tor/src/common/util.c
Nick Mathewson e802199cb3 Initial patch to build Tor with msvc and nmake
We'll still need to tweak it so that it looks for includes and
libraries somewhere more sensible than "where we happened to find
them on Erinn's system"; so that tests and tools get built too;
so that it's a bit documented; and so that we actually try running
the output.

Work done with Erinn Clark.
2011-08-01 12:36:59 -04:00

3378 lines
90 KiB
C

/* Copyright (c) 2003, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2011, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file util.c
* \brief Common functions for strings, IO, network, data structures,
* process control.
**/
/* This is required on rh7 to make strptime not complain.
*/
#define _GNU_SOURCE
#include "orconfig.h"
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#define UTIL_PRIVATE
#include "util.h"
#include "torlog.h"
#undef log
#include "crypto.h"
#include "torint.h"
#include "container.h"
#include "address.h"
#ifdef MS_WINDOWS
#include <io.h>
#include <direct.h>
#include <process.h>
#include <tchar.h>
#else
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#endif
/* math.h needs this on Linux */
#ifndef __USE_ISOC99
#define __USE_ISOC99 1
#endif
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#ifndef OPENBSD
/* OpenBSD has a malloc.h, but for our purposes, it only exists in order to
* scold us for being so stupid as to autodetect its presence. To be fair,
* they've done this since 1996, when autoconf was only 5 years old. */
#include <malloc.h>
#endif
#endif
#ifdef HAVE_MALLOC_NP_H
#include <malloc_np.h>
#endif
/* =====
* Memory management
* ===== */
#ifdef USE_DMALLOC
#undef strndup
#include <dmalloc.h>
/* Macro to pass the extra dmalloc args to another function. */
#define DMALLOC_FN_ARGS , file, line
#if defined(HAVE_DMALLOC_STRDUP)
/* the dmalloc_strdup should be fine as defined */
#elif defined(HAVE_DMALLOC_STRNDUP)
#define dmalloc_strdup(file, line, string, xalloc_b) \
dmalloc_strndup(file, line, (string), -1, xalloc_b)
#else
#error "No dmalloc_strdup or equivalent"
#endif
#else /* not using dmalloc */
#define DMALLOC_FN_ARGS
#endif
/** Allocate a chunk of <b>size</b> bytes of memory, and return a pointer to
* result. On error, log and terminate the process. (Same as malloc(size),
* but never returns NULL.)
*
* <b>file</b> and <b>line</b> are used if dmalloc is enabled, and
* ignored otherwise.
*/
void *
_tor_malloc(size_t size DMALLOC_PARAMS)
{
void *result;
tor_assert(size < SIZE_T_CEILING);
#ifndef MALLOC_ZERO_WORKS
/* Some libc mallocs don't work when size==0. Override them. */
if (size==0) {
size=1;
}
#endif
#ifdef USE_DMALLOC
result = dmalloc_malloc(file, line, size, DMALLOC_FUNC_MALLOC, 0, 0);
#else
result = malloc(size);
#endif
if (PREDICT_UNLIKELY(result == NULL)) {
log_err(LD_MM,"Out of memory on malloc(). Dying.");
/* If these functions die within a worker process, they won't call
* spawn_exit, but that's ok, since the parent will run out of memory soon
* anyway. */
exit(1);
}
return result;
}
/** Allocate a chunk of <b>size</b> bytes of memory, fill the memory with
* zero bytes, and return a pointer to the result. Log and terminate
* the process on error. (Same as calloc(size,1), but never returns NULL.)
*/
void *
_tor_malloc_zero(size_t size DMALLOC_PARAMS)
{
/* You may ask yourself, "wouldn't it be smart to use calloc instead of
* malloc+memset? Perhaps libc's calloc knows some nifty optimization trick
* we don't!" Indeed it does, but its optimizations are only a big win when
* we're allocating something very big (it knows if it just got the memory
* from the OS in a pre-zeroed state). We don't want to use tor_malloc_zero
* for big stuff, so we don't bother with calloc. */
void *result = _tor_malloc(size DMALLOC_FN_ARGS);
memset(result, 0, size);
return result;
}
/** Change the size of the memory block pointed to by <b>ptr</b> to <b>size</b>
* bytes long; return the new memory block. On error, log and
* terminate. (Like realloc(ptr,size), but never returns NULL.)
*/
void *
_tor_realloc(void *ptr, size_t size DMALLOC_PARAMS)
{
void *result;
tor_assert(size < SIZE_T_CEILING);
#ifdef USE_DMALLOC
result = dmalloc_realloc(file, line, ptr, size, DMALLOC_FUNC_REALLOC, 0);
#else
result = realloc(ptr, size);
#endif
if (PREDICT_UNLIKELY(result == NULL)) {
log_err(LD_MM,"Out of memory on realloc(). Dying.");
exit(1);
}
return result;
}
/** Return a newly allocated copy of the NUL-terminated string s. On
* error, log and terminate. (Like strdup(s), but never returns
* NULL.)
*/
char *
_tor_strdup(const char *s DMALLOC_PARAMS)
{
char *dup;
tor_assert(s);
#ifdef USE_DMALLOC
dup = dmalloc_strdup(file, line, s, 0);
#else
dup = strdup(s);
#endif
if (PREDICT_UNLIKELY(dup == NULL)) {
log_err(LD_MM,"Out of memory on strdup(). Dying.");
exit(1);
}
return dup;
}
/** Allocate and return a new string containing the first <b>n</b>
* characters of <b>s</b>. If <b>s</b> is longer than <b>n</b>
* characters, only the first <b>n</b> are copied. The result is
* always NUL-terminated. (Like strndup(s,n), but never returns
* NULL.)
*/
char *
_tor_strndup(const char *s, size_t n DMALLOC_PARAMS)
{
char *dup;
tor_assert(s);
tor_assert(n < SIZE_T_CEILING);
dup = _tor_malloc((n+1) DMALLOC_FN_ARGS);
/* Performance note: Ordinarily we prefer strlcpy to strncpy. But
* this function gets called a whole lot, and platform strncpy is
* much faster than strlcpy when strlen(s) is much longer than n.
*/
strncpy(dup, s, n);
dup[n]='\0';
return dup;
}
/** Allocate a chunk of <b>len</b> bytes, with the same contents as the
* <b>len</b> bytes starting at <b>mem</b>. */
void *
_tor_memdup(const void *mem, size_t len DMALLOC_PARAMS)
{
char *dup;
tor_assert(len < SIZE_T_CEILING);
tor_assert(mem);
dup = _tor_malloc(len DMALLOC_FN_ARGS);
memcpy(dup, mem, len);
return dup;
}
/** Helper for places that need to take a function pointer to the right
* spelling of "free()". */
void
_tor_free(void *mem)
{
tor_free(mem);
}
#if defined(HAVE_MALLOC_GOOD_SIZE) && !defined(HAVE_MALLOC_GOOD_SIZE_PROTOTYPE)
/* Some version of Mac OSX have malloc_good_size in their libc, but not
* actually defined in malloc/malloc.h. We detect this and work around it by
* prototyping.
*/
extern size_t malloc_good_size(size_t size);
#endif
/** Allocate and return a chunk of memory of size at least *<b>size</b>, using
* the same resources we would use to malloc *<b>sizep</b>. Set *<b>sizep</b>
* to the number of usable bytes in the chunk of memory. */
void *
_tor_malloc_roundup(size_t *sizep DMALLOC_PARAMS)
{
#ifdef HAVE_MALLOC_GOOD_SIZE
tor_assert(*sizep < SIZE_T_CEILING);
*sizep = malloc_good_size(*sizep);
return _tor_malloc(*sizep DMALLOC_FN_ARGS);
#elif 0 && defined(HAVE_MALLOC_USABLE_SIZE) && !defined(USE_DMALLOC)
/* Never use malloc_usable_size(); it makes valgrind really unhappy,
* and doesn't win much in terms of usable space where it exists. */
void *result;
tor_assert(*sizep < SIZE_T_CEILING);
result = _tor_malloc(*sizep DMALLOC_FN_ARGS);
*sizep = malloc_usable_size(result);
return result;
#else
return _tor_malloc(*sizep DMALLOC_FN_ARGS);
#endif
}
/** Call the platform malloc info function, and dump the results to the log at
* level <b>severity</b>. If no such function exists, do nothing. */
void
tor_log_mallinfo(int severity)
{
#ifdef HAVE_MALLINFO
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
mi = mallinfo();
tor_log(severity, LD_MM,
"mallinfo() said: arena=%d, ordblks=%d, smblks=%d, hblks=%d, "
"hblkhd=%d, usmblks=%d, fsmblks=%d, uordblks=%d, fordblks=%d, "
"keepcost=%d",
mi.arena, mi.ordblks, mi.smblks, mi.hblks,
mi.hblkhd, mi.usmblks, mi.fsmblks, mi.uordblks, mi.fordblks,
mi.keepcost);
#else
(void)severity;
#endif
#ifdef USE_DMALLOC
dmalloc_log_changed(0, /* Since the program started. */
1, /* Log info about non-freed pointers. */
0, /* Do not log info about freed pointers. */
0 /* Do not log individual pointers. */
);
#endif
}
/* =====
* Math
* ===== */
/**
* Returns the natural logarithm of d base 2. We define this wrapper here so
* as to make it easier not to conflict with Tor's log() macro.
*/
double
tor_mathlog(double d)
{
return log(d);
}
/** Return the long integer closest to d. We define this wrapper here so
* that not all users of math.h need to use the right incancations to get
* the c99 functions. */
long
tor_lround(double d)
{
return lround(d);
}
/** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */
int
tor_log2(uint64_t u64)
{
int r = 0;
if (u64 >= (U64_LITERAL(1)<<32)) {
u64 >>= 32;
r = 32;
}
if (u64 >= (U64_LITERAL(1)<<16)) {
u64 >>= 16;
r += 16;
}
if (u64 >= (U64_LITERAL(1)<<8)) {
u64 >>= 8;
r += 8;
}
if (u64 >= (U64_LITERAL(1)<<4)) {
u64 >>= 4;
r += 4;
}
if (u64 >= (U64_LITERAL(1)<<2)) {
u64 >>= 2;
r += 2;
}
if (u64 >= (U64_LITERAL(1)<<1)) {
u64 >>= 1;
r += 1;
}
return r;
}
/** Return the power of 2 closest to <b>u64</b>. */
uint64_t
round_to_power_of_2(uint64_t u64)
{
int lg2 = tor_log2(u64);
uint64_t low = U64_LITERAL(1) << lg2, high = U64_LITERAL(1) << (lg2+1);
if (high - u64 < u64 - low)
return high;
else
return low;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. */
unsigned
round_to_next_multiple_of(unsigned number, unsigned divisor)
{
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. */
uint32_t
round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor)
{
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. */
uint64_t
round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor)
{
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the number of bits set in <b>v</b>. */
int
n_bits_set_u8(uint8_t v)
{
static const int nybble_table[] = {
0, /* 0000 */
1, /* 0001 */
1, /* 0010 */
2, /* 0011 */
1, /* 0100 */
2, /* 0101 */
2, /* 0110 */
3, /* 0111 */
1, /* 1000 */
2, /* 1001 */
2, /* 1010 */
3, /* 1011 */
2, /* 1100 */
3, /* 1101 */
3, /* 1110 */
4, /* 1111 */
};
return nybble_table[v & 15] + nybble_table[v>>4];
}
/* =====
* String manipulation
* ===== */
/** Remove from the string <b>s</b> every character which appears in
* <b>strip</b>. */
void
tor_strstrip(char *s, const char *strip)
{
char *read = s;
while (*read) {
if (strchr(strip, *read)) {
++read;
} else {
*s++ = *read++;
}
}
*s = '\0';
}
/** Return a pointer to a NUL-terminated hexadecimal string encoding
* the first <b>fromlen</b> bytes of <b>from</b>. (fromlen must be \<= 32.) The
* result does not need to be deallocated, but repeated calls to
* hex_str will trash old results.
*/
const char *
hex_str(const char *from, size_t fromlen)
{
static char buf[65];
if (fromlen>(sizeof(buf)-1)/2)
fromlen = (sizeof(buf)-1)/2;
base16_encode(buf,sizeof(buf),from,fromlen);
return buf;
}
/** Convert all alphabetic characters in the nul-terminated string <b>s</b> to
* lowercase. */
void
tor_strlower(char *s)
{
while (*s) {
*s = TOR_TOLOWER(*s);
++s;
}
}
/** Convert all alphabetic characters in the nul-terminated string <b>s</b> to
* lowercase. */
void
tor_strupper(char *s)
{
while (*s) {
*s = TOR_TOUPPER(*s);
++s;
}
}
/** Return 1 if every character in <b>s</b> is printable, else return 0.
*/
int
tor_strisprint(const char *s)
{
while (*s) {
if (!TOR_ISPRINT(*s))
return 0;
s++;
}
return 1;
}
/** Return 1 if no character in <b>s</b> is uppercase, else return 0.
*/
int
tor_strisnonupper(const char *s)
{
while (*s) {
if (TOR_ISUPPER(*s))
return 0;
s++;
}
return 1;
}
/** As strcmp, except that either string may be NULL. The NULL string is
* considered to be before any non-NULL string. */
int
strcmp_opt(const char *s1, const char *s2)
{
if (!s1) {
if (!s2)
return 0;
else
return -1;
} else if (!s2) {
return 1;
} else {
return strcmp(s1, s2);
}
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncmp(s1, s2, n);
}
/** Compare the s1_len-byte string <b>s1</b> with <b>s2</b>,
* without depending on a terminating nul in s1. Sorting order is first by
* length, then lexically; return values are as for strcmp.
*/
int
strcmp_len(const char *s1, const char *s2, size_t s1_len)
{
size_t s2_len = strlen(s2);
if (s1_len < s2_len)
return -1;
if (s1_len > s2_len)
return 1;
return fast_memcmp(s1, s2, s2_len);
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncasecmp(s1, s2, n);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1)
return strcmp(s1,s2);
else
return strncmp(s1+(n1-n2), s2, n2);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1) /* then they can't be the same; figure out which is bigger */
return strcasecmp(s1,s2);
else
return strncasecmp(s1+(n1-n2), s2, n2);
}
/** Compare the value of the string <b>prefix</b> with the start of the
* <b>memlen</b>-byte memory chunk at <b>mem</b>. Return as for strcmp.
*
* [As fast_memcmp(mem, prefix, strlen(prefix)) but returns -1 if memlen is
* less than strlen(prefix).]
*/
int
fast_memcmpstart(const void *mem, size_t memlen,
const char *prefix)
{
size_t plen = strlen(prefix);
if (memlen < plen)
return -1;
return fast_memcmp(mem, prefix, plen);
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace(const char *s)
{
tor_assert(s);
while (1) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (*s && *s != '\n')
++s;
}
}
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace_eos(const char *s, const char *eos)
{
tor_assert(s);
tor_assert(eos && s <= eos);
while (s < eos) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (s < eos && *s && *s != '\n')
++s;
}
}
return s;
}
/** Return a pointer to the first char of s that is not a space or a tab
* or a \\r, or to the terminating NUL if no such character exists. */
const char *
eat_whitespace_no_nl(const char *s)
{
while (*s == ' ' || *s == '\t' || *s == '\r')
++s;
return s;
}
/** As eat_whitespace_no_nl, but stop at <b>eos</b> whether we have
* found a non-whitespace character or not. */
const char *
eat_whitespace_eos_no_nl(const char *s, const char *eos)
{
while (s < eos && (*s == ' ' || *s == '\t' || *s == '\r'))
++s;
return s;
}
/** Return a pointer to the first char of s that is whitespace or <b>#</b>,
* or to the terminating NUL if no such character exists.
*/
const char *
find_whitespace(const char *s)
{
/* tor_assert(s); */
while (1) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
}
/** As find_whitespace, but stop at <b>eos</b> whether we have found a
* whitespace or not. */
const char *
find_whitespace_eos(const char *s, const char *eos)
{
/* tor_assert(s); */
while (s < eos) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
return s;
}
/** Return the first occurrence of <b>needle</b> in <b>haystack</b> that
* occurs at the start of a line (that is, at the beginning of <b>haystack</b>
* or immediately after a newline). Return NULL if no such string is found.
*/
const char *
find_str_at_start_of_line(const char *haystack, const char *needle)
{
size_t needle_len = strlen(needle);
do {
if (!strncmp(haystack, needle, needle_len))
return haystack;
haystack = strchr(haystack, '\n');
if (!haystack)
return NULL;
else
++haystack;
} while (*haystack);
return NULL;
}
/** Return true iff the 'len' bytes at 'mem' are all zero. */
int
tor_mem_is_zero(const char *mem, size_t len)
{
static const char ZERO[] = {
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
};
while (len >= sizeof(ZERO)) {
/* It's safe to use fast_memcmp here, since the very worst thing an
* attacker could learn is how many initial bytes of a secret were zero */
if (fast_memcmp(mem, ZERO, sizeof(ZERO)))
return 0;
len -= sizeof(ZERO);
mem += sizeof(ZERO);
}
/* Deal with leftover bytes. */
if (len)
return fast_memeq(mem, ZERO, len);
return 1;
}
/** Return true iff the DIGEST_LEN bytes in digest are all zero. */
int
tor_digest_is_zero(const char *digest)
{
static const uint8_t ZERO_DIGEST[] = {
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
};
return tor_memeq(digest, ZERO_DIGEST, DIGEST_LEN);
}
/** Return true iff the DIGEST256_LEN bytes in digest are all zero. */
int
tor_digest256_is_zero(const char *digest)
{
return tor_mem_is_zero(digest, DIGEST256_LEN);
}
/* Helper: common code to check whether the result of a strtol or strtoul or
* strtoll is correct. */
#define CHECK_STRTOX_RESULT() \
/* Was at least one character converted? */ \
if (endptr == s) \
goto err; \
/* Were there unexpected unconverted characters? */ \
if (!next && *endptr) \
goto err; \
/* Is r within limits? */ \
if (r < min || r > max) \
goto err; \
if (ok) *ok = 1; \
if (next) *next = endptr; \
return r; \
err: \
if (ok) *ok = 0; \
if (next) *next = endptr; \
return 0
/** Extract a long from the start of <b>s</b>, in the given numeric
* <b>base</b>. If <b>base</b> is 0, <b>s</b> is parsed as a decimal,
* octal, or hex number in the syntax of a C integer literal. If
* there is unconverted data and <b>next</b> is provided, set
* *<b>next</b> to the first unconverted character. An error has
* occurred if no characters are converted; or if there are
* unconverted characters and <b>next</b> is NULL; or if the parsed
* value is not between <b>min</b> and <b>max</b>. When no error
* occurs, return the parsed value and set *<b>ok</b> (if provided) to
* 1. When an error occurs, return 0 and set *<b>ok</b> (if provided)
* to 0.
*/
long
tor_parse_long(const char *s, int base, long min, long max,
int *ok, char **next)
{
char *endptr;
long r;
r = strtol(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long(), but return an unsigned long. */
unsigned long
tor_parse_ulong(const char *s, int base, unsigned long min,
unsigned long max, int *ok, char **next)
{
char *endptr;
unsigned long r;
r = strtoul(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long(), but return a double. */
double
tor_parse_double(const char *s, double min, double max, int *ok, char **next)
{
char *endptr;
double r;
r = strtod(s, &endptr);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long, but return a uint64_t. Only base 10 is guaranteed to
* work for now. */
uint64_t
tor_parse_uint64(const char *s, int base, uint64_t min,
uint64_t max, int *ok, char **next)
{
char *endptr;
uint64_t r;
#ifdef HAVE_STRTOULL
r = (uint64_t)strtoull(s, &endptr, base);
#elif defined(MS_WINDOWS)
#if defined(_MSC_VER) && _MSC_VER < 1300
tor_assert(base <= 10);
r = (uint64_t)_atoi64(s);
endptr = (char*)s;
while (TOR_ISSPACE(*endptr)) endptr++;
while (TOR_ISDIGIT(*endptr)) endptr++;
#else
r = (uint64_t)_strtoui64(s, &endptr, base);
#endif
#elif SIZEOF_LONG == 8
r = (uint64_t)strtoul(s, &endptr, base);
#else
#error "I don't know how to parse 64-bit numbers."
#endif
CHECK_STRTOX_RESULT();
}
/** Encode the <b>srclen</b> bytes at <b>src</b> in a NUL-terminated,
* uppercase hexadecimal string; store it in the <b>destlen</b>-byte buffer
* <b>dest</b>.
*/
void
base16_encode(char *dest, size_t destlen, const char *src, size_t srclen)
{
const char *end;
char *cp;
tor_assert(destlen >= srclen*2+1);
tor_assert(destlen < SIZE_T_CEILING);
cp = dest;
end = src+srclen;
while (src<end) {
*cp++ = "0123456789ABCDEF"[ (*(const uint8_t*)src) >> 4 ];
*cp++ = "0123456789ABCDEF"[ (*(const uint8_t*)src) & 0xf ];
++src;
}
*cp = '\0';
}
/** Helper: given a hex digit, return its value, or -1 if it isn't hex. */
static INLINE int
_hex_decode_digit(char c)
{
switch (c) {
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A': case 'a': return 10;
case 'B': case 'b': return 11;
case 'C': case 'c': return 12;
case 'D': case 'd': return 13;
case 'E': case 'e': return 14;
case 'F': case 'f': return 15;
default:
return -1;
}
}
/** Helper: given a hex digit, return its value, or -1 if it isn't hex. */
int
hex_decode_digit(char c)
{
return _hex_decode_digit(c);
}
/** Given a hexadecimal string of <b>srclen</b> bytes in <b>src</b>, decode it
* and store the result in the <b>destlen</b>-byte buffer at <b>dest</b>.
* Return 0 on success, -1 on failure. */
int
base16_decode(char *dest, size_t destlen, const char *src, size_t srclen)
{
const char *end;
int v1,v2;
if ((srclen % 2) != 0)
return -1;
if (destlen < srclen/2 || destlen > SIZE_T_CEILING)
return -1;
end = src+srclen;
while (src<end) {
v1 = _hex_decode_digit(*src);
v2 = _hex_decode_digit(*(src+1));
if (v1<0||v2<0)
return -1;
*(uint8_t*)dest = (v1<<4)|v2;
++dest;
src+=2;
}
return 0;
}
/** Allocate and return a new string representing the contents of <b>s</b>,
* surrounded by quotes and using standard C escapes.
*
* Generally, we use this for logging values that come in over the network to
* keep them from tricking users, and for sending certain values to the
* controller.
*
* We trust values from the resolver, OS, configuration file, and command line
* to not be maliciously ill-formed. We validate incoming routerdescs and
* SOCKS requests and addresses from BEGIN cells as they're parsed;
* afterwards, we trust them as non-malicious.
*/
char *
esc_for_log(const char *s)
{
const char *cp;
char *result, *outp;
size_t len = 3;
if (!s) {
return tor_strdup("(null)");
}
for (cp = s; *cp; ++cp) {
switch (*cp) {
case '\\':
case '\"':
case '\'':
case '\r':
case '\n':
case '\t':
len += 2;
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127)
++len;
else
len += 4;
break;
}
}
result = outp = tor_malloc(len);
*outp++ = '\"';
for (cp = s; *cp; ++cp) {
switch (*cp) {
case '\\':
case '\"':
case '\'':
*outp++ = '\\';
*outp++ = *cp;
break;
case '\n':
*outp++ = '\\';
*outp++ = 'n';
break;
case '\t':
*outp++ = '\\';
*outp++ = 't';
break;
case '\r':
*outp++ = '\\';
*outp++ = 'r';
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) {
*outp++ = *cp;
} else {
tor_snprintf(outp, 5, "\\%03o", (int)(uint8_t) *cp);
outp += 4;
}
break;
}
}
*outp++ = '\"';
*outp++ = 0;
return result;
}
/** Allocate and return a new string representing the contents of <b>s</b>,
* surrounded by quotes and using standard C escapes.
*
* THIS FUNCTION IS NOT REENTRANT. Don't call it from outside the main
* thread. Also, each call invalidates the last-returned value, so don't
* try log_warn(LD_GENERAL, "%s %s", escaped(a), escaped(b));
*/
const char *
escaped(const char *s)
{
static char *_escaped_val = NULL;
tor_free(_escaped_val);
if (s)
_escaped_val = esc_for_log(s);
else
_escaped_val = NULL;
return _escaped_val;
}
/** Rudimentary string wrapping code: given a un-wrapped <b>string</b> (no
* newlines!), break the string into newline-terminated lines of no more than
* <b>width</b> characters long (not counting newline) and insert them into
* <b>out</b> in order. Precede the first line with prefix0, and subsequent
* lines with prefixRest.
*/
/* This uses a stupid greedy wrapping algorithm right now:
* - For each line:
* - Try to fit as much stuff as possible, but break on a space.
* - If the first "word" of the line will extend beyond the allowable
* width, break the word at the end of the width.
*/
void
wrap_string(smartlist_t *out, const char *string, size_t width,
const char *prefix0, const char *prefixRest)
{
size_t p0Len, pRestLen, pCurLen;
const char *eos, *prefixCur;
tor_assert(out);
tor_assert(string);
tor_assert(width);
if (!prefix0)
prefix0 = "";
if (!prefixRest)
prefixRest = "";
p0Len = strlen(prefix0);
pRestLen = strlen(prefixRest);
tor_assert(width > p0Len && width > pRestLen);
eos = strchr(string, '\0');
tor_assert(eos);
pCurLen = p0Len;
prefixCur = prefix0;
while ((eos-string)+pCurLen > width) {
const char *eol = string + width - pCurLen;
while (eol > string && *eol != ' ')
--eol;
/* eol is now the last space that can fit, or the start of the string. */
if (eol > string) {
size_t line_len = (eol-string) + pCurLen + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, eol-string);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
string = eol + 1;
} else {
size_t line_len = width + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, width - pCurLen);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
string += width-pCurLen;
}
prefixCur = prefixRest;
pCurLen = pRestLen;
}
if (string < eos) {
size_t line_len = (eos-string) + pCurLen + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, eos-string);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
}
}
/* =====
* Time
* ===== */
/**
* Converts struct timeval to a double value.
* Preserves microsecond precision, but just barely.
* Error is approx +/- 0.1 usec when dealing with epoch values.
*/
double
tv_to_double(const struct timeval *tv)
{
double conv = tv->tv_sec;
conv += tv->tv_usec/1000000.0;
return conv;
}
/**
* Converts timeval to milliseconds.
*/
int64_t
tv_to_msec(const struct timeval *tv)
{
int64_t conv = ((int64_t)tv->tv_sec)*1000L;
/* Round ghetto-style */
conv += ((int64_t)tv->tv_usec+500)/1000L;
return conv;
}
/**
* Converts timeval to microseconds.
*/
int64_t
tv_to_usec(const struct timeval *tv)
{
int64_t conv = ((int64_t)tv->tv_sec)*1000000L;
conv += tv->tv_usec;
return conv;
}
/** Return the number of microseconds elapsed between *start and *end.
*/
long
tv_udiff(const struct timeval *start, const struct timeval *end)
{
long udiff;
long secdiff = end->tv_sec - start->tv_sec;
if (labs(secdiff+1) > LONG_MAX/1000000) {
log_warn(LD_GENERAL, "comparing times on microsecond detail too far "
"apart: %ld seconds", secdiff);
return LONG_MAX;
}
udiff = secdiff*1000000L + (end->tv_usec - start->tv_usec);
return udiff;
}
/** Return the number of milliseconds elapsed between *start and *end.
*/
long
tv_mdiff(const struct timeval *start, const struct timeval *end)
{
long mdiff;
long secdiff = end->tv_sec - start->tv_sec;
if (labs(secdiff+1) > LONG_MAX/1000) {
log_warn(LD_GENERAL, "comparing times on millisecond detail too far "
"apart: %ld seconds", secdiff);
return LONG_MAX;
}
/* Subtract and round */
mdiff = secdiff*1000L +
((long)end->tv_usec - (long)start->tv_usec + 500L) / 1000L;
return mdiff;
}
/** Yield true iff <b>y</b> is a leap-year. */
#define IS_LEAPYEAR(y) (!(y % 4) && ((y % 100) || !(y % 400)))
/** Helper: Return the number of leap-days between Jan 1, y1 and Jan 1, y2. */
static int
n_leapdays(int y1, int y2)
{
--y1;
--y2;
return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400);
}
/** Number of days per month in non-leap year; used by tor_timegm. */
static const int days_per_month[] =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/** Return a time_t given a struct tm. The result is given in GMT, and
* does not account for leap seconds.
*/
time_t
tor_timegm(struct tm *tm)
{
/* This is a pretty ironclad timegm implementation, snarfed from Python2.2.
* It's way more brute-force than fiddling with tzset().
*/
time_t year, days, hours, minutes, seconds;
int i;
year = tm->tm_year + 1900;
if (year < 1970 || tm->tm_mon < 0 || tm->tm_mon > 11) {
log_warn(LD_BUG, "Out-of-range argument to tor_timegm");
return -1;
}
tor_assert(year < INT_MAX);
days = 365 * (year-1970) + n_leapdays(1970,(int)year);
for (i = 0; i < tm->tm_mon; ++i)
days += days_per_month[i];
if (tm->tm_mon > 1 && IS_LEAPYEAR(year))
++days;
days += tm->tm_mday - 1;
hours = days*24 + tm->tm_hour;
minutes = hours*60 + tm->tm_min;
seconds = minutes*60 + tm->tm_sec;
return seconds;
}
/* strftime is locale-specific, so we need to replace those parts */
/** A c-locale array of 3-letter names of weekdays, starting with Sun. */
static const char *WEEKDAY_NAMES[] =
{ "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
/** A c-locale array of 3-letter names of months, starting with Jan. */
static const char *MONTH_NAMES[] =
{ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
/** Set <b>buf</b> to the RFC1123 encoding of the GMT value of <b>t</b>.
* The buffer must be at least RFC1123_TIME_LEN+1 bytes long.
*
* (RFC1123 format is Fri, 29 Sep 2006 15:54:20 GMT)
*/
void
format_rfc1123_time(char *buf, time_t t)
{
struct tm tm;
tor_gmtime_r(&t, &tm);
strftime(buf, RFC1123_TIME_LEN+1, "___, %d ___ %Y %H:%M:%S GMT", &tm);
tor_assert(tm.tm_wday >= 0);
tor_assert(tm.tm_wday <= 6);
memcpy(buf, WEEKDAY_NAMES[tm.tm_wday], 3);
tor_assert(tm.tm_wday >= 0);
tor_assert(tm.tm_mon <= 11);
memcpy(buf+8, MONTH_NAMES[tm.tm_mon], 3);
}
/** Parse the RFC1123 encoding of some time (in GMT) from <b>buf</b>,
* and store the result in *<b>t</b>.
*
* Return 0 on success, -1 on failure.
*/
int
parse_rfc1123_time(const char *buf, time_t *t)
{
struct tm tm;
char month[4];
char weekday[4];
int i, m;
unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec;
if (strlen(buf) != RFC1123_TIME_LEN)
return -1;
memset(&tm, 0, sizeof(tm));
if (tor_sscanf(buf, "%3s, %2u %3s %u %2u:%2u:%2u GMT", weekday,
&tm_mday, month, &tm_year, &tm_hour,
&tm_min, &tm_sec) < 7) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc);
tor_free(esc);
return -1;
}
if (tm_mday > 31 || tm_hour > 23 || tm_min > 59 || tm_sec > 61) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc);
tor_free(esc);
return -1;
}
tm.tm_mday = (int)tm_mday;
tm.tm_year = (int)tm_year;
tm.tm_hour = (int)tm_hour;
tm.tm_min = (int)tm_min;
tm.tm_sec = (int)tm_sec;
m = -1;
for (i = 0; i < 12; ++i) {
if (!strcmp(month, MONTH_NAMES[i])) {
m = i;
break;
}
}
if (m<0) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s: No such month", esc);
tor_free(esc);
return -1;
}
tm.tm_mon = m;
if (tm.tm_year < 1970) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL,
"Got invalid RFC1123 time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
}
tm.tm_year -= 1900;
*t = tor_timegm(&tm);
return 0;
}
/** Set <b>buf</b> to the ISO8601 encoding of the local value of <b>t</b>.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*
* (ISO8601 format is 2006-10-29 10:57:20)
*/
void
format_local_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_localtime_r(&t, &tm));
}
/** Set <b>buf</b> to the ISO8601 encoding of the GMT value of <b>t</b>.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*/
void
format_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_gmtime_r(&t, &tm));
}
/** Given an ISO-formatted UTC time value (after the epoch) in <b>cp</b>,
* parse it and store its value in *<b>t</b>. Return 0 on success, -1 on
* failure. Ignore extraneous stuff in <b>cp</b> separated by whitespace from
* the end of the time string. */
int
parse_iso_time(const char *cp, time_t *t)
{
struct tm st_tm;
unsigned int year=0, month=0, day=0, hour=100, minute=100, second=100;
if (tor_sscanf(cp, "%u-%2u-%2u %2u:%2u:%2u", &year, &month,
&day, &hour, &minute, &second) < 6) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "ISO time %s was unparseable", esc);
tor_free(esc);
return -1;
}
if (year < 1970 || month < 1 || month > 12 || day < 1 || day > 31 ||
hour > 23 || minute > 59 || second > 61) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "ISO time %s was nonsensical", esc);
tor_free(esc);
return -1;
}
st_tm.tm_year = year-1900;
st_tm.tm_mon = month-1;
st_tm.tm_mday = day;
st_tm.tm_hour = hour;
st_tm.tm_min = minute;
st_tm.tm_sec = second;
if (st_tm.tm_year < 70) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "Got invalid ISO time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
}
*t = tor_timegm(&st_tm);
return 0;
}
/** Given a <b>date</b> in one of the three formats allowed by HTTP (ugh),
* parse it into <b>tm</b>. Return 0 on success, negative on failure. */
int
parse_http_time(const char *date, struct tm *tm)
{
const char *cp;
char month[4];
char wkday[4];
int i;
unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec;
tor_assert(tm);
memset(tm, 0, sizeof(*tm));
/* First, try RFC1123 or RFC850 format: skip the weekday. */
if ((cp = strchr(date, ','))) {
++cp;
if (tor_sscanf(date, "%2u %3s %4u %2u:%2u:%2u GMT",
&tm_mday, month, &tm_year,
&tm_hour, &tm_min, &tm_sec) == 6) {
/* rfc1123-date */
tm_year -= 1900;
} else if (tor_sscanf(date, "%2u-%3s-%2u %2u:%2u:%2u GMT",
&tm_mday, month, &tm_year,
&tm_hour, &tm_min, &tm_sec) == 6) {
/* rfc850-date */
} else {
return -1;
}
} else {
/* No comma; possibly asctime() format. */
if (tor_sscanf(date, "%3s %3s %2u %2u:%2u:%2u %4u",
wkday, month, &tm_mday,
&tm_hour, &tm_min, &tm_sec, &tm_year) == 7) {
tm_year -= 1900;
} else {
return -1;
}
}
tm->tm_mday = (int)tm_mday;
tm->tm_year = (int)tm_year;
tm->tm_hour = (int)tm_hour;
tm->tm_min = (int)tm_min;
tm->tm_sec = (int)tm_sec;
month[3] = '\0';
/* Okay, now decode the month. */
for (i = 0; i < 12; ++i) {
if (!strcasecmp(MONTH_NAMES[i], month)) {
tm->tm_mon = i+1;
}
}
if (tm->tm_year < 0 ||
tm->tm_mon < 1 || tm->tm_mon > 12 ||
tm->tm_mday < 0 || tm->tm_mday > 31 ||
tm->tm_hour < 0 || tm->tm_hour > 23 ||
tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 61)
return -1; /* Out of range, or bad month. */
return 0;
}
/** Given an <b>interval</b> in seconds, try to write it to the
* <b>out_len</b>-byte buffer in <b>out</b> in a human-readable form.
* Return 0 on success, -1 on failure.
*/
int
format_time_interval(char *out, size_t out_len, long interval)
{
/* We only report seconds if there's no hours. */
long sec = 0, min = 0, hour = 0, day = 0;
if (interval < 0)
interval = -interval;
if (interval >= 86400) {
day = interval / 86400;
interval %= 86400;
}
if (interval >= 3600) {
hour = interval / 3600;
interval %= 3600;
}
if (interval >= 60) {
min = interval / 60;
interval %= 60;
}
sec = interval;
if (day) {
return tor_snprintf(out, out_len, "%ld days, %ld hours, %ld minutes",
day, hour, min);
} else if (hour) {
return tor_snprintf(out, out_len, "%ld hours, %ld minutes", hour, min);
} else if (min) {
return tor_snprintf(out, out_len, "%ld minutes, %ld seconds", min, sec);
} else {
return tor_snprintf(out, out_len, "%ld seconds", sec);
}
}
/* =====
* Cached time
* ===== */
#ifndef TIME_IS_FAST
/** Cached estimate of the current time. Updated around once per second;
* may be a few seconds off if we are really busy. This is a hack to avoid
* calling time(NULL) (which not everybody has optimized) on critical paths.
*/
static time_t cached_approx_time = 0;
/** Return a cached estimate of the current time from when
* update_approx_time() was last called. This is a hack to avoid calling
* time(NULL) on critical paths: please do not even think of calling it
* anywhere else. */
time_t
approx_time(void)
{
return cached_approx_time;
}
/** Update the cached estimate of the current time. This function SHOULD be
* called once per second, and MUST be called before the first call to
* get_approx_time. */
void
update_approx_time(time_t now)
{
cached_approx_time = now;
}
#endif
/* =====
* Rate limiting
* ===== */
/** If the rate-limiter <b>lim</b> is ready at <b>now</b>, return the number
* of calls to rate_limit_is_ready (including this one!) since the last time
* rate_limit_is_ready returned nonzero. Otherwise return 0. */
static int
rate_limit_is_ready(ratelim_t *lim, time_t now)
{
if (lim->rate + lim->last_allowed <= now) {
int res = lim->n_calls_since_last_time + 1;
lim->last_allowed = now;
lim->n_calls_since_last_time = 0;
return res;
} else {
++lim->n_calls_since_last_time;
return 0;
}
}
/** If the rate-limiter <b>lim</b> is ready at <b>now</b>, return a newly
* allocated string indicating how many messages were suppressed, suitable to
* append to a log message. Otherwise return NULL. */
char *
rate_limit_log(ratelim_t *lim, time_t now)
{
int n;
if ((n = rate_limit_is_ready(lim, now))) {
if (n == 1) {
return tor_strdup("");
} else {
char *cp=NULL;
tor_asprintf(&cp,
" [%d similar message(s) suppressed in last %d seconds]",
n-1, lim->rate);
return cp;
}
} else {
return NULL;
}
}
/* =====
* File helpers
* ===== */
/** Write <b>count</b> bytes from <b>buf</b> to <b>fd</b>. <b>isSocket</b>
* must be 1 if fd was returned by socket() or accept(), and 0 if fd
* was returned by open(). Return the number of bytes written, or -1
* on error. Only use if fd is a blocking fd. */
ssize_t
write_all(tor_socket_t fd, const char *buf, size_t count, int isSocket)
{
size_t written = 0;
ssize_t result;
tor_assert(count < SSIZE_T_MAX);
while (written != count) {
if (isSocket)
result = tor_socket_send(fd, buf+written, count-written, 0);
else
result = write((int)fd, buf+written, count-written);
if (result<0)
return -1;
written += result;
}
return (ssize_t)count;
}
/** Read from <b>fd</b> to <b>buf</b>, until we get <b>count</b> bytes
* or reach the end of the file. <b>isSocket</b> must be 1 if fd
* was returned by socket() or accept(), and 0 if fd was returned by
* open(). Return the number of bytes read, or -1 on error. Only use
* if fd is a blocking fd. */
ssize_t
read_all(tor_socket_t fd, char *buf, size_t count, int isSocket)
{
size_t numread = 0;
ssize_t result;
if (count > SIZE_T_CEILING || count > SSIZE_T_MAX)
return -1;
while (numread != count) {
if (isSocket)
result = tor_socket_recv(fd, buf+numread, count-numread, 0);
else
result = read((int)fd, buf+numread, count-numread);
if (result<0)
return -1;
else if (result == 0)
break;
numread += result;
}
return (ssize_t)numread;
}
/*
* Filesystem operations.
*/
/** Clean up <b>name</b> so that we can use it in a call to "stat". On Unix,
* we do nothing. On Windows, we remove a trailing slash, unless the path is
* the root of a disk. */
static void
clean_name_for_stat(char *name)
{
#ifdef MS_WINDOWS
size_t len = strlen(name);
if (!len)
return;
if (name[len-1]=='\\' || name[len-1]=='/') {
if (len == 1 || (len==3 && name[1]==':'))
return;
name[len-1]='\0';
}
#else
(void)name;
#endif
}
/** Return FN_ERROR if filename can't be read, FN_NOENT if it doesn't
* exist, FN_FILE if it is a regular file, or FN_DIR if it's a
* directory. On FN_ERROR, sets errno. */
file_status_t
file_status(const char *fname)
{
struct stat st;
char *f;
int r;
f = tor_strdup(fname);
clean_name_for_stat(f);
r = stat(f, &st);
tor_free(f);
if (r) {
if (errno == ENOENT) {
return FN_NOENT;
}
return FN_ERROR;
}
if (st.st_mode & S_IFDIR)
return FN_DIR;
else if (st.st_mode & S_IFREG)
return FN_FILE;
else
return FN_ERROR;
}
/** Check whether <b>dirname</b> exists and is private. If yes return 0. If
* it does not exist, and <b>check</b>&CPD_CREATE is set, try to create it
* and return 0 on success. If it does not exist, and
* <b>check</b>&CPD_CHECK, and we think we can create it, return 0. Else
* return -1. If CPD_GROUP_OK is set, then it's okay if the directory
* is group-readable, but in all cases we create the directory mode 0700.
* If CPD_CHECK_MODE_ONLY is set, then we don't alter the directory permissions
* if they are too permissive: we just return -1.
* When effective_user is not NULL, check permissions against the given user
* and its primary group.
*/
int
check_private_dir(const char *dirname, cpd_check_t check,
const char *effective_user)
{
int r;
struct stat st;
char *f;
#ifndef MS_WINDOWS
int mask;
struct passwd *pw = NULL;
uid_t running_uid;
gid_t running_gid;
#endif
tor_assert(dirname);
f = tor_strdup(dirname);
clean_name_for_stat(f);
r = stat(f, &st);
tor_free(f);
if (r) {
if (errno != ENOENT) {
log_warn(LD_FS, "Directory %s cannot be read: %s", dirname,
strerror(errno));
return -1;
}
if (check & CPD_CREATE) {
log_info(LD_GENERAL, "Creating directory %s", dirname);
#if defined (MS_WINDOWS) && !defined (WINCE)
r = mkdir(dirname);
#else
r = mkdir(dirname, 0700);
#endif
if (r) {
log_warn(LD_FS, "Error creating directory %s: %s", dirname,
strerror(errno));
return -1;
}
} else if (!(check & CPD_CHECK)) {
log_warn(LD_FS, "Directory %s does not exist.", dirname);
return -1;
}
/* XXXX In the case where check==CPD_CHECK, we should look at the
* parent directory a little harder. */
return 0;
}
if (!(st.st_mode & S_IFDIR)) {
log_warn(LD_FS, "%s is not a directory", dirname);
return -1;
}
#ifndef MS_WINDOWS
if (effective_user) {
/* Look up the user and group information.
* If we have a problem, bail out. */
pw = getpwnam(effective_user);
if (pw == NULL) {
log_warn(LD_CONFIG, "Error setting configured user: %s not found",
effective_user);
return -1;
}
running_uid = pw->pw_uid;
running_gid = pw->pw_gid;
} else {
running_uid = getuid();
running_gid = getgid();
}
if (st.st_uid != running_uid) {
struct passwd *pw = NULL;
char *process_ownername = NULL;
pw = getpwuid(running_uid);
process_ownername = pw ? tor_strdup(pw->pw_name) : tor_strdup("<unknown>");
pw = getpwuid(st.st_uid);
log_warn(LD_FS, "%s is not owned by this user (%s, %d) but by "
"%s (%d). Perhaps you are running Tor as the wrong user?",
dirname, process_ownername, (int)running_uid,
pw ? pw->pw_name : "<unknown>", (int)st.st_uid);
tor_free(process_ownername);
return -1;
}
if ((check & CPD_GROUP_OK) && st.st_gid != running_gid) {
struct group *gr;
char *process_groupname = NULL;
gr = getgrgid(running_gid);
process_groupname = gr ? tor_strdup(gr->gr_name) : tor_strdup("<unknown>");
gr = getgrgid(st.st_gid);
log_warn(LD_FS, "%s is not owned by this group (%s, %d) but by group "
"%s (%d). Are you running Tor as the wrong user?",
dirname, process_groupname, (int)running_gid,
gr ? gr->gr_name : "<unknown>", (int)st.st_gid);
tor_free(process_groupname);
return -1;
}
if (check & CPD_GROUP_OK) {
mask = 0027;
} else {
mask = 0077;
}
if (st.st_mode & mask) {
unsigned new_mode;
if (check & CPD_CHECK_MODE_ONLY) {
log_warn(LD_FS, "Permissions on directory %s are too permissive.",
dirname);
return -1;
}
log_warn(LD_FS, "Fixing permissions on directory %s", dirname);
new_mode = st.st_mode;
new_mode |= 0700; /* Owner should have rwx */
new_mode &= ~mask; /* Clear the other bits that we didn't want set...*/
if (chmod(dirname, new_mode)) {
log_warn(LD_FS, "Could not chmod directory %s: %s", dirname,
strerror(errno));
return -1;
} else {
return 0;
}
}
#endif
return 0;
}
/** Create a file named <b>fname</b> with the contents <b>str</b>. Overwrite
* the previous <b>fname</b> if possible. Return 0 on success, -1 on failure.
*
* This function replaces the old file atomically, if possible. This
* function, and all other functions in util.c that create files, create them
* with mode 0600.
*/
int
write_str_to_file(const char *fname, const char *str, int bin)
{
#ifdef MS_WINDOWS
if (!bin && strchr(str, '\r')) {
log_warn(LD_BUG,
"We're writing a text string that already contains a CR.");
}
#endif
return write_bytes_to_file(fname, str, strlen(str), bin);
}
/** Represents a file that we're writing to, with support for atomic commit:
* we can write into a temporary file, and either remove the file on
* failure, or replace the original file on success. */
struct open_file_t {
char *tempname; /**< Name of the temporary file. */
char *filename; /**< Name of the original file. */
unsigned rename_on_close:1; /**< Are we using the temporary file or not? */
unsigned binary:1; /**< Did we open in binary mode? */
int fd; /**< fd for the open file. */
FILE *stdio_file; /**< stdio wrapper for <b>fd</b>. */
};
/** Try to start writing to the file in <b>fname</b>, passing the flags
* <b>open_flags</b> to the open() syscall, creating the file (if needed) with
* access value <b>mode</b>. If the O_APPEND flag is set, we append to the
* original file. Otherwise, we open a new temporary file in the same
* directory, and either replace the original or remove the temporary file
* when we're done.
*
* Return the fd for the newly opened file, and store working data in
* *<b>data_out</b>. The caller should not close the fd manually:
* instead, call finish_writing_to_file() or abort_writing_to_file().
* Returns -1 on failure.
*
* NOTE: When not appending, the flags O_CREAT and O_TRUNC are treated
* as true and the flag O_EXCL is treated as false.
*
* NOTE: Ordinarily, O_APPEND means "seek to the end of the file before each
* write()". We don't do that.
*/
int
start_writing_to_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
size_t tempname_len = strlen(fname)+16;
open_file_t *new_file = tor_malloc_zero(sizeof(open_file_t));
const char *open_name;
int append = 0;
tor_assert(fname);
tor_assert(data_out);
#if (O_BINARY != 0 && O_TEXT != 0)
tor_assert((open_flags & (O_BINARY|O_TEXT)) != 0);
#endif
new_file->fd = -1;
tor_assert(tempname_len > strlen(fname)); /*check for overflow*/
new_file->filename = tor_strdup(fname);
if (open_flags & O_APPEND) {
open_name = fname;
new_file->rename_on_close = 0;
append = 1;
open_flags &= ~O_APPEND;
} else {
open_name = new_file->tempname = tor_malloc(tempname_len);
if (tor_snprintf(new_file->tempname, tempname_len, "%s.tmp", fname)<0) {
log_warn(LD_GENERAL, "Failed to generate filename");
goto err;
}
/* We always replace an existing temporary file if there is one. */
open_flags |= O_CREAT|O_TRUNC;
open_flags &= ~O_EXCL;
new_file->rename_on_close = 1;
}
if (open_flags & O_BINARY)
new_file->binary = 1;
new_file->fd = tor_open_cloexec(open_name, open_flags, mode);
if (new_file->fd < 0) {
log_warn(LD_FS, "Couldn't open \"%s\" (%s) for writing: %s",
open_name, fname, strerror(errno));
goto err;
}
if (append) {
if (tor_fd_seekend(new_file->fd) < 0) {
log_warn(LD_FS, "Couldn't seek to end of file \"%s\": %s", open_name,
strerror(errno));
goto err;
}
}
*data_out = new_file;
return new_file->fd;
err:
if (new_file->fd >= 0)
close(new_file->fd);
*data_out = NULL;
tor_free(new_file->filename);
tor_free(new_file->tempname);
tor_free(new_file);
return -1;
}
/** Given <b>file_data</b> from start_writing_to_file(), return a stdio FILE*
* that can be used to write to the same file. The caller should not mix
* stdio calls with non-stdio calls. */
FILE *
fdopen_file(open_file_t *file_data)
{
tor_assert(file_data);
if (file_data->stdio_file)
return file_data->stdio_file;
tor_assert(file_data->fd >= 0);
if (!(file_data->stdio_file = fdopen(file_data->fd,
file_data->binary?"ab":"a"))) {
log_warn(LD_FS, "Couldn't fdopen \"%s\" [%d]: %s", file_data->filename,
file_data->fd, strerror(errno));
}
return file_data->stdio_file;
}
/** Combines start_writing_to_file with fdopen_file(): arguments are as
* for start_writing_to_file, but */
FILE *
start_writing_to_stdio_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
FILE *res;
if (start_writing_to_file(fname, open_flags, mode, data_out)<0)
return NULL;
if (!(res = fdopen_file(*data_out))) {
abort_writing_to_file(*data_out);
*data_out = NULL;
}
return res;
}
/** Helper function: close and free the underlying file and memory in
* <b>file_data</b>. If we were writing into a temporary file, then delete
* that file (if abort_write is true) or replaces the target file with
* the temporary file (if abort_write is false). */
static int
finish_writing_to_file_impl(open_file_t *file_data, int abort_write)
{
int r = 0;
tor_assert(file_data && file_data->filename);
if (file_data->stdio_file) {
if (fclose(file_data->stdio_file)) {
log_warn(LD_FS, "Error closing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
} else if (file_data->fd >= 0 && close(file_data->fd) < 0) {
log_warn(LD_FS, "Error flushing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
if (file_data->rename_on_close) {
tor_assert(file_data->tempname && file_data->filename);
if (abort_write) {
unlink(file_data->tempname);
} else {
tor_assert(strcmp(file_data->filename, file_data->tempname));
if (replace_file(file_data->tempname, file_data->filename)) {
log_warn(LD_FS, "Error replacing \"%s\": %s", file_data->filename,
strerror(errno));
r = -1;
}
}
}
tor_free(file_data->filename);
tor_free(file_data->tempname);
tor_free(file_data);
return r;
}
/** Finish writing to <b>file_data</b>: close the file handle, free memory as
* needed, and if using a temporary file, replace the original file with
* the temporary file. */
int
finish_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 0);
}
/** Finish writing to <b>file_data</b>: close the file handle, free memory as
* needed, and if using a temporary file, delete it. */
int
abort_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 1);
}
/** Helper: given a set of flags as passed to open(2), open the file
* <b>fname</b> and write all the sized_chunk_t structs in <b>chunks</b> to
* the file. Do so as atomically as possible e.g. by opening temp files and
* renaming. */
static int
write_chunks_to_file_impl(const char *fname, const smartlist_t *chunks,
int open_flags)
{
open_file_t *file = NULL;
int fd;
ssize_t result;
fd = start_writing_to_file(fname, open_flags, 0600, &file);
if (fd<0)
return -1;
SMARTLIST_FOREACH(chunks, sized_chunk_t *, chunk,
{
result = write_all(fd, chunk->bytes, chunk->len, 0);
if (result < 0) {
log_warn(LD_FS, "Error writing to \"%s\": %s", fname,
strerror(errno));
goto err;
}
tor_assert((size_t)result == chunk->len);
});
return finish_writing_to_file(file);
err:
abort_writing_to_file(file);
return -1;
}
/** Given a smartlist of sized_chunk_t, write them atomically to a file
* <b>fname</b>, overwriting or creating the file as necessary. */
int
write_chunks_to_file(const char *fname, const smartlist_t *chunks, int bin)
{
int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT);
return write_chunks_to_file_impl(fname, chunks, flags);
}
/** As write_str_to_file, but does not assume a NUL-terminated
* string. Instead, we write <b>len</b> bytes, starting at <b>str</b>. */
int
write_bytes_to_file(const char *fname, const char *str, size_t len,
int bin)
{
int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT);
int r;
sized_chunk_t c = { str, len };
smartlist_t *chunks = smartlist_create();
smartlist_add(chunks, &c);
r = write_chunks_to_file_impl(fname, chunks, flags);
smartlist_free(chunks);
return r;
}
/** As write_bytes_to_file, but if the file already exists, append the bytes
* to the end of the file instead of overwriting it. */
int
append_bytes_to_file(const char *fname, const char *str, size_t len,
int bin)
{
int flags = OPEN_FLAGS_APPEND|(bin?O_BINARY:O_TEXT);
int r;
sized_chunk_t c = { str, len };
smartlist_t *chunks = smartlist_create();
smartlist_add(chunks, &c);
r = write_chunks_to_file_impl(fname, chunks, flags);
smartlist_free(chunks);
return r;
}
/** Read the contents of <b>filename</b> into a newly allocated
* string; return the string on success or NULL on failure.
*
* If <b>stat_out</b> is provided, store the result of stat()ing the
* file into <b>stat_out</b>.
*
* If <b>flags</b> &amp; RFTS_BIN, open the file in binary mode.
* If <b>flags</b> &amp; RFTS_IGNORE_MISSING, don't warn if the file
* doesn't exist.
*/
/*
* This function <em>may</em> return an erroneous result if the file
* is modified while it is running, but must not crash or overflow.
* Right now, the error case occurs when the file length grows between
* the call to stat and the call to read_all: the resulting string will
* be truncated.
*/
char *
read_file_to_str(const char *filename, int flags, struct stat *stat_out)
{
int fd; /* router file */
struct stat statbuf;
char *string;
ssize_t r;
int bin = flags & RFTS_BIN;
tor_assert(filename);
fd = tor_open_cloexec(filename,O_RDONLY|(bin?O_BINARY:O_TEXT),0);
if (fd<0) {
int severity = LOG_WARN;
int save_errno = errno;
if (errno == ENOENT && (flags & RFTS_IGNORE_MISSING))
severity = LOG_INFO;
log_fn(severity, LD_FS,"Could not open \"%s\": %s",filename,
strerror(errno));
errno = save_errno;
return NULL;
}
if (fstat(fd, &statbuf)<0) {
int save_errno = errno;
close(fd);
log_warn(LD_FS,"Could not fstat \"%s\".",filename);
errno = save_errno;
return NULL;
}
if ((uint64_t)(statbuf.st_size)+1 >= SIZE_T_CEILING)
return NULL;
string = tor_malloc((size_t)(statbuf.st_size+1));
r = read_all(fd,string,(size_t)statbuf.st_size,0);
if (r<0) {
int save_errno = errno;
log_warn(LD_FS,"Error reading from file \"%s\": %s", filename,
strerror(errno));
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
string[r] = '\0'; /* NUL-terminate the result. */
#ifdef MS_WINDOWS
if (!bin && strchr(string, '\r')) {
log_debug(LD_FS, "We didn't convert CRLF to LF as well as we hoped "
"when reading %s. Coping.",
filename);
tor_strstrip(string, "\r");
r = strlen(string);
}
if (!bin) {
statbuf.st_size = (size_t) r;
} else
#endif
if (r != statbuf.st_size) {
/* Unless we're using text mode on win32, we'd better have an exact
* match for size. */
int save_errno = errno;
log_warn(LD_FS,"Could read only %d of %ld bytes of file \"%s\".",
(int)r, (long)statbuf.st_size,filename);
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
close(fd);
if (stat_out) {
memcpy(stat_out, &statbuf, sizeof(struct stat));
}
return string;
}
#define TOR_ISODIGIT(c) ('0' <= (c) && (c) <= '7')
/** Given a c-style double-quoted escaped string in <b>s</b>, extract and
* decode its contents into a newly allocated string. On success, assign this
* string to *<b>result</b>, assign its length to <b>size_out</b> (if
* provided), and return a pointer to the position in <b>s</b> immediately
* after the string. On failure, return NULL.
*/
static const char *
unescape_string(const char *s, char **result, size_t *size_out)
{
const char *cp;
char *out;
if (s[0] != '\"')
return NULL;
cp = s+1;
while (1) {
switch (*cp) {
case '\0':
case '\n':
return NULL;
case '\"':
goto end_of_loop;
case '\\':
if ((cp[1] == 'x' || cp[1] == 'X')
&& TOR_ISXDIGIT(cp[2]) && TOR_ISXDIGIT(cp[3])) {
cp += 4;
} else if (TOR_ISODIGIT(cp[1])) {
cp += 2;
if (TOR_ISODIGIT(*cp)) ++cp;
if (TOR_ISODIGIT(*cp)) ++cp;
} else if (cp[1]) {
cp += 2;
} else {
return NULL;
}
break;
default:
++cp;
break;
}
}
end_of_loop:
out = *result = tor_malloc(cp-s + 1);
cp = s+1;
while (1) {
switch (*cp)
{
case '\"':
*out = '\0';
if (size_out) *size_out = out - *result;
return cp+1;
case '\0':
tor_fragile_assert();
tor_free(*result);
return NULL;
case '\\':
switch (cp[1])
{
case 'n': *out++ = '\n'; cp += 2; break;
case 'r': *out++ = '\r'; cp += 2; break;
case 't': *out++ = '\t'; cp += 2; break;
case 'x': case 'X':
*out++ = ((hex_decode_digit(cp[2])<<4) +
hex_decode_digit(cp[3]));
cp += 4;
break;
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7':
{
int n = cp[1]-'0';
cp += 2;
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (n > 255) { tor_free(*result); return NULL; }
*out++ = (char)n;
}
break;
case '\'':
case '\"':
case '\\':
case '\?':
*out++ = cp[1];
cp += 2;
break;
default:
tor_free(*result); return NULL;
}
break;
default:
*out++ = *cp++;
}
}
}
/** Given a string containing part of a configuration file or similar format,
* advance past comments and whitespace and try to parse a single line. If we
* parse a line successfully, set *<b>key_out</b> to a new string holding the
* key portion and *<b>value_out</b> to a new string holding the value portion
* of the line, and return a pointer to the start of the next line. If we run
* out of data, return a pointer to the end of the string. If we encounter an
* error, return NULL.
*/
const char *
parse_config_line_from_str(const char *line, char **key_out, char **value_out)
{
/* I believe the file format here is supposed to be:
FILE = (EMPTYLINE | LINE)* (EMPTYLASTLINE | LASTLINE)?
EMPTYLASTLINE = SPACE* | COMMENT
EMPTYLINE = EMPTYLASTLINE NL
SPACE = ' ' | '\r' | '\t'
COMMENT = '#' NOT-NL*
NOT-NL = Any character except '\n'
NL = '\n'
LASTLINE = SPACE* KEY SPACE* VALUES
LINE = LASTLINE NL
KEY = KEYCHAR+
KEYCHAR = Any character except ' ', '\r', '\n', '\t', '#', "\"
VALUES = QUOTEDVALUE | NORMALVALUE
QUOTEDVALUE = QUOTE QVITEM* QUOTE EOLSPACE?
QUOTE = '"'
QVCHAR = KEYCHAR | ESC ('n' | 't' | 'r' | '"' | ESC |'\'' | OCTAL | HEX)
ESC = "\\"
OCTAL = ODIGIT (ODIGIT ODIGIT?)?
HEX = ('x' | 'X') HEXDIGIT HEXDIGIT
ODIGIT = '0' .. '7'
HEXDIGIT = '0'..'9' | 'a' .. 'f' | 'A' .. 'F'
EOLSPACE = SPACE* COMMENT?
NORMALVALUE = (VALCHAR | ESC ESC_IGNORE | CONTINUATION)* EOLSPACE?
VALCHAR = Any character except ESC, '#', and '\n'
ESC_IGNORE = Any character except '#' or '\n'
CONTINUATION = ESC NL ( COMMENT NL )*
*/
const char *key, *val, *cp;
int continuation = 0;
tor_assert(key_out);
tor_assert(value_out);
*key_out = *value_out = NULL;
key = val = NULL;
/* Skip until the first keyword. */
while (1) {
while (TOR_ISSPACE(*line))
++line;
if (*line == '#') {
while (*line && *line != '\n')
++line;
} else {
break;
}
}
if (!*line) { /* End of string? */
*key_out = *value_out = NULL;
return line;
}
/* Skip until the next space or \ followed by newline. */
key = line;
while (*line && !TOR_ISSPACE(*line) && *line != '#' &&
! (line[0] == '\\' && line[1] == '\n'))
++line;
*key_out = tor_strndup(key, line-key);
/* Skip until the value. */
while (*line == ' ' || *line == '\t')
++line;
val = line;
/* Find the end of the line. */
if (*line == '\"') { // XXX No continuation handling is done here
if (!(line = unescape_string(line, value_out, NULL)))
return NULL;
while (*line == ' ' || *line == '\t')
++line;
if (*line && *line != '#' && *line != '\n')
return NULL;
} else {
/* Look for the end of the line. */
while (*line && *line != '\n' && (*line != '#' || continuation)) {
if (*line == '\\' && line[1] == '\n') {
continuation = 1;
line += 2;
} else if (*line == '#') {
do {
++line;
} while (*line && *line != '\n');
if (*line == '\n')
++line;
} else {
++line;
}
}
if (*line == '\n') {
cp = line++;
} else {
cp = line;
}
/* Now back cp up to be the last nonspace character */
while (cp>val && TOR_ISSPACE(*(cp-1)))
--cp;
tor_assert(cp >= val);
/* Now copy out and decode the value. */
*value_out = tor_strndup(val, cp-val);
if (continuation) {
char *v_out, *v_in;
v_out = v_in = *value_out;
while (*v_in) {
if (*v_in == '#') {
do {
++v_in;
} while (*v_in && *v_in != '\n');
if (*v_in == '\n')
++v_in;
} else if (v_in[0] == '\\' && v_in[1] == '\n') {
v_in += 2;
} else {
*v_out++ = *v_in++;
}
}
*v_out = '\0';
}
}
if (*line == '#') {
do {
++line;
} while (*line && *line != '\n');
}
while (TOR_ISSPACE(*line)) ++line;
return line;
}
/** Expand any homedir prefix on <b>filename</b>; return a newly allocated
* string. */
char *
expand_filename(const char *filename)
{
tor_assert(filename);
#ifdef MS_WINDOWS
return tor_strdup(filename);
#else
if (*filename == '~') {
char *home, *result=NULL;
const char *rest;
if (filename[1] == '/' || filename[1] == '\0') {
home = getenv("HOME");
if (!home) {
log_warn(LD_CONFIG, "Couldn't find $HOME environment variable while "
"expanding \"%s\"; defaulting to \"\".", filename);
home = tor_strdup("");
} else {
home = tor_strdup(home);
}
rest = strlen(filename)>=2?(filename+2):"";
} else {
#ifdef HAVE_PWD_H
char *username, *slash;
slash = strchr(filename, '/');
if (slash)
username = tor_strndup(filename+1,slash-filename-1);
else
username = tor_strdup(filename+1);
if (!(home = get_user_homedir(username))) {
log_warn(LD_CONFIG,"Couldn't get homedir for \"%s\"",username);
tor_free(username);
return NULL;
}
tor_free(username);
rest = slash ? (slash+1) : "";
#else
log_warn(LD_CONFIG, "Couldn't expend homedir on system without pwd.h");
return tor_strdup(filename);
#endif
}
tor_assert(home);
/* Remove trailing slash. */
if (strlen(home)>1 && !strcmpend(home,PATH_SEPARATOR)) {
home[strlen(home)-1] = '\0';
}
tor_asprintf(&result,"%s"PATH_SEPARATOR"%s",home,rest);
tor_free(home);
return result;
} else {
return tor_strdup(filename);
}
#endif
}
#define MAX_SCANF_WIDTH 9999
/** Helper: given an ASCII-encoded decimal digit, return its numeric value.
* NOTE: requires that its input be in-bounds. */
static int
digit_to_num(char d)
{
int num = ((int)d) - (int)'0';
tor_assert(num <= 9 && num >= 0);
return num;
}
/** Helper: Read an unsigned int from *<b>bufp</b> of up to <b>width</b>
* characters. (Handle arbitrary width if <b>width</b> is less than 0.) On
* success, store the result in <b>out</b>, advance bufp to the next
* character, and return 0. On failure, return -1. */
static int
scan_unsigned(const char **bufp, unsigned *out, int width, int base)
{
unsigned result = 0;
int scanned_so_far = 0;
const int hex = base==16;
tor_assert(base == 10 || base == 16);
if (!bufp || !*bufp || !out)
return -1;
if (width<0)
width=MAX_SCANF_WIDTH;
while (**bufp && (hex?TOR_ISXDIGIT(**bufp):TOR_ISDIGIT(**bufp))
&& scanned_so_far < width) {
int digit = hex?hex_decode_digit(*(*bufp)++):digit_to_num(*(*bufp)++);
unsigned new_result = result * base + digit;
if (new_result > UINT32_MAX || new_result < result)
return -1; /* over/underflow. */
result = new_result;
++scanned_so_far;
}
if (!scanned_so_far) /* No actual digits scanned */
return -1;
*out = result;
return 0;
}
/** Helper: copy up to <b>width</b> non-space characters from <b>bufp</b> to
* <b>out</b>. Make sure <b>out</b> is nul-terminated. Advance <b>bufp</b>
* to the next non-space character or the EOS. */
static int
scan_string(const char **bufp, char *out, int width)
{
int scanned_so_far = 0;
if (!bufp || !out || width < 0)
return -1;
while (**bufp && ! TOR_ISSPACE(**bufp) && scanned_so_far < width) {
*out++ = *(*bufp)++;
++scanned_so_far;
}
*out = '\0';
return 0;
}
/** Locale-independent, minimal, no-surprises scanf variant, accepting only a
* restricted pattern format. For more info on what it supports, see
* tor_sscanf() documentation. */
int
tor_vsscanf(const char *buf, const char *pattern, va_list ap)
{
int n_matched = 0;
while (*pattern) {
if (*pattern != '%') {
if (*buf == *pattern) {
++buf;
++pattern;
continue;
} else {
return n_matched;
}
} else {
int width = -1;
++pattern;
if (TOR_ISDIGIT(*pattern)) {
width = digit_to_num(*pattern++);
while (TOR_ISDIGIT(*pattern)) {
width *= 10;
width += digit_to_num(*pattern++);
if (width > MAX_SCANF_WIDTH)
return -1;
}
if (!width) /* No zero-width things. */
return -1;
}
if (*pattern == 'u' || *pattern == 'x') {
unsigned *u = va_arg(ap, unsigned *);
const int base = (*pattern == 'u') ? 10 : 16;
if (!*buf)
return n_matched;
if (scan_unsigned(&buf, u, width, base)<0)
return n_matched;
++pattern;
++n_matched;
} else if (*pattern == 's') {
char *s = va_arg(ap, char *);
if (width < 0)
return -1;
if (scan_string(&buf, s, width)<0)
return n_matched;
++pattern;
++n_matched;
} else if (*pattern == 'c') {
char *ch = va_arg(ap, char *);
if (width != -1)
return -1;
if (!*buf)
return n_matched;
*ch = *buf++;
++pattern;
++n_matched;
} else if (*pattern == '%') {
if (*buf != '%')
return -1;
++buf;
++pattern;
} else {
return -1; /* Unrecognized pattern component. */
}
}
}
return n_matched;
}
/** Minimal sscanf replacement: parse <b>buf</b> according to <b>pattern</b>
* and store the results in the corresponding argument fields. Differs from
* sscanf in that it: Only handles %u and %x and %Ns. Does not handle
* arbitrarily long widths. %u and %x do not consume any space. Is
* locale-independent. Returns -1 on malformed patterns.
*
* (As with other locale-independent functions, we need this to parse data that
* is in ASCII without worrying that the C library's locale-handling will make
* miscellaneous characters look like numbers, spaces, and so on.)
*/
int
tor_sscanf(const char *buf, const char *pattern, ...)
{
int r;
va_list ap;
va_start(ap, pattern);
r = tor_vsscanf(buf, pattern, ap);
va_end(ap);
return r;
}
/** Return a new list containing the filenames in the directory <b>dirname</b>.
* Return NULL on error or if <b>dirname</b> is not a directory.
*/
smartlist_t *
tor_listdir(const char *dirname)
{
smartlist_t *result;
#ifdef MS_WINDOWS
char *pattern;
TCHAR tpattern[MAX_PATH] = {0};
char name[MAX_PATH] = {0};
HANDLE handle;
WIN32_FIND_DATA findData;
size_t pattern_len = strlen(dirname)+16;
pattern = tor_malloc(pattern_len);
tor_snprintf(pattern, pattern_len, "%s\\*", dirname);
#ifdef UNICODE
mbstowcs(tpattern,pattern,MAX_PATH);
#else
strlcpy(tpattern, pattern, MAX_PATH);
#endif
if (INVALID_HANDLE_VALUE == (handle = FindFirstFile(tpattern, &findData))) {
tor_free(pattern);
return NULL;
}
result = smartlist_create();
while (1) {
#ifdef UNICODE
wcstombs(name,findData.cFileName,MAX_PATH);
#else
strlcpy(name,findData.cFileName,sizeof(name));
#endif
if (strcmp(name, ".") &&
strcmp(name, "..")) {
smartlist_add(result, tor_strdup(name));
}
if (!FindNextFile(handle, &findData)) {
DWORD err;
if ((err = GetLastError()) != ERROR_NO_MORE_FILES) {
char *errstr = format_win32_error(err);
log_warn(LD_FS, "Error reading directory '%s': %s", dirname, errstr);
tor_free(errstr);
}
break;
}
}
FindClose(handle);
tor_free(pattern);
#else
DIR *d;
struct dirent *de;
if (!(d = opendir(dirname)))
return NULL;
result = smartlist_create();
while ((de = readdir(d))) {
if (!strcmp(de->d_name, ".") ||
!strcmp(de->d_name, ".."))
continue;
smartlist_add(result, tor_strdup(de->d_name));
}
closedir(d);
#endif
return result;
}
/** Return true iff <b>filename</b> is a relative path. */
int
path_is_relative(const char *filename)
{
if (filename && filename[0] == '/')
return 0;
#ifdef MS_WINDOWS
else if (filename && filename[0] == '\\')
return 0;
else if (filename && strlen(filename)>3 && TOR_ISALPHA(filename[0]) &&
filename[1] == ':' && filename[2] == '\\')
return 0;
#endif
else
return 1;
}
/* =====
* Process helpers
* ===== */
#ifndef MS_WINDOWS
/* Based on code contributed by christian grothoff */
/** True iff we've called start_daemon(). */
static int start_daemon_called = 0;
/** True iff we've called finish_daemon(). */
static int finish_daemon_called = 0;
/** Socketpair used to communicate between parent and child process while
* daemonizing. */
static int daemon_filedes[2];
/** Start putting the process into daemon mode: fork and drop all resources
* except standard fds. The parent process never returns, but stays around
* until finish_daemon is called. (Note: it's safe to call this more
* than once: calls after the first are ignored.)
*/
void
start_daemon(void)
{
pid_t pid;
if (start_daemon_called)
return;
start_daemon_called = 1;
if (pipe(daemon_filedes)) {
log_err(LD_GENERAL,"pipe failed; exiting. Error was %s", strerror(errno));
exit(1);
}
pid = fork();
if (pid < 0) {
log_err(LD_GENERAL,"fork failed. Exiting.");
exit(1);
}
if (pid) { /* Parent */
int ok;
char c;
close(daemon_filedes[1]); /* we only read */
ok = -1;
while (0 < read(daemon_filedes[0], &c, sizeof(char))) {
if (c == '.')
ok = 1;
}
fflush(stdout);
if (ok == 1)
exit(0);
else
exit(1); /* child reported error */
} else { /* Child */
close(daemon_filedes[0]); /* we only write */
pid = setsid(); /* Detach from controlling terminal */
/*
* Fork one more time, so the parent (the session group leader) can exit.
* This means that we, as a non-session group leader, can never regain a
* controlling terminal. This part is recommended by Stevens's
* _Advanced Programming in the Unix Environment_.
*/
if (fork() != 0) {
exit(0);
}
set_main_thread(); /* We are now the main thread. */
return;
}
}
/** Finish putting the process into daemon mode: drop standard fds, and tell
* the parent process to exit. (Note: it's safe to call this more than once:
* calls after the first are ignored. Calls start_daemon first if it hasn't
* been called already.)
*/
void
finish_daemon(const char *desired_cwd)
{
int nullfd;
char c = '.';
if (finish_daemon_called)
return;
if (!start_daemon_called)
start_daemon();
finish_daemon_called = 1;
if (!desired_cwd)
desired_cwd = "/";
/* Don't hold the wrong FS mounted */
if (chdir(desired_cwd) < 0) {
log_err(LD_GENERAL,"chdir to \"%s\" failed. Exiting.",desired_cwd);
exit(1);
}
nullfd = tor_open_cloexec("/dev/null", O_RDWR, 0);
if (nullfd < 0) {
log_err(LD_GENERAL,"/dev/null can't be opened. Exiting.");
exit(1);
}
/* close fds linking to invoking terminal, but
* close usual incoming fds, but redirect them somewhere
* useful so the fds don't get reallocated elsewhere.
*/
if (dup2(nullfd,0) < 0 ||
dup2(nullfd,1) < 0 ||
dup2(nullfd,2) < 0) {
log_err(LD_GENERAL,"dup2 failed. Exiting.");
exit(1);
}
if (nullfd > 2)
close(nullfd);
/* signal success */
if (write(daemon_filedes[1], &c, sizeof(char)) != sizeof(char)) {
log_err(LD_GENERAL,"write failed. Exiting.");
}
close(daemon_filedes[1]);
}
#else
/* defined(MS_WINDOWS) */
void
start_daemon(void)
{
}
void
finish_daemon(const char *cp)
{
(void)cp;
}
#endif
/** Write the current process ID, followed by NL, into <b>filename</b>.
*/
void
write_pidfile(char *filename)
{
FILE *pidfile;
if ((pidfile = fopen(filename, "w")) == NULL) {
log_warn(LD_FS, "Unable to open \"%s\" for writing: %s", filename,
strerror(errno));
} else {
#ifdef MS_WINDOWS
fprintf(pidfile, "%d\n", (int)_getpid());
#else
fprintf(pidfile, "%d\n", (int)getpid());
#endif
fclose(pidfile);
}
}
#ifdef MS_WINDOWS
HANDLE
load_windows_system_library(const TCHAR *library_name)
{
TCHAR path[MAX_PATH];
unsigned n;
n = GetSystemDirectory(path, MAX_PATH);
if (n == 0 || n + _tcslen(library_name) + 2 >= MAX_PATH)
return 0;
_tcscat(path, TEXT("\\"));
_tcscat(path, library_name);
return LoadLibrary(path);
}
#endif
/** Format <b>child_state</b> and <b>saved_errno</b> as a hex string placed in
* <b>hex_errno</b>. Called between fork and _exit, so must be signal-handler
* safe.
*
* <b>hex_errno</b> must have at least HEX_ERRNO_SIZE bytes available.
*
* The format of <b>hex_errno</b> is: "CHILD_STATE/ERRNO\n", left-padded
* with spaces. Note that there is no trailing \0. CHILD_STATE indicates where
* in the processs of starting the child process did the failure occur (see
* CHILD_STATE_* macros for definition), and SAVED_ERRNO is the value of
* errno when the failure occurred.
*/
void
format_helper_exit_status(unsigned char child_state, int saved_errno,
char *hex_errno)
{
unsigned int unsigned_errno;
char *cur;
size_t i;
/* Fill hex_errno with spaces, and a trailing newline (memset may
not be signal handler safe, so we can't use it) */
for (i = 0; i < (HEX_ERRNO_SIZE - 1); i++)
hex_errno[i] = ' ';
hex_errno[HEX_ERRNO_SIZE - 1] = '\n';
/* Convert errno to be unsigned for hex conversion */
if (saved_errno < 0) {
unsigned_errno = (unsigned int) -saved_errno;
} else {
unsigned_errno = (unsigned int) saved_errno;
}
/* Convert errno to hex (start before \n) */
cur = hex_errno + HEX_ERRNO_SIZE - 2;
/* Check for overflow on first iteration of the loop */
if (cur < hex_errno)
return;
do {
*cur-- = "0123456789ABCDEF"[unsigned_errno % 16];
unsigned_errno /= 16;
} while (unsigned_errno != 0 && cur >= hex_errno);
/* Prepend the minus sign if errno was negative */
if (saved_errno < 0 && cur >= hex_errno)
*cur-- = '-';
/* Leave a gap */
if (cur >= hex_errno)
*cur-- = '/';
/* Check for overflow on first iteration of the loop */
if (cur < hex_errno)
return;
/* Convert child_state to hex */
do {
*cur-- = "0123456789ABCDEF"[child_state % 16];
child_state /= 16;
} while (child_state != 0 && cur >= hex_errno);
}
/* Maximum number of file descriptors, if we cannot get it via sysconf() */
#define DEFAULT_MAX_FD 256
#define CHILD_STATE_INIT 0
#define CHILD_STATE_PIPE 1
#define CHILD_STATE_MAXFD 2
#define CHILD_STATE_FORK 3
#define CHILD_STATE_DUPOUT 4
#define CHILD_STATE_DUPERR 5
#define CHILD_STATE_REDIRECT 6
#define CHILD_STATE_CLOSEFD 7
#define CHILD_STATE_EXEC 8
#define CHILD_STATE_FAILEXEC 9
#define SPAWN_ERROR_MESSAGE "ERR: Failed to spawn background process - code "
/** Start a program in the background. If <b>filename</b> contains a '/',
* then it will be treated as an absolute or relative path. Otherwise the
* system path will be searched for <b>filename</b>. The strings in
* <b>argv</b> will be passed as the command line arguments of the child
* program (following convention, argv[0] should normally be the filename of
* the executable). The last element of argv must be NULL. If the child
* program is launched, the PID will be returned and <b>stdout_read</b> and
* <b>stdout_err</b> will be set to file descriptors from which the stdout
* and stderr, respectively, output of the child program can be read, and the
* stdin of the child process shall be set to /dev/null. Otherwise returns
* -1. Some parts of this code are based on the POSIX subprocess module from
* Python.
*/
int
tor_spawn_background(const char *const filename, int *stdout_read,
int *stderr_read, const char **argv)
{
#ifdef MS_WINDOWS
(void) filename; (void) stdout_read; (void) stderr_read; (void) argv;
log_warn(LD_BUG, "not yet implemented on Windows.");
return -1;
#else
pid_t pid;
int stdout_pipe[2];
int stderr_pipe[2];
int fd, retval;
ssize_t nbytes;
const char *error_message = SPAWN_ERROR_MESSAGE;
size_t error_message_length;
/* Represents where in the process of spawning the program is;
this is used for printing out the error message */
unsigned char child_state = CHILD_STATE_INIT;
char hex_errno[HEX_ERRNO_SIZE];
static int max_fd = -1;
/* We do the strlen here because strlen() is not signal handler safe,
and we are not allowed to use unsafe functions between fork and exec */
error_message_length = strlen(error_message);
child_state = CHILD_STATE_PIPE;
/* Set up pipe for redirecting stdout and stderr of child */
retval = pipe(stdout_pipe);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to set up pipe for stdout communication with child process: %s",
strerror(errno));
return -1;
}
retval = pipe(stderr_pipe);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to set up pipe for stderr communication with child process: %s",
strerror(errno));
return -1;
}
child_state = CHILD_STATE_MAXFD;
#ifdef _SC_OPEN_MAX
if (-1 != max_fd) {
max_fd = (int) sysconf(_SC_OPEN_MAX);
if (max_fd == -1)
max_fd = DEFAULT_MAX_FD;
log_warn(LD_GENERAL,
"Cannot find maximum file descriptor, assuming %d", max_fd);
}
#else
max_fd = DEFAULT_MAX_FD;
#endif
child_state = CHILD_STATE_FORK;
pid = fork();
if (0 == pid) {
/* In child */
child_state = CHILD_STATE_DUPOUT;
/* Link child stdout to the write end of the pipe */
retval = dup2(stdout_pipe[1], STDOUT_FILENO);
if (-1 == retval)
goto error;
child_state = CHILD_STATE_DUPERR;
/* Link child stderr to the write end of the pipe */
retval = dup2(stderr_pipe[1], STDERR_FILENO);
if (-1 == retval)
goto error;
child_state = CHILD_STATE_REDIRECT;
/* Link stdin to /dev/null */
fd = open("/dev/null", O_RDONLY); /* NOT cloexec, obviously. */
if (fd != -1)
dup2(fd, STDIN_FILENO);
else
goto error;
child_state = CHILD_STATE_CLOSEFD;
close(stderr_pipe[0]);
close(stderr_pipe[1]);
close(stdout_pipe[0]);
close(stdout_pipe[1]);
close(fd);
/* Close all other fds, including the read end of the pipe */
/* XXX: We should now be doing enough FD_CLOEXEC setting to make
* this needless. */
for (fd = STDERR_FILENO + 1; fd < max_fd; fd++) {
close(fd);
}
child_state = CHILD_STATE_EXEC;
/* Call the requested program. We need the cast because
execvp doesn't define argv as const, even though it
does not modify the arguments */
execvp(filename, (char *const *) argv);
/* If we got here, the exec or open(/dev/null) failed */
child_state = CHILD_STATE_FAILEXEC;
error:
/* XXX: are we leaking fds from the pipe? */
format_helper_exit_status(child_state, errno, hex_errno);
/* Write the error message. GCC requires that we check the return
value, but there is nothing we can do if it fails */
nbytes = write(STDOUT_FILENO, error_message, error_message_length);
nbytes = write(STDOUT_FILENO, hex_errno, sizeof(hex_errno));
(void) nbytes;
_exit(255);
return -1; /* Never reached, but avoids compiler warning */
}
/* In parent */
if (-1 == pid) {
log_warn(LD_GENERAL, "Failed to fork child process: %s", strerror(errno));
close(stdout_pipe[0]);
close(stdout_pipe[1]);
close(stderr_pipe[0]);
close(stderr_pipe[1]);
return -1;
}
/* Return read end of the pipes to caller, and close write end */
*stdout_read = stdout_pipe[0];
retval = close(stdout_pipe[1]);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to close write end of stdout pipe in parent process: %s",
strerror(errno));
/* Do not return -1, because the child is running, so the parent
needs to know about the pid in order to reap it later */
}
*stderr_read = stderr_pipe[0];
retval = close(stderr_pipe[1]);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to close write end of stderr pipe in parent process: %s",
strerror(errno));
/* Do not return -1, because the child is running, so the parent
needs to know about the pid in order to reap it later */
}
return pid;
#endif
}
/** Read from stream, and send lines to log at the specified log level.
* Returns 1 if stream is closed normally, -1 if there is a error reading, and
* 0 otherwise. Handles lines from tor-fw-helper and
* tor_spawn_background() specially.
*/
static int
log_from_pipe(FILE *stream, int severity, const char *executable,
int *child_status)
{
char buf[256];
for (;;) {
char *retval;
retval = fgets(buf, sizeof(buf), stream);
if (NULL == retval) {
if (feof(stream)) {
/* Program has closed stream (probably it exited) */
/* TODO: check error */
fclose(stream);
return 1;
} else {
if (EAGAIN == errno) {
/* Nothing more to read, try again next time */
return 0;
} else {
/* There was a problem, abandon this child process */
fclose(stream);
return -1;
}
}
} else {
/* We have some data, log it and keep asking for more */
size_t len;
len = strlen(buf);
if (buf[len - 1] == '\n') {
/* Remove the trailing newline */
buf[len - 1] = '\0';
} else {
/* No newline; check whether we overflowed the buffer */
if (!feof(stream))
log_warn(LD_GENERAL,
"Line from port forwarding helper was truncated: %s", buf);
/* TODO: What to do with this error? */
}
/* Check if buf starts with SPAWN_ERROR_MESSAGE */
if (strcmpstart(buf, SPAWN_ERROR_MESSAGE) == 0) {
/* Parse error message */
int retval, child_state, saved_errno;
retval = tor_sscanf(buf, SPAWN_ERROR_MESSAGE "%x/%x",
&child_state, &saved_errno);
if (retval == 2) {
log_warn(LD_GENERAL,
"Failed to start child process \"%s\" in state %d: %s",
executable, child_state, strerror(saved_errno));
if (child_status)
*child_status = 1;
} else {
/* Failed to parse message from child process, log it as a
warning */
log_warn(LD_GENERAL,
"Unexpected message from port forwarding helper \"%s\": %s",
executable, buf);
}
} else {
log_fn(severity, LD_GENERAL, "Port forwarding helper says: %s", buf);
}
}
}
/* We should never get here */
return -1;
}
void
tor_check_port_forwarding(const char *filename, int dir_port, int or_port,
time_t now)
{
#ifdef MS_WINDOWS
(void) filename; (void) dir_port; (void) or_port; (void) now;
(void) tor_spawn_background;
(void) log_from_pipe;
log_warn(LD_GENERAL, "Sorry, port forwarding is not yet supported "
"on windows.");
#else
/* When fw-helper succeeds, how long do we wait until running it again */
#define TIME_TO_EXEC_FWHELPER_SUCCESS 300
/* When fw-helper fails, how long do we wait until running it again */
#define TIME_TO_EXEC_FWHELPER_FAIL 60
static int child_pid = -1;
static FILE *stdout_read = NULL;
static FILE *stderr_read = NULL;
static time_t time_to_run_helper = 0;
int stdout_status, stderr_status, retval;
const char *argv[10];
char s_dirport[6], s_orport[6];
tor_assert(filename);
/* Set up command line for tor-fw-helper */
snprintf(s_dirport, sizeof s_dirport, "%d", dir_port);
snprintf(s_orport, sizeof s_orport, "%d", or_port);
/* TODO: Allow different internal and external ports */
argv[0] = filename;
argv[1] = "--internal-or-port";
argv[2] = s_orport;
argv[3] = "--external-or-port";
argv[4] = s_orport;
argv[5] = "--internal-dir-port";
argv[6] = s_dirport;
argv[7] = "--external-dir-port";
argv[8] = s_dirport;
argv[9] = NULL;
/* Start the child, if it is not already running */
if (-1 == child_pid &&
time_to_run_helper < now) {
int fd_out=-1, fd_err=-1;
/* Assume tor-fw-helper will succeed, start it later*/
time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_SUCCESS;
child_pid = tor_spawn_background(filename, &fd_out, &fd_err, argv);
if (child_pid < 0) {
log_warn(LD_GENERAL, "Failed to start port forwarding helper %s",
filename);
child_pid = -1;
return;
}
/* Set stdout/stderr pipes to be non-blocking */
fcntl(fd_out, F_SETFL, O_NONBLOCK);
fcntl(fd_err, F_SETFL, O_NONBLOCK);
/* Open the buffered IO streams */
stdout_read = fdopen(fd_out, "r");
stderr_read = fdopen(fd_err, "r");
log_info(LD_GENERAL,
"Started port forwarding helper (%s) with pid %d", filename, child_pid);
}
/* If child is running, read from its stdout and stderr) */
if (child_pid > 0) {
/* Read from stdout/stderr and log result */
retval = 0;
stdout_status = log_from_pipe(stdout_read, LOG_INFO, filename, &retval);
stderr_status = log_from_pipe(stderr_read, LOG_WARN, filename, &retval);
if (retval) {
/* There was a problem in the child process */
time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_FAIL;
}
/* Combine the two statuses in order of severity */
if (-1 == stdout_status || -1 == stderr_status)
/* There was a failure */
retval = -1;
else if (1 == stdout_status || 1 == stderr_status)
/* stdout or stderr was closed */
retval = 1;
else
/* Both are fine */
retval = 0;
/* If either pipe indicates a failure, act on it */
if (0 != retval) {
if (1 == retval) {
log_info(LD_GENERAL, "Port forwarding helper terminated");
} else {
log_warn(LD_GENERAL, "Failed to read from port forwarding helper");
}
/* TODO: The child might not actually be finished (maybe it failed or
closed stdout/stderr), so maybe we shouldn't start another? */
child_pid = -1;
}
}
#endif
}