mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
117cbeeaaf
Each socket reads at most 'bandwidth' bytes per second sustained, but can handle bursts of up to 10*bandwidth bytes. Cells are now sent out at evenly-spaced intervals, with padding sent out otherwise. Set Linkpadding=0 in the rc file to send cells as soon as they're available (and to never send padding cells). Added license/copyrights statements at the top of most files. router->min and router->max have been merged into a single 'bandwidth' value. We should make the routerinfo_t reflect this (want to do that, Mat?) As the bandwidth increases, and we want to stop sleeping more and more frequently to send a single cell, cpu usage goes up. At 128kB/s we're pretty much calling poll with a timeout of 1ms or even 0ms. The current code takes a timeout of 0-9ms and makes it 10ms. prepare_for_poll() handles everything that should have happened in the past, so as long as our buffers don't get too full in that 10ms, we're ok. Speaking of too full, if you run three servers at 100kB/s with -l debug, it spends too much time printing debugging messages to be able to keep up with the cells. The outbuf ultimately fills up and it kills that connection. If you run with -l err, it works fine up through 500kB/s and probably beyond. Down the road we'll want to teach it to recognize when an outbuf is getting full, and back off. svn:r50
378 lines
11 KiB
C
378 lines
11 KiB
C
/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
|
|
#include "or.h"
|
|
|
|
/********* START VARIABLES **********/
|
|
|
|
static circuit_t *global_circuitlist=NULL;
|
|
|
|
/********* END VARIABLES ************/
|
|
|
|
void circuit_add(circuit_t *circ) {
|
|
|
|
if(!global_circuitlist) { /* first one */
|
|
global_circuitlist = circ;
|
|
circ->next = NULL;
|
|
} else {
|
|
circ->next = global_circuitlist;
|
|
global_circuitlist = circ;
|
|
}
|
|
|
|
}
|
|
|
|
void circuit_remove(circuit_t *circ) {
|
|
circuit_t *tmpcirc;
|
|
|
|
assert(circ && global_circuitlist);
|
|
|
|
if(global_circuitlist == circ) {
|
|
global_circuitlist = global_circuitlist->next;
|
|
return;
|
|
}
|
|
|
|
for(tmpcirc = global_circuitlist;tmpcirc->next;tmpcirc = tmpcirc->next) {
|
|
if(tmpcirc->next == circ) {
|
|
tmpcirc->next = circ->next;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
circuit_t *circuit_new(aci_t p_aci, connection_t *p_conn) {
|
|
circuit_t *circ;
|
|
|
|
circ = (circuit_t *)malloc(sizeof(circuit_t));
|
|
if(!circ)
|
|
return NULL;
|
|
memset(circ,0,sizeof(circuit_t)); /* zero it out */
|
|
|
|
circ->p_aci = p_aci;
|
|
circ->p_conn = p_conn;
|
|
|
|
circ->state = CIRCUIT_STATE_OPEN_WAIT;
|
|
|
|
/* ACIs */
|
|
circ->p_aci = p_aci;
|
|
/* circ->n_aci remains 0 because we haven't identified the next hop yet */
|
|
|
|
circuit_add(circ);
|
|
|
|
return circ;
|
|
}
|
|
|
|
void circuit_free(circuit_t *circ) {
|
|
|
|
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
|
|
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
|
|
|
|
if(circ->onion)
|
|
free(circ->onion);
|
|
if(circ->cpath)
|
|
circuit_free_cpath(circ->cpath, circ->cpathlen);
|
|
|
|
free(circ);
|
|
}
|
|
|
|
void circuit_free_cpath(crypt_path_t **cpath, size_t cpathlen) {
|
|
int i;
|
|
|
|
for(i=0;i<cpathlen;i++)
|
|
free(cpath[i]);
|
|
|
|
free(cpath);
|
|
}
|
|
|
|
aci_t get_unique_aci_by_addr_port(uint32_t addr, uint16_t port, int aci_type) {
|
|
aci_t test_aci;
|
|
connection_t *conn;
|
|
|
|
log(LOG_DEBUG,"get_unique_aci_by_addr_port() trying to get a unique aci");
|
|
|
|
RAND_pseudo_bytes((unsigned char *)&test_aci, 2);
|
|
|
|
if(aci_type == ACI_TYPE_LOWER)
|
|
test_aci &= htons(0x00FF);
|
|
if(aci_type == ACI_TYPE_HIGHER)
|
|
test_aci &= htons(0xFF00);
|
|
/* if aci_type == ACI_BOTH, don't filter any of it */
|
|
|
|
if(test_aci == 0)
|
|
return get_unique_aci_by_addr_port(addr, port, aci_type); /* try again */
|
|
|
|
conn = connection_exact_get_by_addr_port(addr,port);
|
|
if(!conn) /* there can't be a conflict -- no connection of that sort yet */
|
|
return test_aci;
|
|
|
|
if(circuit_get_by_aci_conn(test_aci, conn))
|
|
return get_unique_aci_by_addr_port(addr, port, aci_type); /* try again */
|
|
|
|
return test_aci;
|
|
|
|
}
|
|
|
|
int circuit_init(circuit_t *circ, int aci_type) {
|
|
onion_layer_t *ol;
|
|
int retval = 0;
|
|
unsigned char digest1[20];
|
|
unsigned char digest2[20];
|
|
|
|
assert(circ);
|
|
|
|
ol = (onion_layer_t *)circ->onion;
|
|
assert(ol);
|
|
|
|
log(LOG_DEBUG,"circuit_init(): starting");
|
|
circ->n_addr = ol->addr;
|
|
circ->n_port = ol->port;
|
|
log(LOG_DEBUG,"circuit_init(): Set port to %u.",ntohs(ol->port));
|
|
circ->p_f = ol->backf;
|
|
log(LOG_DEBUG,"circuit_init(): Set BACKF to %u.",ol->backf);
|
|
circ->n_f = ol->forwf;
|
|
log(LOG_DEBUG,"circuit_init(): Set FORWF to %u.",ol->forwf);
|
|
circ->state = CIRCUIT_STATE_OPEN;
|
|
|
|
log(LOG_DEBUG,"circuit_init(): aci_type = %u.",aci_type);
|
|
|
|
circ->n_aci = get_unique_aci_by_addr_port(circ->n_addr, circ->n_port, aci_type);
|
|
|
|
log(LOG_DEBUG,"circuit_init(): Chosen ACI %u.",circ->n_aci);
|
|
|
|
/* keys */
|
|
SHA1(ol->keyseed,16,digest1);
|
|
SHA1(digest1,20,digest2);
|
|
SHA1(digest2,20,digest1);
|
|
memcpy(circ->p_key,digest2,16);
|
|
memcpy(circ->n_key,digest1,16);
|
|
log(LOG_DEBUG,"circuit_init(): Computed keys.");
|
|
|
|
/* set IVs to zero */
|
|
memset(circ->n_iv,0,16);
|
|
memset(circ->p_iv,0,16);
|
|
|
|
/* initialize cipher context */
|
|
EVP_CIPHER_CTX_init(&circ->n_ctx);
|
|
EVP_CIPHER_CTX_init(&circ->p_ctx);
|
|
|
|
/* initialize crypto engines */
|
|
switch(circ->p_f)
|
|
{
|
|
case ONION_CIPHER_DES :
|
|
retval = EVP_EncryptInit(&circ->p_ctx, EVP_des_ofb(), circ->p_key, circ->p_iv);
|
|
break;
|
|
case ONION_CIPHER_RC4 :
|
|
retval = EVP_EncryptInit(&circ->p_ctx, EVP_rc4(), circ->p_key,circ->p_iv);
|
|
break;
|
|
case ONION_CIPHER_IDENTITY :
|
|
retval = EVP_EncryptInit(&circ->p_ctx, EVP_enc_null(), circ->p_key, circ->p_iv);
|
|
break;
|
|
default :
|
|
log(LOG_ERR,"Onion contains unrecognized cipher(%u) for ACI : %u.",circ->p_f,circ->n_aci);
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
if (!retval) /* EVP_EncryptInit() error */
|
|
{
|
|
log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci);
|
|
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
|
|
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
|
|
return -1;
|
|
}
|
|
switch(circ->n_f)
|
|
{
|
|
case ONION_CIPHER_DES :
|
|
retval = EVP_DecryptInit(&circ->n_ctx, EVP_des_ofb(), circ->n_key, circ->n_iv);
|
|
break;
|
|
case ONION_CIPHER_RC4 :
|
|
retval = EVP_DecryptInit(&circ->n_ctx, EVP_rc4(), circ->n_key,circ->n_iv);
|
|
break;
|
|
case ONION_CIPHER_IDENTITY :
|
|
retval = EVP_DecryptInit(&circ->n_ctx, EVP_enc_null(), circ->n_key, circ->n_iv);
|
|
break;
|
|
default :
|
|
log(LOG_ERR,"Onion contains unrecognized cipher for ACI : %u.",circ->n_aci);
|
|
return -1;
|
|
break;
|
|
}
|
|
if (!retval) /* EVP_EncryptInit() error */
|
|
{
|
|
log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci);
|
|
EVP_CIPHER_CTX_cleanup(&circ->n_ctx);
|
|
EVP_CIPHER_CTX_cleanup(&circ->p_ctx);
|
|
return -1;
|
|
}
|
|
log(LOG_DEBUG,"circuit_init(): Cipher initialization complete.");
|
|
|
|
circ->expire = ol->expire;
|
|
|
|
return 0;
|
|
}
|
|
|
|
circuit_t *circuit_get_by_naddr_nport(uint32_t naddr, uint16_t nport) {
|
|
circuit_t *circ;
|
|
|
|
for(circ=global_circuitlist;circ;circ = circ->next) {
|
|
if(circ->n_addr == naddr && circ->n_port == nport)
|
|
return circ;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
circuit_t *circuit_get_by_aci_conn(aci_t aci, connection_t *conn) {
|
|
circuit_t *circ;
|
|
|
|
for(circ=global_circuitlist;circ;circ = circ->next) {
|
|
if(circ->p_conn == conn && circ->p_aci == aci)
|
|
return circ;
|
|
if(circ->n_conn == conn && circ->n_aci == aci)
|
|
return circ;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
circuit_t *circuit_get_by_conn(connection_t *conn) {
|
|
circuit_t *circ;
|
|
|
|
for(circ=global_circuitlist;circ;circ = circ->next) {
|
|
if(circ->p_conn == conn)
|
|
return circ;
|
|
if(circ->n_conn == conn)
|
|
return circ;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int circuit_deliver_data_cell(cell_t *cell, circuit_t *circ, connection_t *conn, int crypt_type) {
|
|
|
|
/* first decrypt cell->length */
|
|
if(circuit_crypt(circ, &(cell->length), 1, crypt_type) < 0) {
|
|
log(LOG_DEBUG,"circuit_deliver_data_cell(): length decryption failed. Dropping connection.");
|
|
return -1;
|
|
}
|
|
|
|
/* then decrypt the payload */
|
|
if(circuit_crypt(circ, (char *)&(cell->payload), CELL_PAYLOAD_SIZE, crypt_type) < 0) {
|
|
log(LOG_DEBUG,"circuit_deliver_data_cell(): payload decryption failed. Dropping connection.");
|
|
return -1;
|
|
}
|
|
|
|
if(conn->type == CONN_TYPE_EXIT) { /* send payload directly */
|
|
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to exit.");
|
|
return connection_exit_process_data_cell(cell, conn);
|
|
}
|
|
if(conn->type == CONN_TYPE_AP) { /* send payload directly */
|
|
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to AP.");
|
|
return connection_ap_process_data_cell(cell, conn);
|
|
}
|
|
/* else send it as a cell */
|
|
log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to connection.");
|
|
return connection_write_cell_to_buf(cell, conn);
|
|
}
|
|
|
|
int circuit_crypt(circuit_t *circ, char *in, size_t inlen, char crypt_type) {
|
|
char *out;
|
|
int outlen;
|
|
int i;
|
|
crypt_path_t *thishop;
|
|
|
|
assert(circ && in);
|
|
|
|
out = malloc(inlen);
|
|
if(!out)
|
|
return -1;
|
|
|
|
if(crypt_type == 'e') {
|
|
log(LOG_DEBUG,"circuit_crypt(): Encrypting %d bytes.",inlen);
|
|
if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */
|
|
/* 'e' means we're preparing to send it out. */
|
|
for (i=0; i < circ->cpathlen; i++) /* moving from last to first hop
|
|
* Remember : cpath is in reverse order, i.e. last hop first
|
|
*/
|
|
{
|
|
log(LOG_DEBUG,"circuit_crypt() : Encrypting via cpath: Processing hop %u",circ->cpathlen-i);
|
|
thishop = circ->cpath[i];
|
|
|
|
/* encrypt */
|
|
if(!EVP_EncryptUpdate(&thishop->f_ctx,out,&outlen,in,inlen)) {
|
|
log(LOG_ERR,"Error performing encryption:%s",ERR_reason_error_string(ERR_get_error()));
|
|
free(out);
|
|
return -1;
|
|
}
|
|
|
|
/* copy ciphertext back to buf */
|
|
memcpy(in,out,inlen);
|
|
}
|
|
} else { /* we're in the middle. Just one crypt. */
|
|
if(!EVP_EncryptUpdate(&circ->p_ctx,out,&outlen,in,inlen)) {
|
|
log(LOG_ERR,"circuit_encrypt(): Encryption failed for ACI : %u (%s).",
|
|
circ->p_aci, ERR_reason_error_string(ERR_get_error()));
|
|
free(out);
|
|
return -1;
|
|
}
|
|
memcpy(in,out,inlen);
|
|
}
|
|
} else if(crypt_type == 'd') {
|
|
log(LOG_DEBUG,"circuit_crypt(): Decrypting %d bytes.",inlen);
|
|
if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */
|
|
for (i=circ->cpathlen-1; i >= 0; i--) /* moving from first to last hop
|
|
* Remember : cpath is in reverse order, i.e. last hop first
|
|
*/
|
|
{
|
|
log(LOG_DEBUG,"circuit_crypt() : Decrypting via cpath: Processing hop %u",circ->cpathlen-i);
|
|
thishop = circ->cpath[i];
|
|
|
|
/* encrypt */
|
|
if(!EVP_DecryptUpdate(&thishop->b_ctx,out,&outlen,in,inlen)) {
|
|
log(LOG_ERR,"Error performing decryption:%s",ERR_reason_error_string(ERR_get_error()));
|
|
free(out);
|
|
return -1;
|
|
}
|
|
|
|
/* copy ciphertext back to buf */
|
|
memcpy(in,out,inlen);
|
|
}
|
|
} else { /* we're in the middle. Just one crypt. */
|
|
if(!EVP_DecryptUpdate(&circ->n_ctx,out,&outlen,in,inlen)) {
|
|
log(LOG_ERR,"circuit_crypt(): Decryption failed for ACI : %u (%s).",
|
|
circ->n_aci, ERR_reason_error_string(ERR_get_error()));
|
|
free(out);
|
|
return -1;
|
|
}
|
|
memcpy(in,out,inlen);
|
|
}
|
|
}
|
|
|
|
free(out);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void circuit_close(circuit_t *circ) {
|
|
circuit_remove(circ);
|
|
if(circ->n_conn)
|
|
connection_send_destroy(circ->n_aci, circ->n_conn);
|
|
if(circ->p_conn)
|
|
connection_send_destroy(circ->p_aci, circ->p_conn);
|
|
circuit_free(circ);
|
|
}
|
|
|
|
void circuit_about_to_close_connection(connection_t *conn) {
|
|
/* send destroys for all circuits using conn */
|
|
/* currently, we assume it's too late to flush conn's buf here.
|
|
* down the road, maybe we'll consider that eof doesn't mean can't-write
|
|
*/
|
|
circuit_t *circ;
|
|
|
|
while((circ = circuit_get_by_conn(conn))) {
|
|
circuit_remove(circ);
|
|
if(circ->n_conn == conn) /* it's closing in front of us */
|
|
connection_send_destroy(circ->p_aci, circ->p_conn);
|
|
if(circ->p_conn == conn) /* it's closing behind us */
|
|
connection_send_destroy(circ->n_aci, circ->n_conn);
|
|
circuit_free(circ);
|
|
}
|
|
}
|
|
|