pref_ipv6 work as in fascist_firewall_allows_address_addr().
*/
static int
fascist_firewall_allows_address_ap(const tor_addr_port_t *ap,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
tor_assert(ap);
return fascist_firewall_allows_address_addr(&ap->addr, ap->port,
fw_connection, pref_only,
pref_ipv6);
}
/* Return true iff we think our firewall will let us make a connection to
* ipv4h_or_addr:ipv4_or_port. ipv4h_or_addr is interpreted in host order.
* Uses ReachableORAddresses or ReachableDirAddresses based on
* fw_connection.
* pref_only and pref_ipv6 work as in fascist_firewall_allows_address_addr().
*/
static int
fascist_firewall_allows_address_ipv4h(uint32_t ipv4h_or_addr,
uint16_t ipv4_or_port,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
tor_addr_t ipv4_or_addr;
tor_addr_from_ipv4h(&ipv4_or_addr, ipv4h_or_addr);
return fascist_firewall_allows_address_addr(&ipv4_or_addr, ipv4_or_port,
fw_connection, pref_only,
pref_ipv6);
}
/** Return true iff we think our firewall will let us make a connection to
* ipv4h_addr/ipv6_addr. Uses ipv4_orport/ipv6_orport/ReachableORAddresses or
* ipv4_dirport/ipv6_dirport/ReachableDirAddresses based on IPv4/IPv6 and
* <b>fw_connection</b>.
* pref_only and pref_ipv6 work as in fascist_firewall_allows_address_addr().
*/
static int
fascist_firewall_allows_base(uint32_t ipv4h_addr, uint16_t ipv4_orport,
uint16_t ipv4_dirport,
const tor_addr_t *ipv6_addr, uint16_t ipv6_orport,
uint16_t ipv6_dirport,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
if (fascist_firewall_allows_address_ipv4h(ipv4h_addr,
(fw_connection == FIREWALL_OR_CONNECTION
? ipv4_orport
: ipv4_dirport),
fw_connection,
pref_only, pref_ipv6)) {
return 1;
}
if (fascist_firewall_allows_address_addr(ipv6_addr,
(fw_connection == FIREWALL_OR_CONNECTION
? ipv6_orport
: ipv6_dirport),
fw_connection,
pref_only, pref_ipv6)) {
return 1;
}
return 0;
}
/** Like fascist_firewall_allows_base(), but takes ri. */
static int
fascist_firewall_allows_ri_impl(const routerinfo_t *ri,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
if (!ri) {
return 0;
}
/* Assume IPv4 and IPv6 DirPorts are the same */
return fascist_firewall_allows_base(ri->addr, ri->or_port, ri->dir_port,
&ri->ipv6_addr, ri->ipv6_orport,
ri->dir_port, fw_connection, pref_only,
pref_ipv6);
}
/** Like fascist_firewall_allows_rs, but takes pref_ipv6. */
static int
fascist_firewall_allows_rs_impl(const routerstatus_t *rs,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
if (!rs) {
return 0;
}
/* Assume IPv4 and IPv6 DirPorts are the same */
return fascist_firewall_allows_base(rs->addr, rs->or_port, rs->dir_port,
&rs->ipv6_addr, rs->ipv6_orport,
rs->dir_port, fw_connection, pref_only,
pref_ipv6);
}
/** Like fascist_firewall_allows_base(), but takes rs.
* When rs is a fake_status from a dir_server_t, it can have a reachable
* address, even when the corresponding node does not.
* nodes can be missing addresses when there's no consensus (IPv4 and IPv6),
* or when there is a microdescriptor consensus, but no microdescriptors
* (microdescriptors have IPv6, the microdesc consensus does not). */
int
fascist_firewall_allows_rs(const routerstatus_t *rs,
firewall_connection_t fw_connection, int pref_only)
{
if (!rs) {
return 0;
}
/* We don't have access to the node-specific IPv6 preference, so use the
* generic IPv6 preference instead. */
const or_options_t *options = get_options();
int pref_ipv6 = (fw_connection == FIREWALL_OR_CONNECTION
? fascist_firewall_prefer_ipv6_orport(options)
: fascist_firewall_prefer_ipv6_dirport(options));
return fascist_firewall_allows_rs_impl(rs, fw_connection, pref_only,
pref_ipv6);
}
/** Return true iff we think our firewall will let us make a connection to
* ipv6_addr:ipv6_orport based on ReachableORAddresses.
* If <b>fw_connection</b> is FIREWALL_DIR_CONNECTION, returns 0.
* pref_only and pref_ipv6 work as in fascist_firewall_allows_address_addr().
*/
static int
fascist_firewall_allows_md_impl(const microdesc_t *md,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
if (!md) {
return 0;
}
/* Can't check dirport, it doesn't have one */
if (fw_connection == FIREWALL_DIR_CONNECTION) {
return 0;
}
/* Also can't check IPv4, doesn't have that either */
return fascist_firewall_allows_address_addr(&md->ipv6_addr, md->ipv6_orport,
fw_connection, pref_only,
pref_ipv6);
}
/** Like fascist_firewall_allows_base(), but takes node, and looks up pref_ipv6
* from node_ipv6_or/dir_preferred(). */
int
fascist_firewall_allows_node(const node_t *node,
firewall_connection_t fw_connection,
int pref_only)
{
if (!node) {
return 0;
}
node_assert_ok(node);
const int pref_ipv6 = (fw_connection == FIREWALL_OR_CONNECTION
? node_ipv6_or_preferred(node)
: node_ipv6_dir_preferred(node));
/* Sometimes, the rs is missing the IPv6 address info, and we need to go
* all the way to the md */
if (node->ri && fascist_firewall_allows_ri_impl(node->ri, fw_connection,
pref_only, pref_ipv6)) {
return 1;
} else if (node->rs && fascist_firewall_allows_rs_impl(node->rs,
fw_connection,
pref_only,
pref_ipv6)) {
return 1;
} else if (node->md && fascist_firewall_allows_md_impl(node->md,
fw_connection,
pref_only,
pref_ipv6)) {
return 1;
} else {
/* If we know nothing, assume it's unreachable, we'll never get an address
* to connect to. */
return 0;
}
}
/** Like fascist_firewall_allows_rs(), but takes ds. */
int
fascist_firewall_allows_dir_server(const dir_server_t *ds,
firewall_connection_t fw_connection,
int pref_only)
{
if (!ds) {
return 0;
}
/* A dir_server_t always has a fake_status. As long as it has the same
* addresses/ports in both fake_status and dir_server_t, this works fine.
* (See #17867.)
* fascist_firewall_allows_rs only checks the addresses in fake_status. */
return fascist_firewall_allows_rs(&ds->fake_status, fw_connection,
pref_only);
}
/** If a and b are both valid and allowed by fw_connection,
* choose one based on want_a and return it.
* Otherwise, return whichever is allowed.
* Otherwise, return NULL.
* pref_only and pref_ipv6 work as in fascist_firewall_allows_address_addr().
*/
static const tor_addr_port_t *
fascist_firewall_choose_address_impl(const tor_addr_port_t *a,
const tor_addr_port_t *b,
int want_a,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
const tor_addr_port_t *use_a = NULL;
const tor_addr_port_t *use_b = NULL;
if (fascist_firewall_allows_address_ap(a, fw_connection, pref_only,
pref_ipv6)) {
use_a = a;
}
if (fascist_firewall_allows_address_ap(b, fw_connection, pref_only,
pref_ipv6)) {
use_b = b;
}
/* If both are allowed */
if (use_a && use_b) {
/* Choose a if we want it */
return (want_a ? use_a : use_b);
} else {
/* Choose a if we have it */
return (use_a ? use_a : use_b);
}
}
/** If a and b are both valid and preferred by fw_connection,
* choose one based on want_a and return it.
* Otherwise, return whichever is preferred.
* If neither are preferred, and pref_only is false:
* - If a and b are both allowed by fw_connection,
* choose one based on want_a and return it.
* - Otherwise, return whichever is preferred.
* Otherwise, return NULL. */
STATIC const tor_addr_port_t *
fascist_firewall_choose_address(const tor_addr_port_t *a,
const tor_addr_port_t *b,
int want_a,
firewall_connection_t fw_connection,
int pref_only, int pref_ipv6)
{
const tor_addr_port_t *pref = fascist_firewall_choose_address_impl(
a, b, want_a,
fw_connection,
1, pref_ipv6);
if (pref_only || pref) {
/* If there is a preferred address, use it. If we can only use preferred
* addresses, and neither address is preferred, pref will be NULL, and we
* want to return NULL, so return it. */
return pref;
} else {
/* If there's no preferred address, and we can return addresses that are
* not preferred, use an address that's allowed */
return fascist_firewall_choose_address_impl(a, b, want_a, fw_connection,
0, pref_ipv6);
}
}
/** Copy an address and port into <b>ap</b> that we think our firewall will
* let us connect to. Uses ipv4_addr/ipv6_addr and
* ipv4_orport/ipv6_orport/ReachableORAddresses or
* ipv4_dirport/ipv6_dirport/ReachableDirAddresses based on IPv4/IPv6 and
* <b>fw_connection</b>.
* If pref_only, only choose preferred addresses. In either case, choose
* a preferred address before an address that's not preferred.
* If both addresses could be chosen (they are both preferred or both allowed)
* choose IPv6 if pref_ipv6 is true, otherwise choose IPv4.
* If neither address is chosen, return 0, else return 1. */
static int
fascist_firewall_choose_address_base(const tor_addr_t *ipv4_addr,
uint16_t ipv4_orport,
uint16_t ipv4_dirport,
const tor_addr_t *ipv6_addr,
uint16_t ipv6_orport,
uint16_t ipv6_dirport,
firewall_connection_t fw_connection,
int pref_only,
int pref_ipv6,
tor_addr_port_t* ap)
{
const tor_addr_port_t *result = NULL;
const int want_ipv4 = !pref_ipv6;
tor_assert(ipv6_addr);
tor_assert(ap);
tor_addr_port_t ipv4_ap;
tor_addr_copy(&ipv4_ap.addr, ipv4_addr);
ipv4_ap.port = (fw_connection == FIREWALL_OR_CONNECTION
? ipv4_orport
: ipv4_dirport);
tor_addr_port_t ipv6_ap;
tor_addr_copy(&ipv6_ap.addr, ipv6_addr);
ipv6_ap.port = (fw_connection == FIREWALL_OR_CONNECTION
? ipv6_orport
: ipv6_dirport);
result = fascist_firewall_choose_address(&ipv4_ap, &ipv6_ap,
want_ipv4,
fw_connection, pref_only,
pref_ipv6);
if (result) {
tor_addr_copy(&ap->addr, &result->addr);
ap->port = result->port;
return 1;
} else {
return 0;
}
}
/** Like fascist_firewall_choose_address_base(), but takes a host-order IPv4
* address as the first parameter. */
static int
fascist_firewall_choose_address_ipv4h(uint32_t ipv4h_addr,
uint16_t ipv4_orport,
uint16_t ipv4_dirport,
const tor_addr_t *ipv6_addr,
uint16_t ipv6_orport,
uint16_t ipv6_dirport,
firewall_connection_t fw_connection,
int pref_only,
int pref_ipv6,
tor_addr_port_t* ap)
{
tor_addr_t ipv4_addr;
tor_addr_from_ipv4h(&ipv4_addr, ipv4h_addr);
return fascist_firewall_choose_address_base(&ipv4_addr, ipv4_orport,
ipv4_dirport, ipv6_addr,
ipv6_orport, ipv6_dirport,
fw_connection, pref_only,
pref_ipv6, ap);
}
/* The microdescriptor consensus has no IPv6 addresses in rs: they are in
* the microdescriptors. This means we can't rely on the node's IPv6 address
* until its microdescriptor is available (when using microdescs).
* But for bridges, rewrite_node_address_for_bridge() updates node->ri with
* the configured address, so we can trust bridge addresses.
* (Bridges could gain an IPv6 address if their microdescriptor arrives, but
* this will never be their preferred address: that is in the config.)
* Returns true if the node needs a microdescriptor for its IPv6 address, and
* false if the addresses in the node are already up-to-date.
*/
static int
node_awaiting_ipv6(const or_options_t* options, const node_t *node)
{
tor_assert(node);
/* There's no point waiting for an IPv6 address if we'd never use it */
if (!fascist_firewall_use_ipv6(options)) {
return 0;
}
/* We are waiting if we_use_microdescriptors_for_circuits() and we have no
* md. Bridges have a ri based on their config. They would never use the
* address from their md, so there's no need to wait for it. */
return (!node->md && we_use_microdescriptors_for_circuits(options) &&
!node->ri);
}
/** Like fascist_firewall_choose_address_base(), but takes <b>rs</b>.
* Consults the corresponding node, then falls back to rs if node is NULL.
* This should only happen when there's no valid consensus, and rs doesn't
* correspond to a bridge client's bridge.
*/
int
fascist_firewall_choose_address_rs(const routerstatus_t *rs,
firewall_connection_t fw_connection,
int pref_only, tor_addr_port_t* ap)
{
if (!rs) {
return 0;
}
tor_assert(ap);
const or_options_t *options = get_options();
const node_t *node = node_get_by_id(rs->identity_digest);
if (node && !node_awaiting_ipv6(options, node)) {
return fascist_firewall_choose_address_node(node, fw_connection, pref_only,
ap);
} else {
/* There's no node-specific IPv6 preference, so use the generic IPv6
* preference instead. */
int pref_ipv6 = (fw_connection == FIREWALL_OR_CONNECTION
? fascist_firewall_prefer_ipv6_orport(options)
: fascist_firewall_prefer_ipv6_dirport(options));
/* Assume IPv4 and IPv6 DirPorts are the same.
* Assume the IPv6 OR and Dir addresses are the same. */
return fascist_firewall_choose_address_ipv4h(rs->addr,
rs->or_port,
rs->dir_port,
&rs->ipv6_addr,
rs->ipv6_orport,
rs->dir_port,
fw_connection,
pref_only,
pref_ipv6,
ap);
}
}
/** Like fascist_firewall_choose_address_base(), but takes <b>node</b>, and
* looks up the node's IPv6 preference rather than taking an argument
* for pref_ipv6. */
int
fascist_firewall_choose_address_node(const node_t *node,
firewall_connection_t fw_connection,
int pref_only, tor_addr_port_t *ap)
{
if (!node) {
return 0;
}
node_assert_ok(node);
/* Calling fascist_firewall_choose_address_node() when the node is missing
* IPv6 information breaks IPv6-only clients.
* If the node is a hard-coded fallback directory or authority, call
* fascist_firewall_choose_address_rs() on the fake (hard-coded) routerstatus
* for the node.
* If it is not hard-coded, check that the node has a microdescriptor, full
* descriptor (routerinfo), or is one of our configured bridges before
* calling this function. */
if (BUG(node_awaiting_ipv6(get_options(), node))) {
return 0;
}
const int pref_ipv6_node = (fw_connection == FIREWALL_OR_CONNECTION
? node_ipv6_or_preferred(node)
: node_ipv6_dir_preferred(node));
tor_addr_port_t ipv4_or_ap;
node_get_prim_orport(node, &ipv4_or_ap);
tor_addr_port_t ipv4_dir_ap;
node_get_prim_dirport(node, &ipv4_dir_ap);
tor_addr_port_t ipv6_or_ap;
node_get_pref_ipv6_orport(node, &ipv6_or_ap);
tor_addr_port_t ipv6_dir_ap;
node_get_pref_ipv6_dirport(node, &ipv6_dir_ap);
/* Assume the IPv6 OR and Dir addresses are the same. */
return fascist_firewall_choose_address_base(&ipv4_or_ap.addr,
ipv4_or_ap.port,
ipv4_dir_ap.port,
&ipv6_or_ap.addr,
ipv6_or_ap.port,
ipv6_dir_ap.port,
fw_connection,
pref_only,
pref_ipv6_node,
ap);
}
/** Like fascist_firewall_choose_address_rs(), but takes <b>ds</b>. */
int
fascist_firewall_choose_address_dir_server(const dir_server_t *ds,
firewall_connection_t fw_connection,
int pref_only,
tor_addr_port_t *ap)
{
if (!ds) {
return 0;
}
/* A dir_server_t always has a fake_status. As long as it has the same
* addresses/ports in both fake_status and dir_server_t, this works fine.
* (See #17867.)
* This function relies on fascist_firewall_choose_address_rs looking up the
* node if it can, because that will get the latest info for the relay. */
return fascist_firewall_choose_address_rs(&ds->fake_status, fw_connection,
pref_only, ap);
}
/** Return 1 if <b>addr</b> is permitted to connect to our dir port,
* based on <b>dir_policy</b>. Else return 0.
*/
int
dir_policy_permits_address(const tor_addr_t *addr)
{
return addr_policy_permits_tor_addr(addr, 1, dir_policy);
}
/** Return 1 if <b>addr</b> is permitted to connect to our socks port,
* based on <b>socks_policy</b>. Else return 0.
*/
int
socks_policy_permits_address(const tor_addr_t *addr)
{
return addr_policy_permits_tor_addr(addr, 1, socks_policy);
}
/** Return true iff the address <b>addr</b> is in a country listed in the
* case-insensitive list of country codes <b>cc_list</b>. */
static int
addr_is_in_cc_list(uint32_t addr, const smartlist_t *cc_list)
{
country_t country;
const char *name;
tor_addr_t tar;
if (!cc_list)
return 0;
/* XXXXipv6 */
tor_addr_from_ipv4h(&tar, addr);
country = geoip_get_country_by_addr(&tar);
name = geoip_get_country_name(country);
return smartlist_contains_string_case(cc_list, name);
}
/** Return 1 if <b>addr</b>:<b>port</b> is permitted to publish to our
* directory, based on <b>authdir_reject_policy</b>. Else return 0.
*/
int
authdir_policy_permits_address(uint32_t addr, uint16_t port)
{
if (! addr_policy_permits_address(addr, port, authdir_reject_policy))
return 0;
return !addr_is_in_cc_list(addr, get_options()->AuthDirRejectCCs);
}
/** Return 1 if <b>addr</b>:<b>port</b> is considered valid in our
* directory, based on <b>authdir_invalid_policy</b>. Else return 0.
*/
int
authdir_policy_valid_address(uint32_t addr, uint16_t port)
{
if (! addr_policy_permits_address(addr, port, authdir_invalid_policy))
return 0;
return !addr_is_in_cc_list(addr, get_options()->AuthDirInvalidCCs);
}
/** Return 1 if <b>addr</b>:<b>port</b> should be marked as a bad exit,
* based on <b>authdir_badexit_policy</b>. Else return 0.
*/
int
authdir_policy_badexit_address(uint32_t addr, uint16_t port)
{
if (! addr_policy_permits_address(addr, port, authdir_badexit_policy))
return 1;
return addr_is_in_cc_list(addr, get_options()->AuthDirBadExitCCs);
}
#define REJECT(arg) \
STMT_BEGIN *msg = tor_strdup(arg); goto err; STMT_END
/** Config helper: If there's any problem with the policy configuration
* options in <b>options</b>, return -1 and set <b>msg</b> to a newly
* allocated description of the error. Else return 0. */
int
validate_addr_policies(const or_options_t *options, char **msg)
{
/* XXXX Maybe merge this into parse_policies_from_options, to make sure
* that the two can't go out of sync. */
smartlist_t *addr_policy=NULL;
*msg = NULL;
if (policies_parse_exit_policy_from_options(options,0,NULL,&addr_policy)) {
REJECT("Error in ExitPolicy entry.");
}
static int warned_about_exitrelay = 0;
const int exitrelay_setting_is_auto = options->ExitRelay == -1;
const int policy_accepts_something =
! (policy_is_reject_star(addr_policy, AF_INET, 1) &&
policy_is_reject_star(addr_policy, AF_INET6, 1));
if (server_mode(options) &&
! warned_about_exitrelay &&
exitrelay_setting_is_auto &&
policy_accepts_something) {
/* Policy accepts something */
warned_about_exitrelay = 1;
log_warn(LD_CONFIG,
"Tor is running as an exit relay%s. If you did not want this "
"behavior, please set the ExitRelay option to 0. If you do "
"want to run an exit Relay, please set the ExitRelay option "
"to 1 to disable this warning, and for forward compatibility.",
options->ExitPolicy == NULL ?
" with the default exit policy" : "");
if (options->ExitPolicy == NULL) {
log_warn(LD_CONFIG,
"In a future version of Tor, ExitRelay 0 may become the "
"default when no ExitPolicy is given.");
}
}
/* The rest of these calls *append* to addr_policy. So don't actually
* use the results for anything other than checking if they parse! */
if (parse_addr_policy(options->DirPolicy, &addr_policy, -1))
REJECT("Error in DirPolicy entry.");
if (parse_addr_policy(options->SocksPolicy, &addr_policy, -1))
REJECT("Error in SocksPolicy entry.");
if (parse_addr_policy(options->AuthDirReject, &addr_policy,
ADDR_POLICY_REJECT))
REJECT("Error in AuthDirReject entry.");
if (parse_addr_policy(options->AuthDirInvalid, &addr_policy,
ADDR_POLICY_REJECT))
REJECT("Error in AuthDirInvalid entry.");
if (parse_addr_policy(options->AuthDirBadExit, &addr_policy,
ADDR_POLICY_REJECT))
REJECT("Error in AuthDirBadExit entry.");
if (parse_addr_policy(options->ReachableAddresses, &addr_policy,
ADDR_POLICY_ACCEPT))
REJECT("Error in ReachableAddresses entry.");
if (parse_addr_policy(options->ReachableORAddresses, &addr_policy,
ADDR_POLICY_ACCEPT))
REJECT("Error in ReachableORAddresses entry.");
if (parse_addr_policy(options->ReachableDirAddresses, &addr_policy,
ADDR_POLICY_ACCEPT))
REJECT("Error in ReachableDirAddresses entry.");
err:
addr_policy_list_free(addr_policy);
return *msg ? -1 : 0;
#undef REJECT
}
/** Parse <b>string</b> in the same way that the exit policy
* is parsed, and put the processed version in *<b>policy</b>.
* Ignore port specifiers.
*/
static int
load_policy_from_option(config_line_t *config, const char *option_name,
smartlist_t **policy,
int assume_action)
{
int r;
int killed_any_ports = 0;
addr_policy_list_free(*policy);
*policy = NULL;
r = parse_addr_policy(config, policy, assume_action);
if (r < 0) {
return -1;
}
if (*policy) {
SMARTLIST_FOREACH_BEGIN(*policy, addr_policy_t *, n) {
/* ports aren't used in these. */
if (n->prt_min > 1 || n->prt_max != 65535) {
addr_policy_t newp, *c;
memcpy(&newp, n, sizeof(newp));
newp.prt_min = 1;
newp.prt_max = 65535;
newp.is_canonical = 0;
c = addr_policy_get_canonical_entry(&newp);
SMARTLIST_REPLACE_CURRENT(*policy, n, c);
addr_policy_free(n);
killed_any_ports = 1;
}
} SMARTLIST_FOREACH_END(n);
}
if (killed_any_ports) {
log_warn(LD_CONFIG, "Ignoring ports in %s option.", option_name);
}
return 0;
}
/** Set all policies based on <b>options</b>, which should have been validated
* first by validate_addr_policies. */
int
policies_parse_from_options(const or_options_t *options)
{
int ret = 0;
if (load_policy_from_option(options->SocksPolicy, "SocksPolicy",
&socks_policy, -1) < 0)
ret = -1;
if (load_policy_from_option(options->DirPolicy, "DirPolicy",
&dir_policy, -1) < 0)
ret = -1;
if (load_policy_from_option(options->AuthDirReject, "AuthDirReject",
&authdir_reject_policy, ADDR_POLICY_REJECT) < 0)
ret = -1;
if (load_policy_from_option(options->AuthDirInvalid, "AuthDirInvalid",
&authdir_invalid_policy, ADDR_POLICY_REJECT) < 0)
ret = -1;
if (load_policy_from_option(options->AuthDirBadExit, "AuthDirBadExit",
&authdir_badexit_policy, ADDR_POLICY_REJECT) < 0)
ret = -1;
if (parse_reachable_addresses() < 0)
ret = -1;
return ret;
}
/** Compare two provided address policy items, and renturn -1, 0, or 1
* if the first is less than, equal to, or greater than the second. */
static int
single_addr_policy_eq(const addr_policy_t *a, const addr_policy_t *b)
{
int r;
#define CMP_FIELD(field) do { \
if (a->field != b->field) { \
return 0; \
} \
} while (0)
CMP_FIELD(policy_type);
CMP_FIELD(is_private);
/* refcnt and is_canonical are irrelevant to equality,
* they are hash table implementation details */
if ((r=tor_addr_compare(&a->addr, &b->addr, CMP_EXACT)))
return 0;
CMP_FIELD(maskbits);
CMP_FIELD(prt_min);
CMP_FIELD(prt_max);
#undef CMP_FIELD
return 1;
}
/** As single_addr_policy_eq, but compare every element of two policies.
*/
int
addr_policies_eq(const smartlist_t *a, const smartlist_t *b)
{
int i;
int len_a = a ? smartlist_len(a) : 0;
int len_b = b ? smartlist_len(b) : 0;
if (len_a != len_b)
return 0;
for (i = 0; i < len_a; ++i) {
if (! single_addr_policy_eq(smartlist_get(a, i), smartlist_get(b, i)))
return 0;
}
return 1;
}
/** Node in hashtable used to store address policy entries. */
typedef struct policy_map_ent_t {
HT_ENTRY(policy_map_ent_t) node;
addr_policy_t *policy;
} policy_map_ent_t;
/* DOCDOC policy_root */
static HT_HEAD(policy_map, policy_map_ent_t) policy_root = HT_INITIALIZER();
/** Return true iff a and b are equal. */
static inline int
policy_eq(policy_map_ent_t *a, policy_map_ent_t *b)
{
return single_addr_policy_eq(a->policy, b->policy);
}
/** Return a hashcode for <b>ent</b> */
static unsigned int
policy_hash(const policy_map_ent_t *ent)
{
const addr_policy_t *a = ent->policy;
addr_policy_t aa;
memset(&aa, 0, sizeof(aa));
aa.prt_min = a->prt_min;
aa.prt_max = a->prt_max;
aa.maskbits = a->maskbits;
aa.policy_type = a->policy_type;
aa.is_private = a->is_private;
if (a->is_private) {
aa.is_private = 1;
} else {
tor_addr_copy_tight(&aa.addr, &a->addr);
}
return (unsigned) siphash24g(&aa, sizeof(aa));
}
HT_PROTOTYPE(policy_map, policy_map_ent_t, node, policy_hash,
policy_eq)
HT_GENERATE2(policy_map, policy_map_ent_t, node, policy_hash,
policy_eq, 0.6, tor_reallocarray_, tor_free_)
/** Given a pointer to an addr_policy_t, return a copy of the pointer to the
* "canonical" copy of that addr_policy_t; the canonical copy is a single
* reference-counted object. */
addr_policy_t *
addr_policy_get_canonical_entry(addr_policy_t *e)
{
policy_map_ent_t search, *found;
if (e->is_canonical)
return e;
search.policy = e;
found = HT_FIND(policy_map, &policy_root, &search);
if (!found) {
found = tor_malloc_zero(sizeof(policy_map_ent_t));
found->policy = tor_memdup(e, sizeof(addr_policy_t));
found->policy->is_canonical = 1;
found->policy->refcnt = 0;
HT_INSERT(policy_map, &policy_root, found);
}
tor_assert(single_addr_policy_eq(found->policy, e));
++found->policy->refcnt;
return found->policy;
}
/** Helper for compare_tor_addr_to_addr_policy. Implements the case where
* addr and port are both known. */
static addr_policy_result_t
compare_known_tor_addr_to_addr_policy(const tor_addr_t *addr, uint16_t port,
const smartlist_t *policy)
{
/* We know the address and port, and we know the policy, so we can just
* compute an exact match. */
SMARTLIST_FOREACH_BEGIN(policy, addr_policy_t *, tmpe) {
if (tmpe->addr.family == AF_UNSPEC) {
log_warn(LD_BUG, "Policy contains an AF_UNSPEC address, which only "
"matches other AF_UNSPEC addresses.");
}
/* Address is known */
if (!tor_addr_compare_masked(addr, &tmpe->addr, tmpe->maskbits,
CMP_EXACT)) {
if (port >= tmpe->prt_min && port <= tmpe->prt_max) {
/* Exact match for the policy */
return tmpe->policy_type == ADDR_POLICY_ACCEPT ?
ADDR_POLICY_ACCEPTED : ADDR_POLICY_REJECTED;
}
}
} SMARTLIST_FOREACH_END(tmpe);
/* accept all by default. */
return ADDR_POLICY_ACCEPTED;
}
/** Helper for compare_tor_addr_to_addr_policy. Implements the case where
* addr is known but port is not. */
static addr_policy_result_t
compare_known_tor_addr_to_addr_policy_noport(const tor_addr_t *addr,
const smartlist_t *policy)
{
/* We look to see if there's a definite match. If so, we return that
match's value, unless there's an intervening possible match that says
something different. */
int maybe_accept = 0, maybe_reject = 0;
SMARTLIST_FOREACH_BEGIN(policy, addr_policy_t *, tmpe) {
if (tmpe->addr.family == AF_UNSPEC) {
log_warn(LD_BUG, "Policy contains an AF_UNSPEC address, which only "
"matches other AF_UNSPEC addresses.");
}
if (!tor_addr_compare_masked(addr, &tmpe->addr, tmpe->maskbits,
CMP_EXACT)) {
if (tmpe->prt_min <= 1 && tmpe->prt_max >= 65535) {
/* Definitely matches, since it covers all ports. */
if (tmpe->policy_type == ADDR_POLICY_ACCEPT) {
/* If we already hit a clause that might trigger a 'reject', than we
* can't be sure of this certain 'accept'.*/
return maybe_reject ? ADDR_POLICY_PROBABLY_ACCEPTED :
ADDR_POLICY_ACCEPTED;
} else {
return maybe_accept ? ADDR_POLICY_PROBABLY_REJECTED :
ADDR_POLICY_REJECTED;
}
} else {
/* Might match. */
if (tmpe->policy_type == ADDR_POLICY_REJECT)
maybe_reject = 1;
else
maybe_accept = 1;
}
}
} SMARTLIST_FOREACH_END(tmpe);
/* accept all by default. */
return maybe_reject ? ADDR_POLICY_PROBABLY_ACCEPTED : ADDR_POLICY_ACCEPTED;
}
/** Helper for compare_tor_addr_to_addr_policy. Implements the case where
* port is known but address is not. */
static addr_policy_result_t
compare_unknown_tor_addr_to_addr_policy(uint16_t port,
const smartlist_t *policy)
{
/* We look to see if there's a definite match. If so, we return that
match's value, unless there's an intervening possible match that says
something different. */
int maybe_accept = 0, maybe_reject = 0;
SMARTLIST_FOREACH_BEGIN(policy, addr_policy_t *, tmpe) {
if (tmpe->addr.family == AF_UNSPEC) {
log_warn(LD_BUG, "Policy contains an AF_UNSPEC address, which only "
"matches other AF_UNSPEC addresses.");
}
if (tmpe->prt_min <= port && port <= tmpe->prt_max) {
if (tmpe->maskbits == 0) {
/* Definitely matches, since it covers all addresses. */
if (tmpe->policy_type == ADDR_POLICY_ACCEPT) {
/* If we already hit a clause that might trigger a 'reject', than we
* can't be sure of this certain 'accept'.*/
return maybe_reject ? ADDR_POLICY_PROBABLY_ACCEPTED :
ADDR_POLICY_ACCEPTED;
} else {
return maybe_accept ? ADDR_POLICY_PROBABLY_REJECTED :
ADDR_POLICY_REJECTED;
}
} else {
/* Might match. */
if (tmpe->policy_type == ADDR_POLICY_REJECT)
maybe_reject = 1;
else
maybe_accept = 1;
}
}
} SMARTLIST_FOREACH_END(tmpe);
/* accept all by default. */
return maybe_reject ? ADDR_POLICY_PROBABLY_ACCEPTED : ADDR_POLICY_ACCEPTED;
}
/** Decide whether a given addr:port is definitely accepted,
* definitely rejected, probably accepted, or probably rejected by a
* given policy. If <b>addr</b> is 0, we don't know the IP of the
* target address. If <b>port</b> is 0, we don't know the port of the
* target address. (At least one of <b>addr</b> and <b>port</b> must be
* provided. If you want to know whether a policy would definitely reject
* an unknown address:port, use policy_is_reject_star().)
*
* We could do better by assuming that some ranges never match typical
* addresses (127.0.0.1, and so on). But we'll try this for now.
*/
MOCK_IMPL(addr_policy_result_t,
compare_tor_addr_to_addr_policy,(const tor_addr_t *addr, uint16_t port,
const smartlist_t *policy))
{
if (!policy) {
/* no policy? accept all. */
return ADDR_POLICY_ACCEPTED;
} else if (addr == NULL || tor_addr_is_null(addr)) {
if (port == 0) {
log_info(LD_BUG, "Rejecting null address with 0 port (family %d)",
addr ? tor_addr_family(addr) : -1);
return ADDR_POLICY_REJECTED;
}
return compare_unknown_tor_addr_to_addr_policy(port, policy);
} else if (port == 0) {
return compare_known_tor_addr_to_addr_policy_noport(addr, policy);
} else {
return compare_known_tor_addr_to_addr_policy(addr, port, policy);
}
}
/** Return true iff the address policy <b>a</b> covers every case that
* would be covered by <b>b</b>, so that a,b is redundant. */
static int
addr_policy_covers(addr_policy_t *a, addr_policy_t *b)
{
if (tor_addr_family(&a->addr) != tor_addr_family(&b->addr)) {
/* You can't cover a different family. */
return 0;
}
/* We can ignore accept/reject, since "accept *:80, reject *:80" reduces
* to "accept *:80". */
if (a->maskbits > b->maskbits) {
/* a has more fixed bits than b; it can't possibly cover b. */
return 0;
}
if (tor_addr_compare_masked(&a->addr, &b->addr, a->maskbits, CMP_EXACT)) {
/* There's a fixed bit in a that's set differently in b. */
return 0;
}
return (a->prt_min <= b->prt_min && a->prt_max >= b->prt_max);
}
/** Return true iff the address policies <b>a</b> and <b>b</b> intersect,
* that is, there exists an address/port that is covered by <b>a</b> that
* is also covered by <b>b</b>.
*/
static int
addr_policy_intersects(addr_policy_t *a, addr_policy_t *b)
{
maskbits_t minbits;
/* All the bits we care about are those that are set in both
* netmasks. If they are equal in a and b's networkaddresses
* then the networks intersect. If there is a difference,
* then they do not. */
if (a->maskbits < b->maskbits)
minbits = a->maskbits;
else
minbits = b->maskbits;
if (tor_addr_compare_masked(&a->addr, &b->addr, minbits, CMP_EXACT))
return 0;
if (a->prt_max < b->prt_min || b->prt_max < a->prt_min)
return 0;
return 1;
}
/** Add the exit policy described by <b>more</b> to <b>policy</b>.
*/
STATIC void
append_exit_policy_string(smartlist_t **policy, const char *more)
{
config_line_t tmp;
tmp.key = NULL;
tmp.value = (char*) more;
tmp.next = NULL;
if (parse_addr_policy(&tmp, policy, -1)<0) {
log_warn(LD_BUG, "Unable to parse internally generated policy %s",more);
}
}
/** Add "reject <b>addr</b>:*" to <b>dest</b>, creating the list as needed. */
void
addr_policy_append_reject_addr(smartlist_t **dest, const tor_addr_t *addr)
{
tor_assert(dest);
tor_assert(addr);
addr_policy_t p, *add;
memset(&p, 0, sizeof(p));
p.policy_type = ADDR_POLICY_REJECT;
p.maskbits = tor_addr_family(addr) == AF_INET6 ? 128 : 32;
tor_addr_copy(&p.addr, addr);
p.prt_min = 1;
p.prt_max = 65535;
add = addr_policy_get_canonical_entry(&p);
if (!*dest)
*dest = smartlist_new();
smartlist_add(*dest, add);
log_debug(LD_CONFIG, "Adding a reject ExitPolicy 'reject %s:*'",
fmt_addr(addr));
}
/* Is addr public for the purposes of rejection? */
static int
tor_addr_is_public_for_reject(const tor_addr_t *addr)
{
return (!tor_addr_is_null(addr) && !tor_addr_is_internal(addr, 0)
&& !tor_addr_is_multicast(addr));
}
/* Add "reject <b>addr</b>:*" to <b>dest</b>, creating the list as needed.
* Filter the address, only adding an IPv4 reject rule if ipv4_rules
* is true, and similarly for ipv6_rules. Check each address returns true for
* tor_addr_is_public_for_reject before adding it.
*/
static void
addr_policy_append_reject_addr_filter(smartlist_t **dest,
const tor_addr_t *addr,
int ipv4_rules,
int ipv6_rules)
{
tor_assert(dest);
tor_assert(addr);
/* Only reject IP addresses which are public */
if (tor_addr_is_public_for_reject(addr)) {
/* Reject IPv4 addresses and IPv6 addresses based on the filters */
int is_ipv4 = tor_addr_is_v4(addr);
if ((is_ipv4 && ipv4_rules) || (!is_ipv4 && ipv6_rules)) {
addr_policy_append_reject_addr(dest, addr);
}
}
}
/** Add "reject addr:*" to <b>dest</b>, for each addr in addrs, creating the
* list as needed. */
void
addr_policy_append_reject_addr_list(smartlist_t **dest,
const smartlist_t *addrs)
{
tor_assert(dest);
tor_assert(addrs);
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, addr) {
addr_policy_append_reject_addr(dest, addr);
} SMARTLIST_FOREACH_END(addr);
}
/** Add "reject addr:*" to <b>dest</b>, for each addr in addrs, creating the
* list as needed. Filter using */
static void
addr_policy_append_reject_addr_list_filter(smartlist_t **dest,
const smartlist_t *addrs,
int ipv4_rules,
int ipv6_rules)
{
tor_assert(dest);
tor_assert(addrs);
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, addr) {
addr_policy_append_reject_addr_filter(dest, addr, ipv4_rules, ipv6_rules);
} SMARTLIST_FOREACH_END(addr);
}
/** Detect and excise "dead code" from the policy *<b>dest</b>. */
static void
exit_policy_remove_redundancies(smartlist_t *dest)
{
addr_policy_t *ap, *tmp;
int i, j;
/* Step one: kill every ipv4 thing after *4:*, every IPv6 thing after *6:*
*/
{
int kill_v4=0, kill_v6=0;
for (i = 0; i < smartlist_len(dest); ++i) {
sa_family_t family;
ap = smartlist_get(dest, i);
family = tor_addr_family(&ap->addr);
if ((family == AF_INET && kill_v4) ||
(family == AF_INET6 && kill_v6)) {
smartlist_del_keeporder(dest, i--);
addr_policy_free(ap);
continue;
}
if (ap->maskbits == 0 && ap->prt_min <= 1 && ap->prt_max >= 65535) {
/* This is a catch-all line -- later lines are unreachable. */
if (family == AF_INET) {
kill_v4 = 1;
} else if (family == AF_INET6) {
kill_v6 = 1;
}
}
}
}
/* Step two: for every entry, see if there's a redundant entry
* later on, and remove it. */
for (i = 0; i < smartlist_len(dest)-1; ++i) {
ap = smartlist_get(dest, i);
for (j = i+1; j < smartlist_len(dest); ++j) {
tmp = smartlist_get(dest, j);
tor_assert(j > i);
if (addr_policy_covers(ap, tmp)) {
char p1[POLICY_BUF_LEN], p2[POLICY_BUF_LEN];
policy_write_item(p1, sizeof(p1), tmp, 0);
policy_write_item(p2, sizeof(p2), ap, 0);
log_debug(LD_CONFIG, "Removing exit policy %s (%d). It is made "
"redundant by %s (%d).", p1, j, p2, i);
smartlist_del_keeporder(dest, j--);
addr_policy_free(tmp);
}
}
}
/* Step three: for every entry A, see if there's an entry B making this one
* redundant later on. This is the case if A and B are of the same type
* (accept/reject), A is a subset of B, and there is no other entry of
* different type in between those two that intersects with A.
*
* Anybody want to double-check the logic here? XXX
*/
for (i = 0; i < smartlist_len(dest)-1; ++i) {
ap = smartlist_get(dest, i);
for (j = i+1; j < smartlist_len(dest); ++j) {
// tor_assert(j > i); // j starts out at i+1; j only increases; i only
// // decreases.
tmp = smartlist_get(dest, j);
if (ap->policy_type != tmp->policy_type) {
if (addr_policy_intersects(ap, tmp))
break;
} else { /* policy_types are equal. */
if (addr_policy_covers(tmp, ap)) {
char p1[POLICY_BUF_LEN], p2[POLICY_BUF_LEN];
policy_write_item(p1, sizeof(p1), ap, 0);
policy_write_item(p2, sizeof(p2), tmp, 0);
log_debug(LD_CONFIG, "Removing exit policy %s. It is already "
"covered by %s.", p1, p2);
smartlist_del_keeporder(dest, i--);
addr_policy_free(ap);
break;
}
}
}
}
}
/** Reject private helper for policies_parse_exit_policy_internal: rejects
* publicly routable addresses on this exit relay.
*
* Add reject entries to the linked list *<b>dest</b>:
* <ul>
* <li>if configured_addresses is non-NULL, add entries that reject each
* tor_addr_t in the list as a destination.
* <li>if reject_interface_addresses is true, add entries that reject each
* public IPv4 and IPv6 address of each interface on this machine.
* <li>if reject_configured_port_addresses is true, add entries that reject
* each IPv4 and IPv6 address configured for a port.
* </ul>
*
* IPv6 entries are only added if ipv6_exit is true. (All IPv6 addresses are
* already blocked by policies_parse_exit_policy_internal if ipv6_exit is
* false.)
*
* The list in <b>dest</b> is created as needed.
*/
void
policies_parse_exit_policy_reject_private(
smartlist_t **dest,
int ipv6_exit,
const smartlist_t *configured_addresses,
int reject_interface_addresses,
int reject_configured_port_addresses)
{
tor_assert(dest);
/* Reject configured addresses, if they are from public netblocks. */
if (configured_addresses) {
addr_policy_append_reject_addr_list_filter(dest, configured_addresses,
1, ipv6_exit);
}
/* Reject configured port addresses, if they are from public netblocks. */
if (reject_configured_port_addresses) {
const smartlist_t *port_addrs = get_configured_ports();
SMARTLIST_FOREACH_BEGIN(port_addrs, port_cfg_t *, port) {
/* Only reject port IP addresses, not port unix sockets */
if (!port->is_unix_addr) {
addr_policy_append_reject_addr_filter(dest, &port->addr, 1, ipv6_exit);
}
} SMARTLIST_FOREACH_END(port);
}
/* Reject local addresses from public netblocks on any interface. */
if (reject_interface_addresses) {
smartlist_t *public_addresses = NULL;
/* Reject public IPv4 addresses on any interface */
public_addresses = get_interface_address6_list(LOG_INFO, AF_INET, 0);
addr_policy_append_reject_addr_list_filter(dest, public_addresses, 1, 0);
free_interface_address6_list(public_addresses);
/* Don't look for IPv6 addresses if we're configured as IPv4-only */
if (ipv6_exit) {
/* Reject public IPv6 addresses on any interface */
public_addresses = get_interface_address6_list(LOG_INFO, AF_INET6, 0);
addr_policy_append_reject_addr_list_filter(dest, public_addresses, 0, 1);
free_interface_address6_list(public_addresses);
}
}
/* If addresses were added multiple times, remove all but one of them. */
if (*dest) {
exit_policy_remove_redundancies(*dest);
}
}
/**
* Iterate through <b>policy</b> looking for redundant entries. Log a
* warning message with the first redundant entry, if any is found.
*/
static void
policies_log_first_redundant_entry(const smartlist_t *policy)
{
int found_final_effective_entry = 0;
int first_redundant_entry = 0;
tor_assert(policy);
SMARTLIST_FOREACH_BEGIN(policy, const addr_policy_t *, p) {
sa_family_t family;
int found_ipv4_wildcard = 0, found_ipv6_wildcard = 0;
const int i = p_sl_idx;
/* Look for accept/reject *[4|6|]:* entires */
if (p->prt_min <= 1 && p->prt_max == 65535 && p->maskbits == 0) {
family = tor_addr_family(&p->addr);
/* accept/reject *:* may have already been expanded into
* accept/reject *4:*,accept/reject *6:*
* But handle both forms.
*/
if (family == AF_INET || family == AF_UNSPEC) {
found_ipv4_wildcard = 1;
}
if (family == AF_INET6 || family == AF_UNSPEC) {
found_ipv6_wildcard = 1;
}
}
/* We also find accept *4:*,reject *6:* ; and
* accept *4:*,<other policies>,accept *6:* ; and similar.
* That's ok, because they make any subsequent entries redundant. */
if (found_ipv4_wildcard && found_ipv6_wildcard) {
found_final_effective_entry = 1;
/* if we're not on the final entry in the list */
if (i < smartlist_len(policy) - 1) {
first_redundant_entry = i + 1;
}
break;
}
} SMARTLIST_FOREACH_END(p);
/* Work out if there are redundant trailing entries in the policy list */
if (found_final_effective_entry && first_redundant_entry > 0) {
const addr_policy_t *p;
/* Longest possible policy is
* "accept6 ffff:ffff:..255/128:10000-65535",
* which contains a max-length IPv6 address, plus 24 characters. */
char line[TOR_ADDR_BUF_LEN + 32];
tor_assert(first_redundant_entry < smartlist_len(policy));
p = smartlist_get(policy, first_redundant_entry);
/* since we've already parsed the policy into an addr_policy_t struct,
* we might not log exactly what the user typed in */
policy_write_item(line, TOR_ADDR_BUF_LEN + 32, p, 0);
log_warn(LD_DIR, "Exit policy '%s' and all following policies are "
"redundant, as it follows accept/reject *:* rules for both "
"IPv4 and IPv6. They will be removed from the exit policy. (Use "
"accept/reject *:* as the last entry in any exit policy.)",
line);
}
}
#define DEFAULT_EXIT_POLICY \
"reject *:25,reject *:119,reject *:135-139,reject *:445," \
"reject *:563,reject *:1214,reject *:4661-4666," \
"reject *:6346-6429,reject *:6699,reject *:6881-6999,accept *:*"
/** Parse the exit policy <b>cfg</b> into the linked list *<b>dest</b>.
*
* If <b>ipv6_exit</b> is false, prepend "reject *6:*" to the policy.
*
* If <b>configured_addresses</b> contains addresses:
* - prepend entries that reject the addresses in this list. These may be the
* advertised relay addresses and/or the outbound bind addresses,
* depending on the ExitPolicyRejectPrivate and
* ExitPolicyRejectLocalInterfaces settings.
* If <b>rejectprivate</b> is true:
* - prepend "reject private:*" to the policy.
* If <b>reject_interface_addresses</b> is true:
* - prepend entries that reject publicly routable interface addresses on
* this exit relay by calling policies_parse_exit_policy_reject_private
* If <b>reject_configured_port_addresses</b> is true:
* - prepend entries that reject all configured port addresses
*
* If cfg doesn't end in an absolute accept or reject and if
* <b>add_default_policy</b> is true, add the default exit
* policy afterwards.
*
* Return -1 if we can't parse cfg, else return 0.
*
* This function is used to parse the exit policy from our torrc. For
* the functions used to parse the exit policy from a router descriptor,
* see router_add_exit_policy.
*/
static int
policies_parse_exit_policy_internal(config_line_t *cfg,
smartlist_t **dest,
int ipv6_exit,
int rejectprivate,
const smartlist_t *configured_addresses,
int reject_interface_addresses,
int reject_configured_port_addresses,
int add_default_policy)
{
if (!ipv6_exit) {
append_exit_policy_string(dest, "reject *6:*");
}
if (rejectprivate) {
/* Reject IPv4 and IPv6 reserved private netblocks */
append_exit_policy_string(dest, "reject private:*");
}
/* Consider rejecting IPv4 and IPv6 advertised relay addresses, outbound bind
* addresses, publicly routable addresses, and configured port addresses
* on this exit relay */
policies_parse_exit_policy_reject_private(dest, ipv6_exit,
configured_addresses,
reject_interface_addresses,
reject_configured_port_addresses);
if (parse_addr_policy(cfg, dest, -1))
return -1;
/* Before we add the default policy and final rejects, check to see if
* there are any lines after accept *:* or reject *:*. These lines have no
* effect, and are most likely an error. */
policies_log_first_redundant_entry(*dest);
if (add_default_policy) {
append_exit_policy_string(dest, DEFAULT_EXIT_POLICY);
} else {
append_exit_policy_string(dest, "reject *4:*");
append_exit_policy_string(dest, "reject *6:*");
}
exit_policy_remove_redundancies(*dest);
return 0;
}
/** Parse exit policy in <b>cfg</b> into <b>dest</b> smartlist.
*
* Prepend an entry that rejects all IPv6 destinations unless
* <b>EXIT_POLICY_IPV6_ENABLED</b> bit is set in <b>options</b> bitmask.
*
* If <b>EXIT_POLICY_REJECT_PRIVATE</b> bit is set in <b>options</b>:
* - prepend an entry that rejects all destinations in all netblocks
* reserved for private use.
* - prepend entries that reject the advertised relay addresses in
* configured_addresses
* If <b>EXIT_POLICY_REJECT_LOCAL_INTERFACES</b> bit is set in <b>options</b>:
* - prepend entries that reject publicly routable addresses on this exit
* relay by calling policies_parse_exit_policy_internal
* - prepend entries that reject the outbound bind addresses in
* configured_addresses
* - prepend entries that reject all configured port addresses
*
* If <b>EXIT_POLICY_ADD_DEFAULT</b> bit is set in <b>options</b>, append
* default exit policy entries to <b>result</b> smartlist.
*/
int
policies_parse_exit_policy(config_line_t *cfg, smartlist_t **dest,
exit_policy_parser_cfg_t options,
const smartlist_t *configured_addresses)
{
int ipv6_enabled = (options & EXIT_POLICY_IPV6_ENABLED) ? 1 : 0;
int reject_private = (options & EXIT_POLICY_REJECT_PRIVATE) ? 1 : 0;
int add_default = (options & EXIT_POLICY_ADD_DEFAULT) ? 1 : 0;
int reject_local_interfaces = (options &
EXIT_POLICY_REJECT_LOCAL_INTERFACES) ? 1 : 0;
return policies_parse_exit_policy_internal(cfg,dest,ipv6_enabled,
reject_private,
configured_addresses,
reject_local_interfaces,
reject_local_interfaces,
add_default);
}
/** Helper function that adds a copy of addr to a smartlist as long as it is
* non-NULL and not tor_addr_is_null().
*
* The caller is responsible for freeing all the tor_addr_t* in the smartlist.
*/
static void
policies_copy_addr_to_smartlist(smartlist_t *addr_list, const tor_addr_t *addr)
{
if (addr && !tor_addr_is_null(addr)) {
tor_addr_t *addr_copy = tor_malloc(sizeof(tor_addr_t));
tor_addr_copy(addr_copy, addr);
smartlist_add(addr_list, addr_copy);
}
}
/** Helper function that adds ipv4h_addr to a smartlist as a tor_addr_t *,
* as long as it is not tor_addr_is_null(), by converting it to a tor_addr_t
* and passing it to policies_add_addr_to_smartlist.
*
* The caller is responsible for freeing all the tor_addr_t* in the smartlist.
*/
static void
policies_copy_ipv4h_to_smartlist(smartlist_t *addr_list, uint32_t ipv4h_addr)
{
if (ipv4h_addr) {
tor_addr_t ipv4_tor_addr;
tor_addr_from_ipv4h(&ipv4_tor_addr, ipv4h_addr);
policies_copy_addr_to_smartlist(addr_list, &ipv4_tor_addr);
}
}
/** Helper function that adds copies of or_options->OutboundBindAddresses
* to a smartlist as tor_addr_t *, as long as or_options is non-NULL, and
* the addresses are not tor_addr_is_null(), by passing them to
* policies_add_addr_to_smartlist.
*
* The caller is responsible for freeing all the tor_addr_t* in the smartlist.
*/
static void
policies_copy_outbound_addresses_to_smartlist(smartlist_t *addr_list,
const or_options_t *or_options)
{
if (or_options) {
for (int i=0;i<OUTBOUND_ADDR_MAX;i++) {
for (int j=0;j<2;j++) {
if (!tor_addr_is_null(&or_options->OutboundBindAddresses[i][j])) {
policies_copy_addr_to_smartlist(addr_list,
&or_options->OutboundBindAddresses[i][j]);
}
}
}
}
}
/** Parse <b>ExitPolicy</b> member of <b>or_options</b> into <b>result</b>
* smartlist.
* If <b>or_options->IPv6Exit</b> is false, prepend an entry that
* rejects all IPv6 destinations.
*
* If <b>or_options->ExitPolicyRejectPrivate</b> is true:
* - prepend an entry that rejects all destinations in all netblocks reserved
* for private use.
* - if local_address is non-zero, treat it as a host-order IPv4 address, and
* add it to the list of configured addresses.
* - if ipv6_local_address is non-NULL, and not the null tor_addr_t, add it
* to the list of configured addresses.
* If <b>or_options->ExitPolicyRejectLocalInterfaces</b> is true:
* - if or_options->OutboundBindAddresses[][0] (=IPv4) is not the null
* tor_addr_t, add it to the list of configured addresses.
* - if or_options->OutboundBindAddresses[][1] (=IPv6) is not the null
* tor_addr_t, add it to the list of configured addresses.
*
* If <b>or_options->BridgeRelay</b> is false, append entries of default
* Tor exit policy into <b>result</b> smartlist.
*
* If or_options->ExitRelay is false, then make our exit policy into
* "reject *:*" regardless.
*/
int
policies_parse_exit_policy_from_options(const or_options_t *or_options,
uint32_t local_address,
const tor_addr_t *ipv6_local_address,
smartlist_t **result)
{
exit_policy_parser_cfg_t parser_cfg = 0;
smartlist_t *configured_addresses = NULL;
int rv = 0;
/* Short-circuit for non-exit relays */
if (or_options->ExitRelay == 0) {
append_exit_policy_string(result, "reject *4:*");
append_exit_policy_string(result, "reject *6:*");
return 0;
}
configured_addresses = smartlist_new();
/* Configure the parser */
if (or_options->IPv6Exit) {
parser_cfg |= EXIT_POLICY_IPV6_ENABLED;
}
if (or_options->ExitPolicyRejectPrivate) {
parser_cfg |= EXIT_POLICY_REJECT_PRIVATE;
}
if (!or_options->BridgeRelay) {
parser_cfg |= EXIT_POLICY_ADD_DEFAULT;
}
if (or_options->ExitPolicyRejectLocalInterfaces) {
parser_cfg |= EXIT_POLICY_REJECT_LOCAL_INTERFACES;
}
/* Copy the configured addresses into the tor_addr_t* list */
if (or_options->ExitPolicyRejectPrivate) {
policies_copy_ipv4h_to_smartlist(configured_addresses, local_address);
policies_copy_addr_to_smartlist(configured_addresses, ipv6_local_address);
}
if (or_options->ExitPolicyRejectLocalInterfaces) {
policies_copy_outbound_addresses_to_smartlist(configured_addresses,
or_options);
}
rv = policies_parse_exit_policy(or_options->ExitPolicy, result, parser_cfg,
configured_addresses);
SMARTLIST_FOREACH(configured_addresses, tor_addr_t *, a, tor_free(a));
smartlist_free(configured_addresses);
return rv;
}
/** Add "reject *:*" to the end of the policy in *<b>dest</b>, allocating
* *<b>dest</b> as needed. */
void
policies_exit_policy_append_reject_star(smartlist_t **dest)
{
append_exit_policy_string(dest, "reject *4:*");
append_exit_policy_string(dest, "reject *6:*");
}
/** Replace the exit policy of <b>node</b> with reject *:* */
void
policies_set_node_exitpolicy_to_reject_all(node_t *node)
{
node->rejects_all = 1;
}
/** Return 1 if there is at least one /8 subnet in <b>policy</b> that
* allows exiting to <b>port</b>. Otherwise, return 0. */
static int
exit_policy_is_general_exit_helper(smartlist_t *policy, int port)
{
uint32_t mask, ip, i;
/* Is this /8 rejected (1), or undecided (0)? */
char subnet_status[256];
memset(subnet_status, 0, sizeof(subnet_status));
SMARTLIST_FOREACH_BEGIN(policy, addr_policy_t *, p) {
if (tor_addr_family(&p->addr) != AF_INET)
continue; /* IPv4 only for now */
if (p->prt_min > port || p->prt_max < port)
continue; /* Doesn't cover our port. */
mask = 0;
tor_assert(p->maskbits <= 32);
if (p->maskbits)
mask = UINT32_MAX<<(32-p->maskbits);
ip = tor_addr_to_ipv4h(&p->addr);
/* Calculate the first and last subnet that this exit policy touches
* and set it as loop boundaries. */
for (i = ((mask & ip)>>24); i <= (~((mask & ip) ^ mask)>>24); ++i) {
tor_addr_t addr;
if (subnet_status[i] != 0)
continue; /* We already reject some part of this /8 */
tor_addr_from_ipv4h(&addr, i<<24);
if (tor_addr_is_internal(&addr, 0) &&
!get_options()->DirAllowPrivateAddresses) {
continue; /* Local or non-routable addresses */
}
if (p->policy_type == ADDR_POLICY_ACCEPT) {
if (p->maskbits > 8)
continue; /* Narrower than a /8. */
/* We found an allowed subnet of at least size /8. Done
* for this port! */
return 1;
} else if (p->policy_type == ADDR_POLICY_REJECT) {
subnet_status[i] = 1;
}
}
} SMARTLIST_FOREACH_END(p);
return 0;
}
/** Return true iff <b>ri</b> is "useful as an exit node", meaning
* it allows exit to at least one /8 address space for at least
* two of ports 80, 443, and 6667. */
int
exit_policy_is_general_exit(smartlist_t *policy)
{
static const int ports[] = { 80, 443, 6667 };
int n_allowed = 0;
int i;
if (!policy) /*XXXX disallow NULL policies? */
return 0;
for (i = 0; i < 3; ++i) {
n_allowed += exit_policy_is_general_exit_helper(policy, ports[i]);
}
return n_allowed >= 2;
}
/** Return false if <b>policy</b> might permit access to some addr:port;
* otherwise if we are certain it rejects everything, return true. If no
* part of <b>policy</b> matches, return <b>default_reject</b>.
* NULL policies are allowed, and treated as empty. */
int
policy_is_reject_star(const smartlist_t *policy, sa_family_t family,
int default_reject)
{
if (!policy)
return default_reject;
SMARTLIST_FOREACH_BEGIN(policy, const addr_policy_t *, p) {
if (p->policy_type == ADDR_POLICY_ACCEPT &&
(tor_addr_family(&p->addr) == family ||
tor_addr_family(&p->addr) == AF_UNSPEC)) {
return 0;
} else if (p->policy_type == ADDR_POLICY_REJECT &&
p->prt_min <= 1 && p->prt_max == 65535 &&
p->maskbits == 0 &&
(tor_addr_family(&p->addr) == family ||
tor_addr_family(&p->addr) == AF_UNSPEC)) {
return 1;
}
} SMARTLIST_FOREACH_END(p);
return default_reject;
}
/** Write a single address policy to the buf_len byte buffer at buf. Return
* the number of characters written, or -1 on failure. */
int
policy_write_item(char *buf, size_t buflen, const addr_policy_t *policy,
int format_for_desc)
{
size_t written = 0;
char addrbuf[TOR_ADDR_BUF_LEN];
const char *addrpart;
int result;
const int is_accept = policy->policy_type == ADDR_POLICY_ACCEPT;
const sa_family_t family = tor_addr_family(&policy->addr);
const int is_ip6 = (family == AF_INET6);
tor_addr_to_str(addrbuf, &policy->addr, sizeof(addrbuf), 1);
/* write accept/reject 1.2.3.4 */
if (policy->is_private) {
addrpart = "private";
} else if (policy->maskbits == 0) {
if (format_for_desc)
addrpart = "*";
else if (family == AF_INET6)
addrpart = "*6";
else if (family == AF_INET)
addrpart = "*4";
else
addrpart = "*";
} else {
addrpart = addrbuf;
}
result = tor_snprintf(buf, buflen, "%s%s %s",
is_accept ? "accept" : "reject",
(is_ip6&&format_for_desc)?"6":"",
addrpart);
if (result < 0)
return -1;
written += strlen(buf);
/* If the maskbits is 32 (IPv4) or 128 (IPv6) we don't need to give it. If
the mask is 0, we already wrote "*". */
if (policy->maskbits < (is_ip6?128:32) && policy->maskbits > 0) {
if (tor_snprintf(buf+written, buflen-written, "/%d", policy->maskbits)<0)
return -1;
written += strlen(buf+written);
}
if (policy->prt_min <= 1 && policy->prt_max == 65535) {
/* There is no port set; write ":*" */
if (written+4 > buflen)
return -1;
strlcat(buf+written, ":*", buflen-written);
written += 2;
} else if (policy->prt_min == policy->prt_max) {
/* There is only one port; write ":80". */
result = tor_snprintf(buf+written, buflen-written, ":%d", policy->prt_min);
if (result<0)
return -1;
written += result;
} else {
/* There is a range of ports; write ":79-80". */
result = tor_snprintf(buf+written, buflen-written, ":%d-%d",
policy->prt_min, policy->prt_max);
if (result<0)
return -1;
written += result;
}
if (written < buflen)
buf[written] = '\0';
else
return -1;
return (int)written;
}
/** Create a new exit policy summary, initially only with a single
* port 1-64k item */
/* XXXX This entire thing will do most stuff in O(N^2), or worse. Use an
* RB-tree if that turns out to matter. */
static smartlist_t *
policy_summary_create(void)
{
smartlist_t *summary;
policy_summary_item_t* item;
item = tor_malloc_zero(sizeof(policy_summary_item_t));
item->prt_min = 1;
item->prt_max = 65535;
item->reject_count = 0;
item->accepted = 0;
summary = smartlist_new();
smartlist_add(summary, item);
return summary;
}
/** Split the summary item in <b>item</b> at the port <b>new_starts</b>.
* The current item is changed to end at new-starts - 1, the new item
* copies reject_count and accepted from the old item,
* starts at new_starts and ends at the port where the original item
* previously ended.
*/
static policy_summary_item_t*
policy_summary_item_split(policy_summary_item_t* old, uint16_t new_starts)
{
policy_summary_item_t* new;
new = tor_malloc_zero(sizeof(policy_summary_item_t));
new->prt_min = new_starts;
new->prt_max = old->prt_max;
new->reject_count = old->reject_count;
new->accepted = old->accepted;
old->prt_max = new_starts-1;
tor_assert(old->prt_min <= old->prt_max);
tor_assert(new->prt_min <= new->prt_max);
return new;
}
/* XXXX Nick says I'm going to hell for this. If he feels charitably towards
* my immortal soul, he can clean it up himself. */
#define AT(x) ((policy_summary_item_t*)smartlist_get(summary, x))
#define IPV4_BITS (32)
/* Every IPv4 address is counted as one rejection */
#define REJECT_CUTOFF_SCALE_IPV4 (0)
/* Ports are rejected in an IPv4 summary if they are rejected in more than two
* IPv4 /8 address blocks */
#define REJECT_CUTOFF_COUNT_IPV4 (U64_LITERAL(1) << \
(IPV4_BITS - REJECT_CUTOFF_SCALE_IPV4 - 7))
#define IPV6_BITS (128)
/* IPv6 /64s are counted as one rejection, anything smaller is ignored */
#define REJECT_CUTOFF_SCALE_IPV6 (64)
/* Ports are rejected in an IPv6 summary if they are rejected in more than one
* IPv6 /16 address block.
* This is rougly equivalent to the IPv4 cutoff, as only five IPv6 /12s (and
* some scattered smaller blocks) have been allocated to the RIRs.
* Network providers are typically allocated one or more IPv6 /32s.
*/
#define REJECT_CUTOFF_COUNT_IPV6 (U64_LITERAL(1) << \
(IPV6_BITS - REJECT_CUTOFF_SCALE_IPV6 - 16))
/** Split an exit policy summary so that prt_min and prt_max
* fall at exactly the start and end of an item respectively.
*/
static int
policy_summary_split(smartlist_t *summary,
uint16_t prt_min, uint16_t prt_max)
{
int start_at_index;
int i = 0;
while (AT(i)->prt_max < prt_min)
i++;
if (AT(i)->prt_min != prt_min) {
policy_summary_item_t* new_item;
new_item = policy_summary_item_split(AT(i), prt_min);
smartlist_insert(summary, i+1, new_item);
i++;
}
start_at_index = i;
while (AT(i)->prt_max < prt_max)
i++;
if (AT(i)->prt_max != prt_max) {
policy_summary_item_t* new_item;
new_item = policy_summary_item_split(AT(i), prt_max+1);
smartlist_insert(summary, i+1, new_item);
}
return start_at_index;
}
/** Mark port ranges as accepted if they are below the reject_count for family
*/
static void
policy_summary_accept(smartlist_t *summary,
uint16_t prt_min, uint16_t prt_max,
sa_family_t family)
{
tor_assert_nonfatal_once(family == AF_INET || family == AF_INET6);
uint64_t family_reject_count = ((family == AF_INET) ?
REJECT_CUTOFF_COUNT_IPV4 :
REJECT_CUTOFF_COUNT_IPV6);
int i = policy_summary_split(summary, prt_min, prt_max);
while (i < smartlist_len(summary) &&
AT(i)->prt_max <= prt_max) {
if (!AT(i)->accepted &&
AT(i)->reject_count <= family_reject_count)
AT(i)->accepted = 1;
i++;
}
tor_assert(i < smartlist_len(summary) || prt_max==65535);
}
/** Count the number of addresses in a network in family with prefixlen
* maskbits against the given portrange. */
static void
policy_summary_reject(smartlist_t *summary,
maskbits_t maskbits,
uint16_t prt_min, uint16_t prt_max,
sa_family_t family)
{
tor_assert_nonfatal_once(family == AF_INET || family == AF_INET6);
int i = policy_summary_split(summary, prt_min, prt_max);
/* The length of a single address mask */
int addrbits = (family == AF_INET) ? IPV4_BITS : IPV6_BITS;
tor_assert_nonfatal_once(addrbits >= maskbits);
/* We divide IPv6 address counts by (1 << scale) to keep them in a uint64_t
*/
int scale = ((family == AF_INET) ?
REJECT_CUTOFF_SCALE_IPV4 :
REJECT_CUTOFF_SCALE_IPV6);
tor_assert_nonfatal_once(addrbits >= scale);
if (maskbits > (addrbits - scale)) {
tor_assert_nonfatal_once(family == AF_INET6);
/* The address range is so small, we'd need billions of them to reach the
* rejection limit. So we ignore this range in the reject count. */
return;
}
uint64_t count = 0;
if (addrbits - scale - maskbits >= 64) {
tor_assert_nonfatal_once(family == AF_INET6);
/* The address range is so large, it's an automatic rejection for all ports
* in the range. */
count = UINT64_MAX;
} else {
count = (U64_LITERAL(1) << (addrbits - scale - maskbits));
}
tor_assert_nonfatal_once(count > 0);
while (i < smartlist_len(summary) &&
AT(i)->prt_max <= prt_max) {
if (AT(i)->reject_count <= UINT64_MAX - count) {
AT(i)->reject_count += count;
} else {
/* IPv4 would require a 4-billion address redundant policy to get here,
* but IPv6 just needs to have ::/0 */
if (family == AF_INET) {
tor_assert_nonfatal_unreached_once();
}
/* If we do get here, use saturating arithmetic */
AT(i)->reject_count = UINT64_MAX;
}
i++;
}
tor_assert(i < smartlist_len(summary) || prt_max==65535);
}
/** Add a single exit policy item to our summary:
*
* If it is an accept, ignore it unless it is for all IP addresses
* ("*", i.e. its prefixlen/maskbits is 0). Otherwise call
* policy_summary_accept().
*
* If it is a reject, ignore it if it is about one of the private
* networks. Otherwise call policy_summary_reject().
*/
static void
policy_summary_add_item(smartlist_t *summary, addr_policy_t *p)
{
if (p->policy_type == ADDR_POLICY_ACCEPT) {
if (p->maskbits == 0) {
policy_summary_accept(summary, p->prt_min, p->prt_max, p->addr.family);
}
} else if (p->policy_type == ADDR_POLICY_REJECT) {
int is_private = 0;
int i;
for (i = 0; private_nets[i]; ++i) {
tor_addr_t addr;
maskbits_t maskbits;
if (tor_addr_parse_mask_ports(private_nets[i], 0, &addr,
&maskbits, NULL, NULL)<0) {
tor_assert(0);
}
if (tor_addr_compare(&p->addr, &addr, CMP_EXACT) == 0 &&
p->maskbits == maskbits) {
is_private = 1;
break;
}
}
if (!is_private) {
policy_summary_reject(summary, p->maskbits, p->prt_min, p->prt_max,
p->addr.family);
}
} else
tor_assert(0);
}
/** Create a string representing a summary for an exit policy.
* The summary will either be an "accept" plus a comma-separated list of port
* ranges or a "reject" plus port-ranges, depending on which is shorter.
*
* If no exits are allowed at all then "reject 1-65535" is returned. If no
* ports are blocked instead of "reject " we return "accept 1-65535". (These
* are an exception to the shorter-representation-wins rule).
*/
char *
policy_summarize(smartlist_t *policy, sa_family_t family)
{
smartlist_t *summary = policy_summary_create();
smartlist_t *accepts, *rejects;
int i, last, start_prt;
size_t accepts_len, rejects_len;
char *accepts_str = NULL, *rejects_str = NULL, *shorter_str, *result;
const char *prefix;
tor_assert(policy);
/* Create the summary list */
SMARTLIST_FOREACH_BEGIN(policy, addr_policy_t *, p) {
sa_family_t f = tor_addr_family(&p->addr);
if (f != AF_INET && f != AF_INET6) {
log_warn(LD_BUG, "Weird family when summarizing address policy");
}
if (f != family)
continue;
policy_summary_add_item(summary, p);
} SMARTLIST_FOREACH_END(p);
/* Now create two lists of strings, one for accepted and one
* for rejected ports. We take care to merge ranges so that
* we avoid getting stuff like "1-4,5-9,10", instead we want
* "1-10"
*/
i = 0;
start_prt = 1;
accepts = smartlist_new();
rejects = smartlist_new();
while (1) {
last = i == smartlist_len(summary)-1;
if (last ||
AT(i)->accepted != AT(i+1)->accepted) {
char buf[POLICY_BUF_LEN];
if (start_prt == AT(i)->prt_max)
tor_snprintf(buf, sizeof(buf), "%d", start_prt);
else
tor_snprintf(buf, sizeof(buf), "%d-%d", start_prt, AT(i)->prt_max);
if (AT(i)->accepted)
smartlist_add_strdup(accepts, buf);
else
smartlist_add_strdup(rejects, buf);
if (last)
break;
start_prt = AT(i+1)->prt_min;
};
i++;
};
/* Figure out which of the two stringlists will be shorter and use
* that to build the result
*/
if (smartlist_len(accepts) == 0) { /* no exits at all */
result = tor_strdup("reject 1-65535");
goto cleanup;
}
if (smartlist_len(rejects) == 0) { /* no rejects at all */
result = tor_strdup("accept 1-65535");
goto cleanup;
}
accepts_str = smartlist_join_strings(accepts, ",", 0, &accepts_len);
rejects_str = smartlist_join_strings(rejects, ",", 0, &rejects_len);
if (rejects_len > MAX_EXITPOLICY_SUMMARY_LEN-strlen("reject")-1 &&
accepts_len > MAX_EXITPOLICY_SUMMARY_LEN-strlen("accept")-1) {
char *c;
shorter_str = accepts_str;
prefix = "accept";
c = shorter_str + (MAX_EXITPOLICY_SUMMARY_LEN-strlen(prefix)-1);
while (*c != ',' && c >= shorter_str)
c--;
tor_assert(c >= shorter_str);
tor_assert(*c == ',');
*c = '\0';
} else if (rejects_len < accepts_len) {
shorter_str = rejects_str;
prefix = "reject";
} else {
shorter_str = accepts_str;
prefix = "accept";
}
tor_asprintf(&result, "%s %s", prefix, shorter_str);
cleanup:
/* cleanup */
SMARTLIST_FOREACH(summary, policy_summary_item_t *, s, tor_free(s));
smartlist_free(summary);
tor_free(accepts_str);
SMARTLIST_FOREACH(accepts, char *, s, tor_free(s));
smartlist_free(accepts);
tor_free(rejects_str);
SMARTLIST_FOREACH(rejects, char *, s, tor_free(s));
smartlist_free(rejects);
return result;
}
/** Convert a summarized policy string into a short_policy_t. Return NULL
* if the string is not well-formed. */
short_policy_t *
parse_short_policy(const char *summary)
{
const char *orig_summary = summary;
short_policy_t *result;
int is_accept;
int n_entries;
short_policy_entry_t entries[MAX_EXITPOLICY_SUMMARY_LEN]; /* overkill */
const char *next;
if (!strcmpstart(summary, "accept ")) {
is_accept = 1;
summary += strlen("accept ");
} else if (!strcmpstart(summary, "reject ")) {
is_accept = 0;
summary += strlen("reject ");
} else {
log_fn(LOG_PROTOCOL_WARN, LD_DIR, "Unrecognized policy summary keyword");
return NULL;
}
n_entries = 0;
for ( ; *summary; summary = next) {
const char *comma = strchr(summary, ',');
unsigned low, high;
char dummy;
char ent_buf[32];
size_t len;
next = comma ? comma+1 : strchr(summary, '\0');
len = comma ? (size_t)(comma - summary) : strlen(summary);
if (n_entries == MAX_EXITPOLICY_SUMMARY_LEN) {
log_fn(LOG_PROTOCOL_WARN, LD_DIR, "Impossibly long policy summary %s",
escaped(orig_summary));
return NULL;
}
if (! TOR_ISDIGIT(*summary) || len > (sizeof(ent_buf)-1)) {
/* unrecognized entry format. skip it. */
continue;
}
if (len < 1) {
/* empty; skip it. */
/* XXX This happens to be unreachable, since if len==0, then *summary is
* ',' or '\0', and the TOR_ISDIGIT test above would have failed. */
continue;
}
memcpy(ent_buf, summary, len);
ent_buf[len] = '\0';
if (tor_sscanf(ent_buf, "%u-%u%c", &low, &high, &dummy) == 2) {
if (low<1 || low>65535 || high<1 || high>65535 || low>high) {
log_fn(LOG_PROTOCOL_WARN, LD_DIR,
"Found bad entry in policy summary %s", escaped(orig_summary));
return NULL;
}
} else if (tor_sscanf(ent_buf, "%u%c", &low, &dummy) == 1) {
if (low<1 || low>65535) {
log_fn(LOG_PROTOCOL_WARN, LD_DIR,
"Found bad entry in policy summary %s", escaped(orig_summary));
return NULL;
}
high = low;
} else {
log_fn(LOG_PROTOCOL_WARN, LD_DIR,"Found bad entry in policy summary %s",
escaped(orig_summary));
return NULL;
}
entries[n_entries].min_port = low;
entries[n_entries].max_port = high;
n_entries++;
}
if (n_entries == 0) {
log_fn(LOG_PROTOCOL_WARN, LD_DIR,
"Found no port-range entries in summary %s", escaped(orig_summary));
return NULL;
}
{
size_t size = offsetof(short_policy_t, entries) +
sizeof(short_policy_entry_t)*(n_entries);
result = tor_malloc_zero(size);
tor_assert( (char*)&result->entries[n_entries-1] < ((char*)result)+size);
}
result->is_accept = is_accept;
result->n_entries = n_entries;
memcpy(result->entries, entries, sizeof(short_policy_entry_t)*n_entries);
return result;
}
/** Write <b>policy</b> back out into a string. */
char *
write_short_policy(const short_policy_t *policy)
{
int i;
char *answer;
smartlist_t *sl = smartlist_new();
smartlist_add_asprintf(sl, "%s", policy->is_accept ? "accept " : "reject ");
for (i=0; i < policy->n_entries; i++) {
const short_policy_entry_t *e = &policy->entries[i];
if (e->min_port == e->max_port) {
smartlist_add_asprintf(sl, "%d", e->min_port);
} else {
smartlist_add_asprintf(sl, "%d-%d", e->min_port, e->max_port);
}
if (i < policy->n_entries-1)
smartlist_add_strdup(sl, ",");
}
answer = smartlist_join_strings(sl, "", 0, NULL);
SMARTLIST_FOREACH(sl, char *, a, tor_free(a));
smartlist_free(sl);
return answer;
}
/** Release all storage held in <b>policy</b>. */
void
short_policy_free(short_policy_t *policy)
{
tor_free(policy);
}
/** See whether the <b>addr</b>:<b>port</b> address is likely to be accepted
* or rejected by the summarized policy <b>policy</b>. Return values are as
* for compare_tor_addr_to_addr_policy. Unlike the regular addr_policy
* functions, requires the <b>port</b> be specified. */
addr_policy_result_t
compare_tor_addr_to_short_policy(const tor_addr_t *addr, uint16_t port,
const short_policy_t *policy)
{
int i;
int found_match = 0;
int accept_;
tor_assert(port != 0);
if (addr && tor_addr_is_null(addr))
addr = NULL; /* Unspec means 'no address at all,' in this context. */
if (addr && get_options()->ClientRejectInternalAddresses &&
(tor_addr_is_internal(addr, 0) || tor_addr_is_loopback(addr)))
return ADDR_POLICY_REJECTED;
for (i=0; i < policy->n_entries; ++i) {
const short_policy_entry_t *e = &policy->entries[i];
if (e->min_port <= port && port <= e->max_port) {
found_match = 1;
break;
}
}
if (found_match)
accept_ = policy->is_accept;
else
accept_ = ! policy->is_accept;
/* ???? are these right? -NM */
/* We should be sure not to return ADDR_POLICY_ACCEPTED in the accept
* case here, because it would cause clients to believe that the node
* allows exit enclaving. Trying it anyway would open up a cool attack
* where the node refuses due to exitpolicy, the client reacts in
* surprise by rewriting the node's exitpolicy to reject *:*, and then
* an adversary targets users by causing them to attempt such connections
* to 98% of the exits.
*
* Once microdescriptors can handle addresses in special cases (e.g. if
* we ever solve ticket 1774), we can provide certainty here. -RD */
if (accept_)
return ADDR_POLICY_PROBABLY_ACCEPTED;
else
return ADDR_POLICY_REJECTED;
}
/** Return true iff <b>policy</b> seems reject all ports */
int
short_policy_is_reject_star(const short_policy_t *policy)
{
/* This doesn't need to be as much on the lookout as policy_is_reject_star,
* since policy summaries are from the consensus or from consensus
* microdescs.
*/
tor_assert(policy);
/* Check for an exact match of "reject 1-65535". */
return (policy->is_accept == 0 && policy->n_entries == 1 &&
policy->entries[0].min_port == 1 &&
policy->entries[0].max_port == 65535);
}
/** Decide whether addr:port is probably or definitely accepted or rejected by
* <b>node</b>. See compare_tor_addr_to_addr_policy for details on addr/port
* interpretation. */
addr_policy_result_t
compare_tor_addr_to_node_policy(const tor_addr_t *addr, uint16_t port,
const node_t *node)
{
if (node->rejects_all)
return ADDR_POLICY_REJECTED;
if (addr && tor_addr_family(addr) == AF_INET6) {
const short_policy_t *p = NULL;
if (node->ri)
p = node->ri->ipv6_exit_policy;
else if (node->md)
p = node->md->ipv6_exit_policy;
if (p)
return compare_tor_addr_to_short_policy(addr, port, p);
else
return ADDR_POLICY_REJECTED;
}
if (node->ri) {
return compare_tor_addr_to_addr_policy(addr, port, node->ri->exit_policy);
} else if (node->md) {
if (node->md->exit_policy == NULL)
return ADDR_POLICY_REJECTED;
else
return compare_tor_addr_to_short_policy(addr, port,
node->md->exit_policy);
} else {
return ADDR_POLICY_PROBABLY_REJECTED;
}
}
/**
* Given <b>policy_list</b>, a list of addr_policy_t, produce a string
* representation of the list.
* If <b>include_ipv4</b> is true, include IPv4 entries.
* If <b>include_ipv6</b> is true, include IPv6 entries.
*/
char *
policy_dump_to_string(const smartlist_t *policy_list,
int include_ipv4,
int include_ipv6)
{
smartlist_t *policy_string_list;
char *policy_string = NULL;
policy_string_list = smartlist_new();
SMARTLIST_FOREACH_BEGIN(policy_list, addr_policy_t *, tmpe) {
char *pbuf;
int bytes_written_to_pbuf;
if ((tor_addr_family(&tmpe->addr) == AF_INET6) && (!include_ipv6)) {
continue; /* Don't include IPv6 parts of address policy */
}
if ((tor_addr_family(&tmpe->addr) == AF_INET) && (!include_ipv4)) {
continue; /* Don't include IPv4 parts of address policy */
}
pbuf = tor_malloc(POLICY_BUF_LEN);
bytes_written_to_pbuf = policy_write_item(pbuf,POLICY_BUF_LEN, tmpe, 1);
if (bytes_written_to_pbuf < 0) {
log_warn(LD_BUG, "policy_dump_to_string ran out of room!");
tor_free(pbuf);
goto done;
}
smartlist_add(policy_string_list,pbuf);
} SMARTLIST_FOREACH_END(tmpe);
policy_string = smartlist_join_strings(policy_string_list, "\n", 0, NULL);
done:
SMARTLIST_FOREACH(policy_string_list, char *, str, tor_free(str));
smartlist_free(policy_string_list);
return policy_string;
}
/** Implementation for GETINFO control command: knows the answer for questions
* about "exit-policy/..." */
int
getinfo_helper_policies(control_connection_t *conn,
const char *question, char **answer,
const char **errmsg)
{
(void) conn;
(void) errmsg;
if (!strcmp(question, "exit-policy/default")) {
*answer = tor_strdup(DEFAULT_EXIT_POLICY);
} else if (!strcmp(question, "exit-policy/reject-private/default")) {
smartlist_t *private_policy_strings;
const char **priv = private_nets;
private_policy_strings = smartlist_new();
while (*priv != NULL) {
/* IPv6 addresses are in "[]" and contain ":",
* IPv4 addresses are not in "[]" and contain "." */
smartlist_add_asprintf(private_policy_strings, "reject %s:*", *priv);
priv++;
}
*answer = smartlist_join_strings(private_policy_strings,
",", 0, NULL);
SMARTLIST_FOREACH(private_policy_strings, char *, str, tor_free(str));
smartlist_free(private_policy_strings);
} else if (!strcmp(question, "exit-policy/reject-private/relay")) {
const or_options_t *options = get_options();
const routerinfo_t *me = router_get_my_routerinfo();
if (!me) {
*errmsg = "router_get_my_routerinfo returned NULL";
return -1;
}
if (!options->ExitPolicyRejectPrivate &&
!options->ExitPolicyRejectLocalInterfaces) {
*answer = tor_strdup("");
return 0;
}
smartlist_t *private_policy_list = smartlist_new();
smartlist_t *configured_addresses = smartlist_new();
/* Copy the configured addresses into the tor_addr_t* list */
if (options->ExitPolicyRejectPrivate) {
policies_copy_ipv4h_to_smartlist(configured_addresses, me->addr);
policies_copy_addr_to_smartlist(configured_addresses, &me->ipv6_addr);
}
if (options->ExitPolicyRejectLocalInterfaces) {
policies_copy_outbound_addresses_to_smartlist(configured_addresses,
options);
}
policies_parse_exit_policy_reject_private(
&private_policy_list,
options->IPv6Exit,
configured_addresses,
options->ExitPolicyRejectLocalInterfaces,
options->ExitPolicyRejectLocalInterfaces);
*answer = policy_dump_to_string(private_policy_list, 1, 1);
addr_policy_list_free(private_policy_list);
SMARTLIST_FOREACH(configured_addresses, tor_addr_t *, a, tor_free(a));
smartlist_free(configured_addresses);
} else if (!strcmpstart(question, "exit-policy/")) {
const routerinfo_t *me = router_get_my_routerinfo();
int include_ipv4 = 0;
int include_ipv6 = 0;
if (!strcmp(question, "exit-policy/ipv4")) {
include_ipv4 = 1;
} else if (!strcmp(question, "exit-policy/ipv6")) {
include_ipv6 = 1;
} else if (!strcmp(question, "exit-policy/full")) {
include_ipv4 = include_ipv6 = 1;
} else {
return 0; /* No such key. */
}
if (!me) {
*errmsg = "router_get_my_routerinfo returned NULL";
return -1;
}
*answer = router_dump_exit_policy_to_string(me,include_ipv4,include_ipv6);
}
return 0;
}
/** Release all storage held by <b>p</b>. */
void
addr_policy_list_free(smartlist_t *lst)
{
if (!lst)
return;
SMARTLIST_FOREACH(lst, addr_policy_t *, policy, addr_policy_free(policy));
smartlist_free(lst);
}
/** Release all storage held by <b>p</b>. */
void
addr_policy_free(addr_policy_t *p)
{
if (!p)
return;
if (--p->refcnt <= 0) {
if (p->is_canonical) {
policy_map_ent_t search, *found;
search.policy = p;
found = HT_REMOVE(policy_map, &policy_root, &search);
if (found) {
tor_assert(p == found->policy);
tor_free(found);
}
}
tor_free(p);
}
}
/** Release all storage held by policy variables. */
void
policies_free_all(void)
{
addr_policy_list_free(reachable_or_addr_policy);
reachable_or_addr_policy = NULL;
addr_policy_list_free(reachable_dir_addr_policy);
reachable_dir_addr_policy = NULL;
addr_policy_list_free(socks_policy);
socks_policy = NULL;
addr_policy_list_free(dir_policy);
dir_policy = NULL;
addr_policy_list_free(authdir_reject_policy);
authdir_reject_policy = NULL;
addr_policy_list_free(authdir_invalid_policy);
authdir_invalid_policy = NULL;
addr_policy_list_free(authdir_badexit_policy);
authdir_badexit_policy = NULL;
if (!HT_EMPTY(&policy_root)) {
policy_map_ent_t **ent;
int n = 0;
char buf[POLICY_BUF_LEN];
log_warn(LD_MM, "Still had %d address policies cached at shutdown.",
(int)HT_SIZE(&policy_root));
/* Note the first 10 cached policies to try to figure out where they
* might be coming from. */
HT_FOREACH(ent, policy_map, &policy_root) {
if (++n > 10)
break;
if (policy_write_item(buf, sizeof(buf), (*ent)->policy, 0) >= 0)
log_warn(LD_MM," %d [%d]: %s", n, (*ent)->policy->refcnt, buf);
}
}
HT_CLEAR(policy_map, &policy_root);
}