mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 05:33:47 +01:00
355 lines
11 KiB
C
355 lines
11 KiB
C
/* Copyright (c) 2012-2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file crypto_curve25519.c
|
|
*
|
|
* \brief Wrapper code for a curve25519 implementation.
|
|
*
|
|
* Curve25519 is an Elliptic-Curve Diffie Hellman handshake, designed by
|
|
* Dan Bernstein. For more information, see https://cr.yp.to/ecdh.html
|
|
*
|
|
* Tor uses Curve25519 as the basis of its "ntor" circuit extension
|
|
* handshake, and in related code. The functions in this module are
|
|
* used to find the most suitable available Curve25519 implementation,
|
|
* to provide wrappers around it, and so on.
|
|
*/
|
|
|
|
#define CRYPTO_CURVE25519_PRIVATE
|
|
#include "orconfig.h"
|
|
#ifdef HAVE_SYS_STAT_H
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#include "container.h"
|
|
#include "crypto.h"
|
|
#include "crypto_curve25519.h"
|
|
#include "crypto_format.h"
|
|
#include "util.h"
|
|
#include "torlog.h"
|
|
|
|
#include "ed25519/donna/ed25519_donna_tor.h"
|
|
|
|
/* ==============================
|
|
Part 1: wrap a suitable curve25519 implementation as curve25519_impl
|
|
============================== */
|
|
|
|
#ifdef USE_CURVE25519_DONNA
|
|
int curve25519_donna(uint8_t *mypublic,
|
|
const uint8_t *secret, const uint8_t *basepoint);
|
|
#endif
|
|
#ifdef USE_CURVE25519_NACL
|
|
#ifdef HAVE_CRYPTO_SCALARMULT_CURVE25519_H
|
|
#include <crypto_scalarmult_curve25519.h>
|
|
#elif defined(HAVE_NACL_CRYPTO_SCALARMULT_CURVE25519_H)
|
|
#include <nacl/crypto_scalarmult_curve25519.h>
|
|
#endif
|
|
#endif
|
|
|
|
static void pick_curve25519_basepoint_impl(void);
|
|
|
|
/** This is set to 1 if we have an optimized Ed25519-based
|
|
* implementation for multiplying a value by the basepoint; to 0 if we
|
|
* don't, and to -1 if we haven't checked. */
|
|
static int curve25519_use_ed = -1;
|
|
|
|
/**
|
|
* Helper function: call the most appropriate backend to compute the
|
|
* scalar "secret" times the point "point". Store the result in
|
|
* "output". Return 0 on success, negative on failure.
|
|
**/
|
|
STATIC int
|
|
curve25519_impl(uint8_t *output, const uint8_t *secret,
|
|
const uint8_t *point)
|
|
{
|
|
uint8_t bp[CURVE25519_PUBKEY_LEN];
|
|
int r;
|
|
memcpy(bp, point, CURVE25519_PUBKEY_LEN);
|
|
/* Clear the high bit, in case our backend foolishly looks at it. */
|
|
bp[31] &= 0x7f;
|
|
#ifdef USE_CURVE25519_DONNA
|
|
r = curve25519_donna(output, secret, bp);
|
|
#elif defined(USE_CURVE25519_NACL)
|
|
r = crypto_scalarmult_curve25519(output, secret, bp);
|
|
#else
|
|
#error "No implementation of curve25519 is available."
|
|
#endif
|
|
memwipe(bp, 0, sizeof(bp));
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Helper function: Multiply the scalar "secret" by the Curve25519
|
|
* basepoint (X=9), and store the result in "output". Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
STATIC int
|
|
curve25519_basepoint_impl(uint8_t *output, const uint8_t *secret)
|
|
{
|
|
int r = 0;
|
|
if (BUG(curve25519_use_ed == -1)) {
|
|
/* LCOV_EXCL_START - Only reached if we forgot to call curve25519_init() */
|
|
pick_curve25519_basepoint_impl();
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
/* TODO: Someone should benchmark curved25519_scalarmult_basepoint versus
|
|
* an optimized NaCl build to see which should be used when compiled with
|
|
* NaCl available. I suspected that the ed25519 optimization always wins.
|
|
*/
|
|
if (PREDICT_LIKELY(curve25519_use_ed == 1)) {
|
|
curved25519_scalarmult_basepoint_donna(output, secret);
|
|
r = 0;
|
|
} else {
|
|
static const uint8_t basepoint[32] = {9};
|
|
r = curve25519_impl(output, secret, basepoint);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Override the decision of whether to use the Ed25519-based basepoint
|
|
* multiply function. Used for testing.
|
|
*/
|
|
void
|
|
curve25519_set_impl_params(int use_ed)
|
|
{
|
|
curve25519_use_ed = use_ed;
|
|
}
|
|
|
|
/* ==============================
|
|
Part 2: Wrap curve25519_impl with some convenience types and functions.
|
|
============================== */
|
|
|
|
/**
|
|
* Return true iff a curve25519_public_key_t seems valid. (It's not necessary
|
|
* to see if the point is on the curve, since the twist is also secure, but we
|
|
* do need to make sure that it isn't the point at infinity.) */
|
|
int
|
|
curve25519_public_key_is_ok(const curve25519_public_key_t *key)
|
|
{
|
|
return !safe_mem_is_zero(key->public_key, CURVE25519_PUBKEY_LEN);
|
|
}
|
|
|
|
/**
|
|
* Generate CURVE25519_SECKEY_LEN random bytes in <b>out</b>. If
|
|
* <b>extra_strong</b> is true, this key is possibly going to get used more
|
|
* than once, so use a better-than-usual RNG. Return 0 on success, -1 on
|
|
* failure.
|
|
*
|
|
* This function does not adjust the output of the RNG at all; the will caller
|
|
* will need to clear or set the appropriate bits to make curve25519 work.
|
|
*/
|
|
int
|
|
curve25519_rand_seckey_bytes(uint8_t *out, int extra_strong)
|
|
{
|
|
if (extra_strong)
|
|
crypto_strongest_rand(out, CURVE25519_SECKEY_LEN);
|
|
else
|
|
crypto_rand((char*)out, CURVE25519_SECKEY_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Generate a new keypair and return the secret key. If <b>extra_strong</b>
|
|
* is true, this key is possibly going to get used more than once, so
|
|
* use a better-than-usual RNG. Return 0 on success, -1 on failure. */
|
|
int
|
|
curve25519_secret_key_generate(curve25519_secret_key_t *key_out,
|
|
int extra_strong)
|
|
{
|
|
if (curve25519_rand_seckey_bytes(key_out->secret_key, extra_strong) < 0)
|
|
return -1;
|
|
|
|
key_out->secret_key[0] &= 248;
|
|
key_out->secret_key[31] &= 127;
|
|
key_out->secret_key[31] |= 64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Given a secret key in <b>seckey</b>, create the corresponding public
|
|
* key in <b>key_out</b>.
|
|
*/
|
|
void
|
|
curve25519_public_key_generate(curve25519_public_key_t *key_out,
|
|
const curve25519_secret_key_t *seckey)
|
|
{
|
|
curve25519_basepoint_impl(key_out->public_key, seckey->secret_key);
|
|
}
|
|
|
|
/**
|
|
* Construct a new keypair in *<b>keypair_out</b>. If <b>extra_strong</b>
|
|
* is true, this key is possibly going to get used more than once, so
|
|
* use a better-than-usual RNG. Return 0 on success, -1 on failure. */
|
|
int
|
|
curve25519_keypair_generate(curve25519_keypair_t *keypair_out,
|
|
int extra_strong)
|
|
{
|
|
if (curve25519_secret_key_generate(&keypair_out->seckey, extra_strong) < 0)
|
|
return -1;
|
|
curve25519_public_key_generate(&keypair_out->pubkey, &keypair_out->seckey);
|
|
return 0;
|
|
}
|
|
|
|
/** Store the keypair <b>keypair</b>, including its secret and public
|
|
* parts, to the file <b>fname</b>. Use the string tag <b>tag</b> to
|
|
* distinguish this from other Curve25519 keypairs. Return 0 on success,
|
|
* -1 on failure.
|
|
*
|
|
* See crypto_write_tagged_contents_to_file() for more information on
|
|
* the metaformat used for these keys.*/
|
|
int
|
|
curve25519_keypair_write_to_file(const curve25519_keypair_t *keypair,
|
|
const char *fname,
|
|
const char *tag)
|
|
{
|
|
uint8_t contents[CURVE25519_SECKEY_LEN + CURVE25519_PUBKEY_LEN];
|
|
int r;
|
|
|
|
memcpy(contents, keypair->seckey.secret_key, CURVE25519_SECKEY_LEN);
|
|
memcpy(contents+CURVE25519_SECKEY_LEN,
|
|
keypair->pubkey.public_key, CURVE25519_PUBKEY_LEN);
|
|
|
|
r = crypto_write_tagged_contents_to_file(fname,
|
|
"c25519v1",
|
|
tag,
|
|
contents,
|
|
sizeof(contents));
|
|
|
|
memwipe(contents, 0, sizeof(contents));
|
|
return r;
|
|
}
|
|
|
|
/** Read a curve25519 keypair from a file named <b>fname</b> created by
|
|
* curve25519_keypair_write_to_file(). Store the keypair in
|
|
* <b>keypair_out</b>, and the associated tag string in <b>tag_out</b>.
|
|
* Return 0 on success, and -1 on failure. */
|
|
int
|
|
curve25519_keypair_read_from_file(curve25519_keypair_t *keypair_out,
|
|
char **tag_out,
|
|
const char *fname)
|
|
{
|
|
uint8_t content[CURVE25519_SECKEY_LEN + CURVE25519_PUBKEY_LEN];
|
|
ssize_t len;
|
|
int r = -1;
|
|
|
|
len = crypto_read_tagged_contents_from_file(fname, "c25519v1", tag_out,
|
|
content, sizeof(content));
|
|
if (len != sizeof(content))
|
|
goto end;
|
|
|
|
/* Make sure that the public key matches the secret key */
|
|
memcpy(keypair_out->seckey.secret_key, content, CURVE25519_SECKEY_LEN);
|
|
curve25519_public_key_generate(&keypair_out->pubkey, &keypair_out->seckey);
|
|
if (tor_memneq(keypair_out->pubkey.public_key,
|
|
content + CURVE25519_SECKEY_LEN,
|
|
CURVE25519_PUBKEY_LEN))
|
|
goto end;
|
|
|
|
r = 0;
|
|
|
|
end:
|
|
memwipe(content, 0, sizeof(content));
|
|
if (r != 0) {
|
|
memset(keypair_out, 0, sizeof(*keypair_out));
|
|
tor_free(*tag_out);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Perform the curve25519 ECDH handshake with <b>skey</b> and <b>pkey</b>,
|
|
* writing CURVE25519_OUTPUT_LEN bytes of output into <b>output</b>. */
|
|
void
|
|
curve25519_handshake(uint8_t *output,
|
|
const curve25519_secret_key_t *skey,
|
|
const curve25519_public_key_t *pkey)
|
|
{
|
|
curve25519_impl(output, skey->secret_key, pkey->public_key);
|
|
}
|
|
|
|
/** Check whether the ed25519-based curve25519 basepoint optimization seems to
|
|
* be working. If so, return 0; otherwise return -1. */
|
|
static int
|
|
curve25519_basepoint_spot_check(void)
|
|
{
|
|
static const uint8_t alicesk[32] = {
|
|
0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d,
|
|
0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45,
|
|
0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a,
|
|
0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a
|
|
};
|
|
static const uint8_t alicepk[32] = {
|
|
0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54,
|
|
0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a,
|
|
0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4,
|
|
0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a
|
|
};
|
|
const int loop_max=200;
|
|
int save_use_ed = curve25519_use_ed;
|
|
unsigned char e1[32] = { 5 };
|
|
unsigned char e2[32] = { 5 };
|
|
unsigned char x[32],y[32];
|
|
int i;
|
|
int r=0;
|
|
|
|
/* Check the most basic possible sanity via the test secret/public key pair
|
|
* used in "Cryptography in NaCl - 2. Secret keys and public keys". This
|
|
* may catch catastrophic failures on systems where Curve25519 is expensive,
|
|
* without requiring a ton of key generation.
|
|
*/
|
|
curve25519_use_ed = 1;
|
|
r |= curve25519_basepoint_impl(x, alicesk);
|
|
if (fast_memneq(x, alicepk, 32))
|
|
goto fail;
|
|
|
|
/* Ok, the optimization appears to produce passable results, try a few more
|
|
* values, maybe there's something subtle wrong.
|
|
*/
|
|
for (i = 0; i < loop_max; ++i) {
|
|
curve25519_use_ed = 0;
|
|
r |= curve25519_basepoint_impl(x, e1);
|
|
curve25519_use_ed = 1;
|
|
r |= curve25519_basepoint_impl(y, e2);
|
|
if (fast_memneq(x,y,32))
|
|
goto fail;
|
|
memcpy(e1, x, 32);
|
|
memcpy(e2, x, 32);
|
|
}
|
|
|
|
goto end;
|
|
fail:
|
|
r = -1;
|
|
end:
|
|
curve25519_use_ed = save_use_ed;
|
|
return r;
|
|
}
|
|
|
|
/** Choose whether to use the ed25519-based curve25519-basepoint
|
|
* implementation. */
|
|
static void
|
|
pick_curve25519_basepoint_impl(void)
|
|
{
|
|
curve25519_use_ed = 1;
|
|
|
|
if (curve25519_basepoint_spot_check() == 0)
|
|
return;
|
|
|
|
/* LCOV_EXCL_START
|
|
* only reachable if our basepoint implementation broken */
|
|
log_warn(LD_BUG|LD_CRYPTO, "The ed25519-based curve25519 basepoint "
|
|
"multiplication seems broken; using the curve25519 "
|
|
"implementation.");
|
|
curve25519_use_ed = 0;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
/** Initialize the curve25519 implementations. This is necessary if you're
|
|
* going to use them in a multithreaded setting, and not otherwise. */
|
|
void
|
|
curve25519_init(void)
|
|
{
|
|
pick_curve25519_basepoint_impl();
|
|
}
|
|
|