mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
1456 lines
50 KiB
C
1456 lines
50 KiB
C
/* Copyright (c) 2003-2004, Roger Dingledine
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2015, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file container.c
|
|
* \brief Implements a smartlist (a resizable array) along
|
|
* with helper functions to use smartlists. Also includes
|
|
* hash table implementations of a string-to-void* map, and of
|
|
* a digest-to-void* map.
|
|
**/
|
|
|
|
#include "compat.h"
|
|
#include "util.h"
|
|
#include "torlog.h"
|
|
#include "container.h"
|
|
#include "crypto.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "ht.h"
|
|
|
|
/** All newly allocated smartlists have this capacity. */
|
|
#define SMARTLIST_DEFAULT_CAPACITY 16
|
|
|
|
/** Allocate and return an empty smartlist.
|
|
*/
|
|
MOCK_IMPL(smartlist_t *,
|
|
smartlist_new,(void))
|
|
{
|
|
smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
|
|
sl->num_used = 0;
|
|
sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
|
|
sl->list = tor_calloc(sizeof(void *), sl->capacity);
|
|
return sl;
|
|
}
|
|
|
|
/** Deallocate a smartlist. Does not release storage associated with the
|
|
* list's elements.
|
|
*/
|
|
MOCK_IMPL(void,
|
|
smartlist_free,(smartlist_t *sl))
|
|
{
|
|
if (!sl)
|
|
return;
|
|
tor_free(sl->list);
|
|
tor_free(sl);
|
|
}
|
|
|
|
/** Remove all elements from the list.
|
|
*/
|
|
void
|
|
smartlist_clear(smartlist_t *sl)
|
|
{
|
|
sl->num_used = 0;
|
|
}
|
|
|
|
/** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */
|
|
static INLINE void
|
|
smartlist_ensure_capacity(smartlist_t *sl, int size)
|
|
{
|
|
#if SIZEOF_SIZE_T > SIZEOF_INT
|
|
#define MAX_CAPACITY (INT_MAX)
|
|
#else
|
|
#define MAX_CAPACITY (int)((SIZE_MAX / (sizeof(void*))))
|
|
#define ASSERT_CAPACITY
|
|
#endif
|
|
if (size > sl->capacity) {
|
|
int higher = sl->capacity;
|
|
if (PREDICT_UNLIKELY(size > MAX_CAPACITY/2)) {
|
|
#ifdef ASSERT_CAPACITY
|
|
/* We don't include this assertion when MAX_CAPACITY == INT_MAX,
|
|
* since int size; (size <= INT_MAX) makes analysis tools think we're
|
|
* doing something stupid. */
|
|
tor_assert(size <= MAX_CAPACITY);
|
|
#endif
|
|
higher = MAX_CAPACITY;
|
|
} else {
|
|
while (size > higher)
|
|
higher *= 2;
|
|
}
|
|
sl->capacity = higher;
|
|
sl->list = tor_reallocarray(sl->list, sizeof(void *),
|
|
((size_t)sl->capacity));
|
|
}
|
|
#undef ASSERT_CAPACITY
|
|
#undef MAX_CAPACITY
|
|
}
|
|
|
|
/** Append element to the end of the list. */
|
|
void
|
|
smartlist_add(smartlist_t *sl, void *element)
|
|
{
|
|
smartlist_ensure_capacity(sl, sl->num_used+1);
|
|
sl->list[sl->num_used++] = element;
|
|
}
|
|
|
|
/** Append each element from S2 to the end of S1. */
|
|
void
|
|
smartlist_add_all(smartlist_t *s1, const smartlist_t *s2)
|
|
{
|
|
int new_size = s1->num_used + s2->num_used;
|
|
tor_assert(new_size >= s1->num_used); /* check for overflow. */
|
|
smartlist_ensure_capacity(s1, new_size);
|
|
memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*));
|
|
s1->num_used = new_size;
|
|
}
|
|
|
|
/** Remove all elements E from sl such that E==element. Preserve
|
|
* the order of any elements before E, but elements after E can be
|
|
* rearranged.
|
|
*/
|
|
void
|
|
smartlist_remove(smartlist_t *sl, const void *element)
|
|
{
|
|
int i;
|
|
if (element == NULL)
|
|
return;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (sl->list[i] == element) {
|
|
sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
|
|
i--; /* so we process the new i'th element */
|
|
}
|
|
}
|
|
|
|
/** If <b>sl</b> is nonempty, remove and return the final element. Otherwise,
|
|
* return NULL. */
|
|
void *
|
|
smartlist_pop_last(smartlist_t *sl)
|
|
{
|
|
tor_assert(sl);
|
|
if (sl->num_used)
|
|
return sl->list[--sl->num_used];
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/** Reverse the order of the items in <b>sl</b>. */
|
|
void
|
|
smartlist_reverse(smartlist_t *sl)
|
|
{
|
|
int i, j;
|
|
void *tmp;
|
|
tor_assert(sl);
|
|
for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
|
|
tmp = sl->list[i];
|
|
sl->list[i] = sl->list[j];
|
|
sl->list[j] = tmp;
|
|
}
|
|
}
|
|
|
|
/** If there are any strings in sl equal to element, remove and free them.
|
|
* Does not preserve order. */
|
|
void
|
|
smartlist_string_remove(smartlist_t *sl, const char *element)
|
|
{
|
|
int i;
|
|
tor_assert(sl);
|
|
tor_assert(element);
|
|
for (i = 0; i < sl->num_used; ++i) {
|
|
if (!strcmp(element, sl->list[i])) {
|
|
tor_free(sl->list[i]);
|
|
sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
|
|
i--; /* so we process the new i'th element */
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Return true iff some element E of sl has E==element.
|
|
*/
|
|
int
|
|
smartlist_contains(const smartlist_t *sl, const void *element)
|
|
{
|
|
int i;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (sl->list[i] == element)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Return true iff <b>sl</b> has some element E such that
|
|
* !strcmp(E,<b>element</b>)
|
|
*/
|
|
int
|
|
smartlist_contains_string(const smartlist_t *sl, const char *element)
|
|
{
|
|
int i;
|
|
if (!sl) return 0;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (strcmp((const char*)sl->list[i],element)==0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** If <b>element</b> is equal to an element of <b>sl</b>, return that
|
|
* element's index. Otherwise, return -1. */
|
|
int
|
|
smartlist_string_pos(const smartlist_t *sl, const char *element)
|
|
{
|
|
int i;
|
|
if (!sl) return -1;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (strcmp((const char*)sl->list[i],element)==0)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
/** Return true iff <b>sl</b> has some element E such that
|
|
* !strcasecmp(E,<b>element</b>)
|
|
*/
|
|
int
|
|
smartlist_contains_string_case(const smartlist_t *sl, const char *element)
|
|
{
|
|
int i;
|
|
if (!sl) return 0;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (strcasecmp((const char*)sl->list[i],element)==0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Return true iff <b>sl</b> has some element E such that E is equal
|
|
* to the decimal encoding of <b>num</b>.
|
|
*/
|
|
int
|
|
smartlist_contains_int_as_string(const smartlist_t *sl, int num)
|
|
{
|
|
char buf[32]; /* long enough for 64-bit int, and then some. */
|
|
tor_snprintf(buf,sizeof(buf),"%d", num);
|
|
return smartlist_contains_string(sl, buf);
|
|
}
|
|
|
|
/** Return true iff the two lists contain the same strings in the same
|
|
* order, or if they are both NULL. */
|
|
int
|
|
smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2)
|
|
{
|
|
if (sl1 == NULL)
|
|
return sl2 == NULL;
|
|
if (sl2 == NULL)
|
|
return 0;
|
|
if (smartlist_len(sl1) != smartlist_len(sl2))
|
|
return 0;
|
|
SMARTLIST_FOREACH(sl1, const char *, cp1, {
|
|
const char *cp2 = smartlist_get(sl2, cp1_sl_idx);
|
|
if (strcmp(cp1, cp2))
|
|
return 0;
|
|
});
|
|
return 1;
|
|
}
|
|
|
|
/** Return true iff the two lists contain the same int pointer values in
|
|
* the same order, or if they are both NULL. */
|
|
int
|
|
smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2)
|
|
{
|
|
if (sl1 == NULL)
|
|
return sl2 == NULL;
|
|
if (sl2 == NULL)
|
|
return 0;
|
|
if (smartlist_len(sl1) != smartlist_len(sl2))
|
|
return 0;
|
|
SMARTLIST_FOREACH(sl1, int *, cp1, {
|
|
int *cp2 = smartlist_get(sl2, cp1_sl_idx);
|
|
if (*cp1 != *cp2)
|
|
return 0;
|
|
});
|
|
return 1;
|
|
}
|
|
|
|
/** Return true iff <b>sl</b> has some element E such that
|
|
* tor_memeq(E,<b>element</b>,DIGEST_LEN)
|
|
*/
|
|
int
|
|
smartlist_contains_digest(const smartlist_t *sl, const char *element)
|
|
{
|
|
int i;
|
|
if (!sl) return 0;
|
|
for (i=0; i < sl->num_used; i++)
|
|
if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Return true iff some element E of sl2 has smartlist_contains(sl1,E).
|
|
*/
|
|
int
|
|
smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
|
|
{
|
|
int i;
|
|
for (i=0; i < sl2->num_used; i++)
|
|
if (smartlist_contains(sl1, sl2->list[i]))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Remove every element E of sl1 such that !smartlist_contains(sl2,E).
|
|
* Does not preserve the order of sl1.
|
|
*/
|
|
void
|
|
smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
|
|
{
|
|
int i;
|
|
for (i=0; i < sl1->num_used; i++)
|
|
if (!smartlist_contains(sl2, sl1->list[i])) {
|
|
sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
|
|
i--; /* so we process the new i'th element */
|
|
}
|
|
}
|
|
|
|
/** Remove every element E of sl1 such that smartlist_contains(sl2,E).
|
|
* Does not preserve the order of sl1.
|
|
*/
|
|
void
|
|
smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
|
|
{
|
|
int i;
|
|
for (i=0; i < sl2->num_used; i++)
|
|
smartlist_remove(sl1, sl2->list[i]);
|
|
}
|
|
|
|
/** Remove the <b>idx</b>th element of sl; if idx is not the last
|
|
* element, swap the last element of sl into the <b>idx</b>th space.
|
|
*/
|
|
void
|
|
smartlist_del(smartlist_t *sl, int idx)
|
|
{
|
|
tor_assert(sl);
|
|
tor_assert(idx>=0);
|
|
tor_assert(idx < sl->num_used);
|
|
sl->list[idx] = sl->list[--sl->num_used];
|
|
}
|
|
|
|
/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
|
|
* moving all subsequent elements back one space. Return the old value
|
|
* of the <b>idx</b>th element.
|
|
*/
|
|
void
|
|
smartlist_del_keeporder(smartlist_t *sl, int idx)
|
|
{
|
|
tor_assert(sl);
|
|
tor_assert(idx>=0);
|
|
tor_assert(idx < sl->num_used);
|
|
--sl->num_used;
|
|
if (idx < sl->num_used)
|
|
memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
|
|
}
|
|
|
|
/** Insert the value <b>val</b> as the new <b>idx</b>th element of
|
|
* <b>sl</b>, moving all items previously at <b>idx</b> or later
|
|
* forward one space.
|
|
*/
|
|
void
|
|
smartlist_insert(smartlist_t *sl, int idx, void *val)
|
|
{
|
|
tor_assert(sl);
|
|
tor_assert(idx>=0);
|
|
tor_assert(idx <= sl->num_used);
|
|
if (idx == sl->num_used) {
|
|
smartlist_add(sl, val);
|
|
} else {
|
|
smartlist_ensure_capacity(sl, sl->num_used+1);
|
|
/* Move other elements away */
|
|
if (idx < sl->num_used)
|
|
memmove(sl->list + idx + 1, sl->list + idx,
|
|
sizeof(void*)*(sl->num_used-idx));
|
|
sl->num_used++;
|
|
sl->list[idx] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Split a string <b>str</b> along all occurrences of <b>sep</b>,
|
|
* appending the (newly allocated) split strings, in order, to
|
|
* <b>sl</b>. Return the number of strings added to <b>sl</b>.
|
|
*
|
|
* If <b>flags</b>&SPLIT_SKIP_SPACE is true, remove initial and
|
|
* trailing space from each entry.
|
|
* If <b>flags</b>&SPLIT_IGNORE_BLANK is true, remove any entries
|
|
* of length 0.
|
|
* If <b>flags</b>&SPLIT_STRIP_SPACE is true, strip spaces from each
|
|
* split string.
|
|
*
|
|
* If <b>max</b>\>0, divide the string into no more than <b>max</b> pieces. If
|
|
* <b>sep</b> is NULL, split on any sequence of horizontal space.
|
|
*/
|
|
int
|
|
smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
|
|
int flags, int max)
|
|
{
|
|
const char *cp, *end, *next;
|
|
int n = 0;
|
|
|
|
tor_assert(sl);
|
|
tor_assert(str);
|
|
|
|
cp = str;
|
|
while (1) {
|
|
if (flags&SPLIT_SKIP_SPACE) {
|
|
while (TOR_ISSPACE(*cp)) ++cp;
|
|
}
|
|
|
|
if (max>0 && n == max-1) {
|
|
end = strchr(cp,'\0');
|
|
} else if (sep) {
|
|
end = strstr(cp,sep);
|
|
if (!end)
|
|
end = strchr(cp,'\0');
|
|
} else {
|
|
for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
|
|
;
|
|
}
|
|
|
|
tor_assert(end);
|
|
|
|
if (!*end) {
|
|
next = NULL;
|
|
} else if (sep) {
|
|
next = end+strlen(sep);
|
|
} else {
|
|
next = end+1;
|
|
while (*next == '\t' || *next == ' ')
|
|
++next;
|
|
}
|
|
|
|
if (flags&SPLIT_SKIP_SPACE) {
|
|
while (end > cp && TOR_ISSPACE(*(end-1)))
|
|
--end;
|
|
}
|
|
if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
|
|
char *string = tor_strndup(cp, end-cp);
|
|
if (flags&SPLIT_STRIP_SPACE)
|
|
tor_strstrip(string, " ");
|
|
smartlist_add(sl, string);
|
|
++n;
|
|
}
|
|
if (!next)
|
|
break;
|
|
cp = next;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/** Allocate and return a new string containing the concatenation of
|
|
* the elements of <b>sl</b>, in order, separated by <b>join</b>. If
|
|
* <b>terminate</b> is true, also terminate the string with <b>join</b>.
|
|
* If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
|
|
* the returned string. Requires that every element of <b>sl</b> is
|
|
* NUL-terminated string.
|
|
*/
|
|
char *
|
|
smartlist_join_strings(smartlist_t *sl, const char *join,
|
|
int terminate, size_t *len_out)
|
|
{
|
|
return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
|
|
}
|
|
|
|
/** As smartlist_join_strings, but instead of separating/terminated with a
|
|
* NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
|
|
* at <b>join</b>. (Useful for generating a sequence of NUL-terminated
|
|
* strings.)
|
|
*/
|
|
char *
|
|
smartlist_join_strings2(smartlist_t *sl, const char *join,
|
|
size_t join_len, int terminate, size_t *len_out)
|
|
{
|
|
int i;
|
|
size_t n = 0;
|
|
char *r = NULL, *dst, *src;
|
|
|
|
tor_assert(sl);
|
|
tor_assert(join);
|
|
|
|
if (terminate)
|
|
n = join_len;
|
|
|
|
for (i = 0; i < sl->num_used; ++i) {
|
|
n += strlen(sl->list[i]);
|
|
if (i+1 < sl->num_used) /* avoid double-counting the last one */
|
|
n += join_len;
|
|
}
|
|
dst = r = tor_malloc(n+1);
|
|
for (i = 0; i < sl->num_used; ) {
|
|
for (src = sl->list[i]; *src; )
|
|
*dst++ = *src++;
|
|
if (++i < sl->num_used) {
|
|
memcpy(dst, join, join_len);
|
|
dst += join_len;
|
|
}
|
|
}
|
|
if (terminate) {
|
|
memcpy(dst, join, join_len);
|
|
dst += join_len;
|
|
}
|
|
*dst = '\0';
|
|
|
|
if (len_out)
|
|
*len_out = dst-r;
|
|
return r;
|
|
}
|
|
|
|
/** Sort the members of <b>sl</b> into an order defined by
|
|
* the ordering function <b>compare</b>, which returns less then 0 if a
|
|
* precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
|
|
*/
|
|
void
|
|
smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
|
|
{
|
|
if (!sl->num_used)
|
|
return;
|
|
qsort(sl->list, sl->num_used, sizeof(void*),
|
|
(int (*)(const void *,const void*))compare);
|
|
}
|
|
|
|
/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
|
|
* return the most frequent member in the list. Break ties in favor of
|
|
* later elements. If the list is empty, return NULL.
|
|
*/
|
|
void *
|
|
smartlist_get_most_frequent(const smartlist_t *sl,
|
|
int (*compare)(const void **a, const void **b))
|
|
{
|
|
const void *most_frequent = NULL;
|
|
int most_frequent_count = 0;
|
|
|
|
const void *cur = NULL;
|
|
int i, count=0;
|
|
|
|
if (!sl->num_used)
|
|
return NULL;
|
|
for (i = 0; i < sl->num_used; ++i) {
|
|
const void *item = sl->list[i];
|
|
if (cur && 0 == compare(&cur, &item)) {
|
|
++count;
|
|
} else {
|
|
if (cur && count >= most_frequent_count) {
|
|
most_frequent = cur;
|
|
most_frequent_count = count;
|
|
}
|
|
cur = item;
|
|
count = 1;
|
|
}
|
|
}
|
|
if (cur && count >= most_frequent_count) {
|
|
most_frequent = cur;
|
|
most_frequent_count = count;
|
|
}
|
|
return (void*)most_frequent;
|
|
}
|
|
|
|
/** Given a sorted smartlist <b>sl</b> and the comparison function used to
|
|
* sort it, remove all duplicate members. If free_fn is provided, calls
|
|
* free_fn on each duplicate. Otherwise, just removes them. Preserves order.
|
|
*/
|
|
void
|
|
smartlist_uniq(smartlist_t *sl,
|
|
int (*compare)(const void **a, const void **b),
|
|
void (*free_fn)(void *a))
|
|
{
|
|
int i;
|
|
for (i=1; i < sl->num_used; ++i) {
|
|
if (compare((const void **)&(sl->list[i-1]),
|
|
(const void **)&(sl->list[i])) == 0) {
|
|
if (free_fn)
|
|
free_fn(sl->list[i]);
|
|
smartlist_del_keeporder(sl, i--);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Assuming the members of <b>sl</b> are in order, return a pointer to the
|
|
* member that matches <b>key</b>. Ordering and matching are defined by a
|
|
* <b>compare</b> function that returns 0 on a match; less than 0 if key is
|
|
* less than member, and greater than 0 if key is greater then member.
|
|
*/
|
|
void *
|
|
smartlist_bsearch(smartlist_t *sl, const void *key,
|
|
int (*compare)(const void *key, const void **member))
|
|
{
|
|
int found, idx;
|
|
idx = smartlist_bsearch_idx(sl, key, compare, &found);
|
|
return found ? smartlist_get(sl, idx) : NULL;
|
|
}
|
|
|
|
/** Assuming the members of <b>sl</b> are in order, return the index of the
|
|
* member that matches <b>key</b>. If no member matches, return the index of
|
|
* the first member greater than <b>key</b>, or smartlist_len(sl) if no member
|
|
* is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to
|
|
* false otherwise. Ordering and matching are defined by a <b>compare</b>
|
|
* function that returns 0 on a match; less than 0 if key is less than member,
|
|
* and greater than 0 if key is greater then member.
|
|
*/
|
|
int
|
|
smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
|
|
int (*compare)(const void *key, const void **member),
|
|
int *found_out)
|
|
{
|
|
int hi, lo, cmp, mid, len, diff;
|
|
|
|
tor_assert(sl);
|
|
tor_assert(compare);
|
|
tor_assert(found_out);
|
|
|
|
len = smartlist_len(sl);
|
|
|
|
/* Check for the trivial case of a zero-length list */
|
|
if (len == 0) {
|
|
*found_out = 0;
|
|
/* We already know smartlist_len(sl) is 0 in this case */
|
|
return 0;
|
|
}
|
|
|
|
/* Okay, we have a real search to do */
|
|
tor_assert(len > 0);
|
|
lo = 0;
|
|
hi = len - 1;
|
|
|
|
/*
|
|
* These invariants are always true:
|
|
*
|
|
* For all i such that 0 <= i < lo, sl[i] < key
|
|
* For all i such that hi < i <= len, sl[i] > key
|
|
*/
|
|
|
|
while (lo <= hi) {
|
|
diff = hi - lo;
|
|
/*
|
|
* We want mid = (lo + hi) / 2, but that could lead to overflow, so
|
|
* instead diff = hi - lo (non-negative because of loop condition), and
|
|
* then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2).
|
|
*/
|
|
mid = lo + (diff / 2);
|
|
cmp = compare(key, (const void**) &(sl->list[mid]));
|
|
if (cmp == 0) {
|
|
/* sl[mid] == key; we found it */
|
|
*found_out = 1;
|
|
return mid;
|
|
} else if (cmp > 0) {
|
|
/*
|
|
* key > sl[mid] and an index i such that sl[i] == key must
|
|
* have i > mid if it exists.
|
|
*/
|
|
|
|
/*
|
|
* Since lo <= mid <= hi, hi can only decrease on each iteration (by
|
|
* being set to mid - 1) and hi is initially len - 1, mid < len should
|
|
* always hold, and this is not symmetric with the left end of list
|
|
* mid > 0 test below. A key greater than the right end of the list
|
|
* should eventually lead to lo == hi == mid == len - 1, and then
|
|
* we set lo to len below and fall out to the same exit we hit for
|
|
* a key in the middle of the list but not matching. Thus, we just
|
|
* assert for consistency here rather than handle a mid == len case.
|
|
*/
|
|
tor_assert(mid < len);
|
|
/* Move lo to the element immediately after sl[mid] */
|
|
lo = mid + 1;
|
|
} else {
|
|
/* This should always be true in this case */
|
|
tor_assert(cmp < 0);
|
|
|
|
/*
|
|
* key < sl[mid] and an index i such that sl[i] == key must
|
|
* have i < mid if it exists.
|
|
*/
|
|
|
|
if (mid > 0) {
|
|
/* Normal case, move hi to the element immediately before sl[mid] */
|
|
hi = mid - 1;
|
|
} else {
|
|
/* These should always be true in this case */
|
|
tor_assert(mid == lo);
|
|
tor_assert(mid == 0);
|
|
/*
|
|
* We were at the beginning of the list and concluded that every
|
|
* element e compares e > key.
|
|
*/
|
|
*found_out = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* lo > hi; we have no element matching key but we have elements falling
|
|
* on both sides of it. The lo index points to the first element > key.
|
|
*/
|
|
tor_assert(lo == hi + 1); /* All other cases should have been handled */
|
|
tor_assert(lo >= 0);
|
|
tor_assert(lo <= len);
|
|
tor_assert(hi >= 0);
|
|
tor_assert(hi <= len);
|
|
|
|
if (lo < len) {
|
|
cmp = compare(key, (const void **) &(sl->list[lo]));
|
|
tor_assert(cmp < 0);
|
|
} else {
|
|
cmp = compare(key, (const void **) &(sl->list[len-1]));
|
|
tor_assert(cmp > 0);
|
|
}
|
|
|
|
*found_out = 0;
|
|
return lo;
|
|
}
|
|
|
|
/** Helper: compare two const char **s. */
|
|
static int
|
|
compare_string_ptrs_(const void **_a, const void **_b)
|
|
{
|
|
return strcmp((const char*)*_a, (const char*)*_b);
|
|
}
|
|
|
|
/** Sort a smartlist <b>sl</b> containing strings into lexically ascending
|
|
* order. */
|
|
void
|
|
smartlist_sort_strings(smartlist_t *sl)
|
|
{
|
|
smartlist_sort(sl, compare_string_ptrs_);
|
|
}
|
|
|
|
/** Return the most frequent string in the sorted list <b>sl</b> */
|
|
char *
|
|
smartlist_get_most_frequent_string(smartlist_t *sl)
|
|
{
|
|
return smartlist_get_most_frequent(sl, compare_string_ptrs_);
|
|
}
|
|
|
|
/** Remove duplicate strings from a sorted list, and free them with tor_free().
|
|
*/
|
|
void
|
|
smartlist_uniq_strings(smartlist_t *sl)
|
|
{
|
|
smartlist_uniq(sl, compare_string_ptrs_, tor_free_);
|
|
}
|
|
|
|
/** Helper: compare two pointers. */
|
|
static int
|
|
compare_ptrs_(const void **_a, const void **_b)
|
|
{
|
|
const void *a = *_a, *b = *_b;
|
|
if (a<b)
|
|
return -1;
|
|
else if (a==b)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/** Sort <b>sl</b> in ascending order of the pointers it contains. */
|
|
void
|
|
smartlist_sort_pointers(smartlist_t *sl)
|
|
{
|
|
smartlist_sort(sl, compare_ptrs_);
|
|
}
|
|
|
|
/* Heap-based priority queue implementation for O(lg N) insert and remove.
|
|
* Recall that the heap property is that, for every index I, h[I] <
|
|
* H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
|
|
*
|
|
* For us to remove items other than the topmost item, each item must store
|
|
* its own index within the heap. When calling the pqueue functions, tell
|
|
* them about the offset of the field that stores the index within the item.
|
|
*
|
|
* Example:
|
|
*
|
|
* typedef struct timer_t {
|
|
* struct timeval tv;
|
|
* int heap_index;
|
|
* } timer_t;
|
|
*
|
|
* static int compare(const void *p1, const void *p2) {
|
|
* const timer_t *t1 = p1, *t2 = p2;
|
|
* if (t1->tv.tv_sec < t2->tv.tv_sec) {
|
|
* return -1;
|
|
* } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
|
|
* return 1;
|
|
* } else {
|
|
* return t1->tv.tv_usec - t2->tv_usec;
|
|
* }
|
|
* }
|
|
*
|
|
* void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
|
|
* smartlist_pqueue_add(heap, compare, STRUCT_OFFSET(timer_t, heap_index),
|
|
* timer);
|
|
* }
|
|
*
|
|
* void timer_heap_pop(smartlist_t *heap) {
|
|
* return smartlist_pqueue_pop(heap, compare,
|
|
* STRUCT_OFFSET(timer_t, heap_index));
|
|
* }
|
|
*/
|
|
|
|
/** @{ */
|
|
/** Functions to manipulate heap indices to find a node's parent and children.
|
|
*
|
|
* For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
|
|
* = 2*x + 1. But this is C, so we have to adjust a little. */
|
|
//#define LEFT_CHILD(i) ( ((i)+1)*2 - 1)
|
|
//#define RIGHT_CHILD(i) ( ((i)+1)*2 )
|
|
//#define PARENT(i) ( ((i)+1)/2 - 1)
|
|
#define LEFT_CHILD(i) ( 2*(i) + 1 )
|
|
#define RIGHT_CHILD(i) ( 2*(i) + 2 )
|
|
#define PARENT(i) ( ((i)-1) / 2 )
|
|
/** }@ */
|
|
|
|
/** @{ */
|
|
/** Helper macros for heaps: Given a local variable <b>idx_field_offset</b>
|
|
* set to the offset of an integer index within the heap element structure,
|
|
* IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to
|
|
* where p's index is stored. Given additionally a local smartlist <b>sl</b>,
|
|
* UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct
|
|
* value (that is, to <b>i</b>).
|
|
*/
|
|
#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))
|
|
|
|
#define UPDATE_IDX(i) do { \
|
|
void *updated = sl->list[i]; \
|
|
*IDXP(updated) = i; \
|
|
} while (0)
|
|
|
|
#define IDX_OF_ITEM(p) (*IDXP(p))
|
|
/** @} */
|
|
|
|
/** Helper. <b>sl</b> may have at most one violation of the heap property:
|
|
* the item at <b>idx</b> may be greater than one or both of its children.
|
|
* Restore the heap property. */
|
|
static INLINE void
|
|
smartlist_heapify(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
int idx_field_offset,
|
|
int idx)
|
|
{
|
|
while (1) {
|
|
int left_idx = LEFT_CHILD(idx);
|
|
int best_idx;
|
|
|
|
if (left_idx >= sl->num_used)
|
|
return;
|
|
if (compare(sl->list[idx],sl->list[left_idx]) < 0)
|
|
best_idx = idx;
|
|
else
|
|
best_idx = left_idx;
|
|
if (left_idx+1 < sl->num_used &&
|
|
compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
|
|
best_idx = left_idx + 1;
|
|
|
|
if (best_idx == idx) {
|
|
return;
|
|
} else {
|
|
void *tmp = sl->list[idx];
|
|
sl->list[idx] = sl->list[best_idx];
|
|
sl->list[best_idx] = tmp;
|
|
UPDATE_IDX(idx);
|
|
UPDATE_IDX(best_idx);
|
|
|
|
idx = best_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
|
|
* determined by <b>compare</b> and the offset of the item in the heap is
|
|
* stored in an int-typed field at position <b>idx_field_offset</b> within
|
|
* item.
|
|
*/
|
|
void
|
|
smartlist_pqueue_add(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
int idx_field_offset,
|
|
void *item)
|
|
{
|
|
int idx;
|
|
smartlist_add(sl,item);
|
|
UPDATE_IDX(sl->num_used-1);
|
|
|
|
for (idx = sl->num_used - 1; idx; ) {
|
|
int parent = PARENT(idx);
|
|
if (compare(sl->list[idx], sl->list[parent]) < 0) {
|
|
void *tmp = sl->list[parent];
|
|
sl->list[parent] = sl->list[idx];
|
|
sl->list[idx] = tmp;
|
|
UPDATE_IDX(parent);
|
|
UPDATE_IDX(idx);
|
|
idx = parent;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Remove and return the top-priority item from the heap stored in <b>sl</b>,
|
|
* where order is determined by <b>compare</b> and the item's position is
|
|
* stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
|
|
* not be empty. */
|
|
void *
|
|
smartlist_pqueue_pop(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
int idx_field_offset)
|
|
{
|
|
void *top;
|
|
tor_assert(sl->num_used);
|
|
|
|
top = sl->list[0];
|
|
*IDXP(top)=-1;
|
|
if (--sl->num_used) {
|
|
sl->list[0] = sl->list[sl->num_used];
|
|
UPDATE_IDX(0);
|
|
smartlist_heapify(sl, compare, idx_field_offset, 0);
|
|
}
|
|
return top;
|
|
}
|
|
|
|
/** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
|
|
* where order is determined by <b>compare</b> and the item's position is
|
|
* stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
|
|
* not be empty. */
|
|
void
|
|
smartlist_pqueue_remove(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
int idx_field_offset,
|
|
void *item)
|
|
{
|
|
int idx = IDX_OF_ITEM(item);
|
|
tor_assert(idx >= 0);
|
|
tor_assert(sl->list[idx] == item);
|
|
--sl->num_used;
|
|
*IDXP(item) = -1;
|
|
if (idx == sl->num_used) {
|
|
return;
|
|
} else {
|
|
sl->list[idx] = sl->list[sl->num_used];
|
|
UPDATE_IDX(idx);
|
|
smartlist_heapify(sl, compare, idx_field_offset, idx);
|
|
}
|
|
}
|
|
|
|
/** Assert that the heap property is correctly maintained by the heap stored
|
|
* in <b>sl</b>, where order is determined by <b>compare</b>. */
|
|
void
|
|
smartlist_pqueue_assert_ok(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
int idx_field_offset)
|
|
{
|
|
int i;
|
|
for (i = sl->num_used - 1; i >= 0; --i) {
|
|
if (i>0)
|
|
tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
|
|
tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
|
|
}
|
|
}
|
|
|
|
/** Helper: compare two DIGEST_LEN digests. */
|
|
static int
|
|
compare_digests_(const void **_a, const void **_b)
|
|
{
|
|
return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
|
|
}
|
|
|
|
/** Sort the list of DIGEST_LEN-byte digests into ascending order. */
|
|
void
|
|
smartlist_sort_digests(smartlist_t *sl)
|
|
{
|
|
smartlist_sort(sl, compare_digests_);
|
|
}
|
|
|
|
/** Remove duplicate digests from a sorted list, and free them with tor_free().
|
|
*/
|
|
void
|
|
smartlist_uniq_digests(smartlist_t *sl)
|
|
{
|
|
smartlist_uniq(sl, compare_digests_, tor_free_);
|
|
}
|
|
|
|
/** Helper: compare two DIGEST256_LEN digests. */
|
|
static int
|
|
compare_digests256_(const void **_a, const void **_b)
|
|
{
|
|
return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
|
|
}
|
|
|
|
/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
|
|
void
|
|
smartlist_sort_digests256(smartlist_t *sl)
|
|
{
|
|
smartlist_sort(sl, compare_digests256_);
|
|
}
|
|
|
|
/** Return the most frequent member of the sorted list of DIGEST256_LEN
|
|
* digests in <b>sl</b> */
|
|
char *
|
|
smartlist_get_most_frequent_digest256(smartlist_t *sl)
|
|
{
|
|
return smartlist_get_most_frequent(sl, compare_digests256_);
|
|
}
|
|
|
|
/** Remove duplicate 256-bit digests from a sorted list, and free them with
|
|
* tor_free().
|
|
*/
|
|
void
|
|
smartlist_uniq_digests256(smartlist_t *sl)
|
|
{
|
|
smartlist_uniq(sl, compare_digests256_, tor_free_);
|
|
}
|
|
|
|
/** Helper: Declare an entry type and a map type to implement a mapping using
|
|
* ht.h. The map type will be called <b>maptype</b>. The key part of each
|
|
* entry is declared using the C declaration <b>keydecl</b>. All functions
|
|
* and types associated with the map get prefixed with <b>prefix</b> */
|
|
#define DEFINE_MAP_STRUCTS(maptype, keydecl, prefix) \
|
|
typedef struct prefix ## entry_t { \
|
|
HT_ENTRY(prefix ## entry_t) node; \
|
|
void *val; \
|
|
keydecl; \
|
|
} prefix ## entry_t; \
|
|
struct maptype { \
|
|
HT_HEAD(prefix ## impl, prefix ## entry_t) head; \
|
|
}
|
|
|
|
DEFINE_MAP_STRUCTS(strmap_t, char *key, strmap_);
|
|
DEFINE_MAP_STRUCTS(digestmap_t, char key[DIGEST_LEN], digestmap_);
|
|
DEFINE_MAP_STRUCTS(digest256map_t, uint8_t key[DIGEST256_LEN], digest256map_);
|
|
|
|
/** Helper: compare strmap_entry_t objects by key value. */
|
|
static INLINE int
|
|
strmap_entries_eq(const strmap_entry_t *a, const strmap_entry_t *b)
|
|
{
|
|
return !strcmp(a->key, b->key);
|
|
}
|
|
|
|
/** Helper: return a hash value for a strmap_entry_t. */
|
|
static INLINE unsigned int
|
|
strmap_entry_hash(const strmap_entry_t *a)
|
|
{
|
|
return (unsigned) siphash24g(a->key, strlen(a->key));
|
|
}
|
|
|
|
/** Helper: compare digestmap_entry_t objects by key value. */
|
|
static INLINE int
|
|
digestmap_entries_eq(const digestmap_entry_t *a, const digestmap_entry_t *b)
|
|
{
|
|
return tor_memeq(a->key, b->key, DIGEST_LEN);
|
|
}
|
|
|
|
/** Helper: return a hash value for a digest_map_t. */
|
|
static INLINE unsigned int
|
|
digestmap_entry_hash(const digestmap_entry_t *a)
|
|
{
|
|
return (unsigned) siphash24g(a->key, DIGEST_LEN);
|
|
}
|
|
|
|
/** Helper: compare digestmap_entry_t objects by key value. */
|
|
static INLINE int
|
|
digest256map_entries_eq(const digest256map_entry_t *a,
|
|
const digest256map_entry_t *b)
|
|
{
|
|
return tor_memeq(a->key, b->key, DIGEST256_LEN);
|
|
}
|
|
|
|
/** Helper: return a hash value for a digest_map_t. */
|
|
static INLINE unsigned int
|
|
digest256map_entry_hash(const digest256map_entry_t *a)
|
|
{
|
|
return (unsigned) siphash24g(a->key, DIGEST256_LEN);
|
|
}
|
|
|
|
HT_PROTOTYPE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
|
|
strmap_entries_eq)
|
|
HT_GENERATE2(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
|
|
strmap_entries_eq, 0.6, tor_reallocarray_, tor_free_)
|
|
|
|
HT_PROTOTYPE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
|
|
digestmap_entries_eq)
|
|
HT_GENERATE2(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
|
|
digestmap_entries_eq, 0.6, tor_reallocarray_, tor_free_)
|
|
|
|
HT_PROTOTYPE(digest256map_impl, digest256map_entry_t, node,
|
|
digest256map_entry_hash,
|
|
digest256map_entries_eq)
|
|
HT_GENERATE2(digest256map_impl, digest256map_entry_t, node,
|
|
digest256map_entry_hash,
|
|
digest256map_entries_eq, 0.6, tor_reallocarray_, tor_free_)
|
|
|
|
static INLINE void
|
|
strmap_entry_free(strmap_entry_t *ent)
|
|
{
|
|
tor_free(ent->key);
|
|
tor_free(ent);
|
|
}
|
|
static INLINE void
|
|
digestmap_entry_free(digestmap_entry_t *ent)
|
|
{
|
|
tor_free(ent);
|
|
}
|
|
static INLINE void
|
|
digest256map_entry_free(digest256map_entry_t *ent)
|
|
{
|
|
tor_free(ent);
|
|
}
|
|
|
|
static INLINE void
|
|
strmap_assign_tmp_key(strmap_entry_t *ent, const char *key)
|
|
{
|
|
ent->key = (char*)key;
|
|
}
|
|
static INLINE void
|
|
digestmap_assign_tmp_key(digestmap_entry_t *ent, const char *key)
|
|
{
|
|
memcpy(ent->key, key, DIGEST_LEN);
|
|
}
|
|
static INLINE void
|
|
digest256map_assign_tmp_key(digest256map_entry_t *ent, const uint8_t *key)
|
|
{
|
|
memcpy(ent->key, key, DIGEST256_LEN);
|
|
}
|
|
static INLINE void
|
|
strmap_assign_key(strmap_entry_t *ent, const char *key)
|
|
{
|
|
ent->key = tor_strdup(key);
|
|
}
|
|
static INLINE void
|
|
digestmap_assign_key(digestmap_entry_t *ent, const char *key)
|
|
{
|
|
memcpy(ent->key, key, DIGEST_LEN);
|
|
}
|
|
static INLINE void
|
|
digest256map_assign_key(digest256map_entry_t *ent, const uint8_t *key)
|
|
{
|
|
memcpy(ent->key, key, DIGEST256_LEN);
|
|
}
|
|
|
|
/**
|
|
* Macro: implement all the functions for a map that are declared in
|
|
* container.h by the DECLARE_MAP_FNS() macro. You must additionally define a
|
|
* prefix_entry_free_() function to free entries (and their keys), a
|
|
* prefix_assign_tmp_key() function to temporarily set a stack-allocated
|
|
* entry to hold a key, and a prefix_assign_key() function to set a
|
|
* heap-allocated entry to hold a key.
|
|
*/
|
|
#define IMPLEMENT_MAP_FNS(maptype, keytype, prefix) \
|
|
/** Create and return a new empty map. */ \
|
|
MOCK_IMPL(maptype *, \
|
|
prefix##_new,(void)) \
|
|
{ \
|
|
maptype *result; \
|
|
result = tor_malloc(sizeof(maptype)); \
|
|
HT_INIT(prefix##_impl, &result->head); \
|
|
return result; \
|
|
} \
|
|
\
|
|
/** Return the item from <b>map</b> whose key matches <b>key</b>, or \
|
|
* NULL if no such value exists. */ \
|
|
void * \
|
|
prefix##_get(const maptype *map, const keytype key) \
|
|
{ \
|
|
prefix ##_entry_t *resolve; \
|
|
prefix ##_entry_t search; \
|
|
tor_assert(map); \
|
|
tor_assert(key); \
|
|
prefix ##_assign_tmp_key(&search, key); \
|
|
resolve = HT_FIND(prefix ##_impl, &map->head, &search); \
|
|
if (resolve) { \
|
|
return resolve->val; \
|
|
} else { \
|
|
return NULL; \
|
|
} \
|
|
} \
|
|
\
|
|
/** Add an entry to <b>map</b> mapping <b>key</b> to <b>val</b>; \
|
|
* return the previous value, or NULL if no such value existed. */ \
|
|
void * \
|
|
prefix##_set(maptype *map, const keytype key, void *val) \
|
|
{ \
|
|
prefix##_entry_t search; \
|
|
void *oldval; \
|
|
tor_assert(map); \
|
|
tor_assert(key); \
|
|
tor_assert(val); \
|
|
prefix##_assign_tmp_key(&search, key); \
|
|
/* We a lot of our time in this function, so the code below is */ \
|
|
/* meant to optimize the check/alloc/set cycle by avoiding the two */\
|
|
/* trips to the hash table that we would do in the unoptimized */ \
|
|
/* version of this code. (Each of HT_INSERT and HT_FIND calls */ \
|
|
/* HT_SET_HASH and HT_FIND_P.) */ \
|
|
HT_FIND_OR_INSERT_(prefix##_impl, node, prefix##_entry_hash, \
|
|
&(map->head), \
|
|
prefix##_entry_t, &search, ptr, \
|
|
{ \
|
|
/* we found an entry. */ \
|
|
oldval = (*ptr)->val; \
|
|
(*ptr)->val = val; \
|
|
return oldval; \
|
|
}, \
|
|
{ \
|
|
/* We didn't find the entry. */ \
|
|
prefix##_entry_t *newent = \
|
|
tor_malloc_zero(sizeof(prefix##_entry_t)); \
|
|
prefix##_assign_key(newent, key); \
|
|
newent->val = val; \
|
|
HT_FOI_INSERT_(node, &(map->head), \
|
|
&search, newent, ptr); \
|
|
return NULL; \
|
|
}); \
|
|
} \
|
|
\
|
|
/** Remove the value currently associated with <b>key</b> from the map. \
|
|
* Return the value if one was set, or NULL if there was no entry for \
|
|
* <b>key</b>. \
|
|
* \
|
|
* Note: you must free any storage associated with the returned value. \
|
|
*/ \
|
|
void * \
|
|
prefix##_remove(maptype *map, const keytype key) \
|
|
{ \
|
|
prefix##_entry_t *resolve; \
|
|
prefix##_entry_t search; \
|
|
void *oldval; \
|
|
tor_assert(map); \
|
|
tor_assert(key); \
|
|
prefix##_assign_tmp_key(&search, key); \
|
|
resolve = HT_REMOVE(prefix##_impl, &map->head, &search); \
|
|
if (resolve) { \
|
|
oldval = resolve->val; \
|
|
prefix##_entry_free(resolve); \
|
|
return oldval; \
|
|
} else { \
|
|
return NULL; \
|
|
} \
|
|
} \
|
|
\
|
|
/** Return the number of elements in <b>map</b>. */ \
|
|
int \
|
|
prefix##_size(const maptype *map) \
|
|
{ \
|
|
return HT_SIZE(&map->head); \
|
|
} \
|
|
\
|
|
/** Return true iff <b>map</b> has no entries. */ \
|
|
int \
|
|
prefix##_isempty(const maptype *map) \
|
|
{ \
|
|
return HT_EMPTY(&map->head); \
|
|
} \
|
|
\
|
|
/** Assert that <b>map</b> is not corrupt. */ \
|
|
void \
|
|
prefix##_assert_ok(const maptype *map) \
|
|
{ \
|
|
tor_assert(!prefix##_impl_HT_REP_IS_BAD_(&map->head)); \
|
|
} \
|
|
\
|
|
/** Remove all entries from <b>map</b>, and deallocate storage for \
|
|
* those entries. If free_val is provided, invoked it every value in \
|
|
* <b>map</b>. */ \
|
|
MOCK_IMPL(void, \
|
|
prefix##_free, (maptype *map, void (*free_val)(void*))) \
|
|
{ \
|
|
prefix##_entry_t **ent, **next, *this; \
|
|
if (!map) \
|
|
return; \
|
|
for (ent = HT_START(prefix##_impl, &map->head); ent != NULL; \
|
|
ent = next) { \
|
|
this = *ent; \
|
|
next = HT_NEXT_RMV(prefix##_impl, &map->head, ent); \
|
|
if (free_val) \
|
|
free_val(this->val); \
|
|
prefix##_entry_free(this); \
|
|
} \
|
|
tor_assert(HT_EMPTY(&map->head)); \
|
|
HT_CLEAR(prefix##_impl, &map->head); \
|
|
tor_free(map); \
|
|
} \
|
|
\
|
|
/** return an <b>iterator</b> pointer to the front of a map. \
|
|
* \
|
|
* Iterator example: \
|
|
* \
|
|
* \code \
|
|
* // uppercase values in "map", removing empty values. \
|
|
* \
|
|
* strmap_iter_t *iter; \
|
|
* const char *key; \
|
|
* void *val; \
|
|
* char *cp; \
|
|
* \
|
|
* for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) { \
|
|
* strmap_iter_get(iter, &key, &val); \
|
|
* cp = (char*)val; \
|
|
* if (!*cp) { \
|
|
* iter = strmap_iter_next_rmv(map,iter); \
|
|
* free(val); \
|
|
* } else { \
|
|
* for (;*cp;cp++) *cp = TOR_TOUPPER(*cp); \
|
|
*/ \
|
|
prefix##_iter_t * \
|
|
prefix##_iter_init(maptype *map) \
|
|
{ \
|
|
tor_assert(map); \
|
|
return HT_START(prefix##_impl, &map->head); \
|
|
} \
|
|
\
|
|
/** Advance <b>iter</b> a single step to the next entry, and return \
|
|
* its new value. */ \
|
|
prefix##_iter_t * \
|
|
prefix##_iter_next(maptype *map, prefix##_iter_t *iter) \
|
|
{ \
|
|
tor_assert(map); \
|
|
tor_assert(iter); \
|
|
return HT_NEXT(prefix##_impl, &map->head, iter); \
|
|
} \
|
|
/** Advance <b>iter</b> a single step to the next entry, removing the \
|
|
* current entry, and return its new value. */ \
|
|
prefix##_iter_t * \
|
|
prefix##_iter_next_rmv(maptype *map, prefix##_iter_t *iter) \
|
|
{ \
|
|
prefix##_entry_t *rmv; \
|
|
tor_assert(map); \
|
|
tor_assert(iter); \
|
|
tor_assert(*iter); \
|
|
rmv = *iter; \
|
|
iter = HT_NEXT_RMV(prefix##_impl, &map->head, iter); \
|
|
prefix##_entry_free(rmv); \
|
|
return iter; \
|
|
} \
|
|
/** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed \
|
|
* to by iter. */ \
|
|
void \
|
|
prefix##_iter_get(prefix##_iter_t *iter, const keytype *keyp, \
|
|
void **valp) \
|
|
{ \
|
|
tor_assert(iter); \
|
|
tor_assert(*iter); \
|
|
tor_assert(keyp); \
|
|
tor_assert(valp); \
|
|
*keyp = (*iter)->key; \
|
|
*valp = (*iter)->val; \
|
|
} \
|
|
/** Return true iff <b>iter</b> has advanced past the last entry of \
|
|
* <b>map</b>. */ \
|
|
int \
|
|
prefix##_iter_done(prefix##_iter_t *iter) \
|
|
{ \
|
|
return iter == NULL; \
|
|
}
|
|
|
|
IMPLEMENT_MAP_FNS(strmap_t, char *, strmap)
|
|
IMPLEMENT_MAP_FNS(digestmap_t, char *, digestmap)
|
|
IMPLEMENT_MAP_FNS(digest256map_t, uint8_t *, digest256map)
|
|
|
|
/** Same as strmap_set, but first converts <b>key</b> to lowercase. */
|
|
void *
|
|
strmap_set_lc(strmap_t *map, const char *key, void *val)
|
|
{
|
|
/* We could be a little faster by using strcasecmp instead, and a separate
|
|
* type, but I don't think it matters. */
|
|
void *v;
|
|
char *lc_key = tor_strdup(key);
|
|
tor_strlower(lc_key);
|
|
v = strmap_set(map,lc_key,val);
|
|
tor_free(lc_key);
|
|
return v;
|
|
}
|
|
|
|
/** Same as strmap_get, but first converts <b>key</b> to lowercase. */
|
|
void *
|
|
strmap_get_lc(const strmap_t *map, const char *key)
|
|
{
|
|
void *v;
|
|
char *lc_key = tor_strdup(key);
|
|
tor_strlower(lc_key);
|
|
v = strmap_get(map,lc_key);
|
|
tor_free(lc_key);
|
|
return v;
|
|
}
|
|
|
|
/** Same as strmap_remove, but first converts <b>key</b> to lowercase */
|
|
void *
|
|
strmap_remove_lc(strmap_t *map, const char *key)
|
|
{
|
|
void *v;
|
|
char *lc_key = tor_strdup(key);
|
|
tor_strlower(lc_key);
|
|
v = strmap_remove(map,lc_key);
|
|
tor_free(lc_key);
|
|
return v;
|
|
}
|
|
|
|
/** Declare a function called <b>funcname</b> that acts as a find_nth_FOO
|
|
* function for an array of type <b>elt_t</b>*.
|
|
*
|
|
* NOTE: The implementation kind of sucks: It's O(n log n), whereas finding
|
|
* the kth element of an n-element list can be done in O(n). Then again, this
|
|
* implementation is not in critical path, and it is obviously correct. */
|
|
#define IMPLEMENT_ORDER_FUNC(funcname, elt_t) \
|
|
static int \
|
|
_cmp_ ## elt_t(const void *_a, const void *_b) \
|
|
{ \
|
|
const elt_t *a = _a, *b = _b; \
|
|
if (*a<*b) \
|
|
return -1; \
|
|
else if (*a>*b) \
|
|
return 1; \
|
|
else \
|
|
return 0; \
|
|
} \
|
|
elt_t \
|
|
funcname(elt_t *array, int n_elements, int nth) \
|
|
{ \
|
|
tor_assert(nth >= 0); \
|
|
tor_assert(nth < n_elements); \
|
|
qsort(array, n_elements, sizeof(elt_t), _cmp_ ##elt_t); \
|
|
return array[nth]; \
|
|
}
|
|
|
|
IMPLEMENT_ORDER_FUNC(find_nth_int, int)
|
|
IMPLEMENT_ORDER_FUNC(find_nth_time, time_t)
|
|
IMPLEMENT_ORDER_FUNC(find_nth_double, double)
|
|
IMPLEMENT_ORDER_FUNC(find_nth_uint32, uint32_t)
|
|
IMPLEMENT_ORDER_FUNC(find_nth_int32, int32_t)
|
|
IMPLEMENT_ORDER_FUNC(find_nth_long, long)
|
|
|
|
/** Return a newly allocated digestset_t, optimized to hold a total of
|
|
* <b>max_elements</b> digests with a reasonably low false positive weight. */
|
|
digestset_t *
|
|
digestset_new(int max_elements)
|
|
{
|
|
/* The probability of false positives is about P=(1 - exp(-kn/m))^k, where k
|
|
* is the number of hash functions per entry, m is the bits in the array,
|
|
* and n is the number of elements inserted. For us, k==4, n<=max_elements,
|
|
* and m==n_bits= approximately max_elements*32. This gives
|
|
* P<(1-exp(-4*n/(32*n)))^4 == (1-exp(1/-8))^4 == .00019
|
|
*
|
|
* It would be more optimal in space vs false positives to get this false
|
|
* positive rate by going for k==13, and m==18.5n, but we also want to
|
|
* conserve CPU, and k==13 is pretty big.
|
|
*/
|
|
int n_bits = 1u << (tor_log2(max_elements)+5);
|
|
digestset_t *r = tor_malloc(sizeof(digestset_t));
|
|
r->mask = n_bits - 1;
|
|
r->ba = bitarray_init_zero(n_bits);
|
|
return r;
|
|
}
|
|
|
|
/** Free all storage held in <b>set</b>. */
|
|
void
|
|
digestset_free(digestset_t *set)
|
|
{
|
|
if (!set)
|
|
return;
|
|
bitarray_free(set->ba);
|
|
tor_free(set);
|
|
}
|
|
|