mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-14 07:03:44 +01:00
755 lines
20 KiB
C
755 lines
20 KiB
C
/* ==========================================================================
|
|
* timeout.c - Tickless hierarchical timing wheel.
|
|
* --------------------------------------------------------------------------
|
|
* Copyright (c) 2013, 2014 William Ahern
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to permit
|
|
* persons to whom the Software is furnished to do so, subject to the
|
|
* following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
|
|
* NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
* ==========================================================================
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "orconfig.h"
|
|
#endif
|
|
#include <limits.h> /* CHAR_BIT */
|
|
|
|
#include <stddef.h> /* NULL */
|
|
#include <stdlib.h> /* malloc(3) free(3) */
|
|
#include <stdio.h> /* FILE fprintf(3) */
|
|
|
|
#include <inttypes.h> /* UINT64_C uint64_t */
|
|
|
|
#include <string.h> /* memset(3) */
|
|
|
|
#include <errno.h> /* errno */
|
|
|
|
#include <sys/queue.h> /* TAILQ(3) */
|
|
|
|
#include "timeout.h"
|
|
|
|
#ifndef TIMEOUT_DEBUG
|
|
#define TIMEOUT_DEBUG 0
|
|
#endif
|
|
|
|
#if TIMEOUT_DEBUG - 0
|
|
#include "timeout-debug.h"
|
|
#endif
|
|
|
|
#ifdef TIMEOUT_DISABLE_RELATIVE_ACCESS
|
|
#define TO_SET_TIMEOUTS(to, T) ((void)0)
|
|
#else
|
|
#define TO_SET_TIMEOUTS(to, T) ((to)->timeouts = (T))
|
|
#endif
|
|
|
|
/*
|
|
* A N C I L L A R Y R O U T I N E S
|
|
*
|
|
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
#define abstime_t timeout_t /* for documentation purposes */
|
|
#define reltime_t timeout_t /* "" */
|
|
|
|
#if !defined countof
|
|
#define countof(a) (sizeof (a) / sizeof *(a))
|
|
#endif
|
|
|
|
#if !defined endof
|
|
#define endof(a) (&(a)[countof(a)])
|
|
#endif
|
|
|
|
#if !defined MIN
|
|
#define MIN(a, b) (((a) < (b))? (a) : (b))
|
|
#endif
|
|
|
|
#if !defined MAX
|
|
#define MAX(a, b) (((a) > (b))? (a) : (b))
|
|
#endif
|
|
|
|
#if !defined TAILQ_CONCAT
|
|
#define TAILQ_CONCAT(head1, head2, field) do { \
|
|
if (!TAILQ_EMPTY(head2)) { \
|
|
*(head1)->tqh_last = (head2)->tqh_first; \
|
|
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
|
|
(head1)->tqh_last = (head2)->tqh_last; \
|
|
TAILQ_INIT((head2)); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if !defined TAILQ_FOREACH_SAFE
|
|
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
|
|
for ((var) = TAILQ_FIRST(head); \
|
|
(var) && ((tvar) = TAILQ_NEXT(var, field), 1); \
|
|
(var) = (tvar))
|
|
#endif
|
|
|
|
|
|
/*
|
|
* B I T M A N I P U L A T I O N R O U T I N E S
|
|
*
|
|
* The macros and routines below implement wheel parameterization. The
|
|
* inputs are:
|
|
*
|
|
* WHEEL_BIT - The number of value bits mapped in each wheel. The
|
|
* lowest-order WHEEL_BIT bits index the lowest-order (highest
|
|
* resolution) wheel, the next group of WHEEL_BIT bits the
|
|
* higher wheel, etc.
|
|
*
|
|
* WHEEL_NUM - The number of wheels. WHEEL_BIT * WHEEL_NUM = the number of
|
|
* value bits used by all the wheels. For the default of 6 and
|
|
* 4, only the low 24 bits are processed. Any timeout value
|
|
* larger than this will cycle through again.
|
|
*
|
|
* The implementation uses bit fields to remember which slot in each wheel
|
|
* is populated, and to generate masks of expiring slots according to the
|
|
* current update interval (i.e. the "tickless" aspect). The slots to
|
|
* process in a wheel are (populated-set & interval-mask).
|
|
*
|
|
* WHEEL_BIT cannot be larger than 6 bits because 2^6 -> 64 is the largest
|
|
* number of slots which can be tracked in a uint64_t integer bit field.
|
|
* WHEEL_BIT cannot be smaller than 3 bits because of our rotr and rotl
|
|
* routines, which only operate on all the value bits in an integer, and
|
|
* there's no integer smaller than uint8_t.
|
|
*
|
|
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
#if !defined WHEEL_BIT
|
|
#define WHEEL_BIT 6
|
|
#endif
|
|
|
|
#if !defined WHEEL_NUM
|
|
#define WHEEL_NUM 4
|
|
#endif
|
|
|
|
#define WHEEL_LEN (1U << WHEEL_BIT)
|
|
#define WHEEL_MAX (WHEEL_LEN - 1)
|
|
#define WHEEL_MASK (WHEEL_LEN - 1)
|
|
#define TIMEOUT_MAX ((TIMEOUT_C(1) << (WHEEL_BIT * WHEEL_NUM)) - 1)
|
|
|
|
#include "timeout-bitops.c"
|
|
|
|
#if WHEEL_BIT == 6
|
|
#define ctz(n) ctz64(n)
|
|
#define clz(n) clz64(n)
|
|
#define fls(n) ((int)(64 - clz64(n)))
|
|
#else
|
|
#define ctz(n) ctz32(n)
|
|
#define clz(n) clz32(n)
|
|
#define fls(n) ((int)(32 - clz32(n)))
|
|
#endif
|
|
|
|
#if WHEEL_BIT == 6
|
|
#define WHEEL_C(n) UINT64_C(n)
|
|
#define WHEEL_PRIu PRIu64
|
|
#define WHEEL_PRIx PRIx64
|
|
|
|
typedef uint64_t wheel_t;
|
|
|
|
#elif WHEEL_BIT == 5
|
|
|
|
#define WHEEL_C(n) UINT32_C(n)
|
|
#define WHEEL_PRIu PRIu32
|
|
#define WHEEL_PRIx PRIx32
|
|
|
|
typedef uint32_t wheel_t;
|
|
|
|
#elif WHEEL_BIT == 4
|
|
|
|
#define WHEEL_C(n) UINT16_C(n)
|
|
#define WHEEL_PRIu PRIu16
|
|
#define WHEEL_PRIx PRIx16
|
|
|
|
typedef uint16_t wheel_t;
|
|
|
|
#elif WHEEL_BIT == 3
|
|
|
|
#define WHEEL_C(n) UINT8_C(n)
|
|
#define WHEEL_PRIu PRIu8
|
|
#define WHEEL_PRIx PRIx8
|
|
|
|
typedef uint8_t wheel_t;
|
|
|
|
#else
|
|
#error invalid WHEEL_BIT value
|
|
#endif
|
|
|
|
|
|
static inline wheel_t rotl(const wheel_t v, int c) {
|
|
if (!(c &= (sizeof v * CHAR_BIT - 1)))
|
|
return v;
|
|
|
|
return (v << c) | (v >> (sizeof v * CHAR_BIT - c));
|
|
} /* rotl() */
|
|
|
|
|
|
static inline wheel_t rotr(const wheel_t v, int c) {
|
|
if (!(c &= (sizeof v * CHAR_BIT - 1)))
|
|
return v;
|
|
|
|
return (v >> c) | (v << (sizeof v * CHAR_BIT - c));
|
|
} /* rotr() */
|
|
|
|
|
|
/*
|
|
* T I M E R R O U T I N E S
|
|
*
|
|
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
TAILQ_HEAD(timeout_list, timeout);
|
|
|
|
struct timeouts {
|
|
struct timeout_list wheel[WHEEL_NUM][WHEEL_LEN], expired;
|
|
|
|
wheel_t pending[WHEEL_NUM];
|
|
|
|
timeout_t curtime;
|
|
timeout_t hertz;
|
|
}; /* struct timeouts */
|
|
|
|
|
|
static struct timeouts *timeouts_init(struct timeouts *T, timeout_t hz) {
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < countof(T->wheel); i++) {
|
|
for (j = 0; j < countof(T->wheel[i]); j++) {
|
|
TAILQ_INIT(&T->wheel[i][j]);
|
|
}
|
|
}
|
|
|
|
TAILQ_INIT(&T->expired);
|
|
|
|
for (i = 0; i < countof(T->pending); i++) {
|
|
T->pending[i] = 0;
|
|
}
|
|
|
|
T->curtime = 0;
|
|
T->hertz = (hz)? hz : TIMEOUT_mHZ;
|
|
|
|
return T;
|
|
} /* timeouts_init() */
|
|
|
|
|
|
TIMEOUT_PUBLIC struct timeouts *timeouts_open(timeout_t hz, int *error) {
|
|
struct timeouts *T;
|
|
|
|
if ((T = malloc(sizeof *T)))
|
|
return timeouts_init(T, hz);
|
|
|
|
*error = errno;
|
|
|
|
return NULL;
|
|
} /* timeouts_open() */
|
|
|
|
|
|
static void timeouts_reset(struct timeouts *T) {
|
|
struct timeout_list reset;
|
|
struct timeout *to;
|
|
unsigned i, j;
|
|
|
|
TAILQ_INIT(&reset);
|
|
|
|
for (i = 0; i < countof(T->wheel); i++) {
|
|
for (j = 0; j < countof(T->wheel[i]); j++) {
|
|
TAILQ_CONCAT(&reset, &T->wheel[i][j], tqe);
|
|
}
|
|
}
|
|
|
|
TAILQ_CONCAT(&reset, &T->expired, tqe);
|
|
|
|
TAILQ_FOREACH(to, &reset, tqe) {
|
|
to->pending = NULL;
|
|
TO_SET_TIMEOUTS(to, NULL);
|
|
}
|
|
} /* timeouts_reset() */
|
|
|
|
|
|
TIMEOUT_PUBLIC void timeouts_close(struct timeouts *T) {
|
|
/*
|
|
* NOTE: Delete installed timeouts so timeout_pending() and
|
|
* timeout_expired() worked as expected.
|
|
*/
|
|
timeouts_reset(T);
|
|
|
|
free(T);
|
|
} /* timeouts_close() */
|
|
|
|
|
|
TIMEOUT_PUBLIC timeout_t timeouts_hz(struct timeouts *T) {
|
|
return T->hertz;
|
|
} /* timeouts_hz() */
|
|
|
|
|
|
TIMEOUT_PUBLIC void timeouts_del(struct timeouts *T, struct timeout *to) {
|
|
if (to->pending) {
|
|
TAILQ_REMOVE(to->pending, to, tqe);
|
|
|
|
if (to->pending != &T->expired && TAILQ_EMPTY(to->pending)) {
|
|
ptrdiff_t index = to->pending - &T->wheel[0][0];
|
|
int wheel = index / WHEEL_LEN;
|
|
int slot = index % WHEEL_LEN;
|
|
|
|
T->pending[wheel] &= ~(WHEEL_C(1) << slot);
|
|
}
|
|
|
|
to->pending = NULL;
|
|
TO_SET_TIMEOUTS(to, NULL);
|
|
}
|
|
} /* timeouts_del() */
|
|
|
|
|
|
static inline reltime_t timeout_rem(struct timeouts *T, struct timeout *to) {
|
|
return to->expires - T->curtime;
|
|
} /* timeout_rem() */
|
|
|
|
|
|
static inline int timeout_wheel(timeout_t timeout) {
|
|
/* must be called with timeout != 0, so fls input is nonzero */
|
|
return (fls(MIN(timeout, TIMEOUT_MAX)) - 1) / WHEEL_BIT;
|
|
} /* timeout_wheel() */
|
|
|
|
|
|
static inline int timeout_slot(int wheel, timeout_t expires) {
|
|
return WHEEL_MASK & ((expires >> (wheel * WHEEL_BIT)) - !!wheel);
|
|
} /* timeout_slot() */
|
|
|
|
|
|
static void timeouts_sched(struct timeouts *T, struct timeout *to, timeout_t expires) {
|
|
timeout_t rem;
|
|
int wheel, slot;
|
|
|
|
timeouts_del(T, to);
|
|
|
|
to->expires = expires;
|
|
|
|
TO_SET_TIMEOUTS(to, T);
|
|
|
|
if (expires > T->curtime) {
|
|
rem = timeout_rem(T, to);
|
|
|
|
/* rem is nonzero since:
|
|
* rem == timeout_rem(T,to),
|
|
* == to->expires - T->curtime
|
|
* and above we have expires > T->curtime.
|
|
*/
|
|
wheel = timeout_wheel(rem);
|
|
slot = timeout_slot(wheel, to->expires);
|
|
|
|
to->pending = &T->wheel[wheel][slot];
|
|
TAILQ_INSERT_TAIL(to->pending, to, tqe);
|
|
|
|
T->pending[wheel] |= WHEEL_C(1) << slot;
|
|
} else {
|
|
to->pending = &T->expired;
|
|
TAILQ_INSERT_TAIL(to->pending, to, tqe);
|
|
}
|
|
} /* timeouts_sched() */
|
|
|
|
|
|
#ifndef TIMEOUT_DISABLE_INTERVALS
|
|
static void timeouts_readd(struct timeouts *T, struct timeout *to) {
|
|
to->expires += to->interval;
|
|
|
|
if (to->expires <= T->curtime) {
|
|
/* If we've missed the next firing of this timeout, reschedule
|
|
* it to occur at the next multiple of its interval after
|
|
* the last time that it fired.
|
|
*/
|
|
timeout_t n = T->curtime - to->expires;
|
|
timeout_t r = n % to->interval;
|
|
to->expires = T->curtime + (to->interval - r);
|
|
}
|
|
|
|
timeouts_sched(T, to, to->expires);
|
|
} /* timeouts_readd() */
|
|
#endif
|
|
|
|
|
|
TIMEOUT_PUBLIC void timeouts_add(struct timeouts *T, struct timeout *to, timeout_t timeout) {
|
|
#ifndef TIMEOUT_DISABLE_INTERVALS
|
|
if (to->flags & TIMEOUT_INT)
|
|
to->interval = MAX(1, timeout);
|
|
#endif
|
|
|
|
if (to->flags & TIMEOUT_ABS)
|
|
timeouts_sched(T, to, timeout);
|
|
else
|
|
timeouts_sched(T, to, T->curtime + timeout);
|
|
} /* timeouts_add() */
|
|
|
|
|
|
TIMEOUT_PUBLIC void timeouts_update(struct timeouts *T, abstime_t curtime) {
|
|
timeout_t elapsed = curtime - T->curtime;
|
|
struct timeout_list todo;
|
|
int wheel;
|
|
|
|
TAILQ_INIT(&todo);
|
|
|
|
/*
|
|
* There's no avoiding looping over every wheel. It's best to keep
|
|
* WHEEL_NUM smallish.
|
|
*/
|
|
for (wheel = 0; wheel < WHEEL_NUM; wheel++) {
|
|
wheel_t pending;
|
|
|
|
/*
|
|
* Calculate the slots expiring in this wheel
|
|
*
|
|
* If the elapsed time is greater than the maximum period of
|
|
* the wheel, mark every position as expiring.
|
|
*
|
|
* Otherwise, to determine the expired slots fill in all the
|
|
* bits between the last slot processed and the current
|
|
* slot, inclusive of the last slot. We'll bitwise-AND this
|
|
* with our pending set below.
|
|
*
|
|
* If a wheel rolls over, force a tick of the next higher
|
|
* wheel.
|
|
*/
|
|
if ((elapsed >> (wheel * WHEEL_BIT)) > WHEEL_MAX) {
|
|
pending = (wheel_t)~WHEEL_C(0);
|
|
} else {
|
|
wheel_t _elapsed = WHEEL_MASK & (elapsed >> (wheel * WHEEL_BIT));
|
|
int oslot, nslot;
|
|
|
|
/*
|
|
* TODO: It's likely that at least one of the
|
|
* following three bit fill operations is redundant
|
|
* or can be replaced with a simpler operation.
|
|
*/
|
|
oslot = WHEEL_MASK & (T->curtime >> (wheel * WHEEL_BIT));
|
|
pending = rotl(((UINT64_C(1) << _elapsed) - 1), oslot);
|
|
|
|
nslot = WHEEL_MASK & (curtime >> (wheel * WHEEL_BIT));
|
|
pending |= rotr(rotl(((WHEEL_C(1) << _elapsed) - 1), nslot), _elapsed);
|
|
pending |= WHEEL_C(1) << nslot;
|
|
}
|
|
|
|
while (pending & T->pending[wheel]) {
|
|
/* ctz input cannot be zero: loop condition. */
|
|
int slot = ctz(pending & T->pending[wheel]);
|
|
TAILQ_CONCAT(&todo, &T->wheel[wheel][slot], tqe);
|
|
T->pending[wheel] &= ~(UINT64_C(1) << slot);
|
|
}
|
|
|
|
if (!(0x1 & pending))
|
|
break; /* break if we didn't wrap around end of wheel */
|
|
|
|
/* if we're continuing, the next wheel must tick at least once */
|
|
elapsed = MAX(elapsed, (WHEEL_LEN << (wheel * WHEEL_BIT)));
|
|
}
|
|
|
|
T->curtime = curtime;
|
|
|
|
while (!TAILQ_EMPTY(&todo)) {
|
|
struct timeout *to = TAILQ_FIRST(&todo);
|
|
|
|
TAILQ_REMOVE(&todo, to, tqe);
|
|
to->pending = NULL;
|
|
|
|
timeouts_sched(T, to, to->expires);
|
|
}
|
|
|
|
return;
|
|
} /* timeouts_update() */
|
|
|
|
TIMEOUT_PUBLIC timeout_t timeouts_get_curtime(struct timeouts *T) {
|
|
return T->curtime;
|
|
} /* timeouts_get_curtime() */
|
|
|
|
TIMEOUT_PUBLIC void timeouts_step(struct timeouts *T, reltime_t elapsed) {
|
|
timeouts_update(T, T->curtime + elapsed);
|
|
} /* timeouts_step() */
|
|
|
|
|
|
TIMEOUT_PUBLIC bool timeouts_pending(struct timeouts *T) {
|
|
wheel_t pending = 0;
|
|
int wheel;
|
|
|
|
for (wheel = 0; wheel < WHEEL_NUM; wheel++) {
|
|
pending |= T->pending[wheel];
|
|
}
|
|
|
|
return !!pending;
|
|
} /* timeouts_pending() */
|
|
|
|
|
|
TIMEOUT_PUBLIC bool timeouts_expired(struct timeouts *T) {
|
|
return !TAILQ_EMPTY(&T->expired);
|
|
} /* timeouts_expired() */
|
|
|
|
|
|
/*
|
|
* Calculate the interval before needing to process any timeouts pending on
|
|
* any wheel.
|
|
*
|
|
* (This is separated from the public API routine so we can evaluate our
|
|
* wheel invariant assertions irrespective of the expired queue.)
|
|
*
|
|
* This might return a timeout value sooner than any installed timeout if
|
|
* only higher-order wheels have timeouts pending. We can only know when to
|
|
* process a wheel, not precisely when a timeout is scheduled. Our timeout
|
|
* accuracy could be off by 2^(N*M)-1 units where N is the wheel number and
|
|
* M is WHEEL_BIT. Only timeouts which have fallen through to wheel 0 can be
|
|
* known exactly.
|
|
*
|
|
* We should never return a timeout larger than the lowest actual timeout.
|
|
*/
|
|
static timeout_t timeouts_int(struct timeouts *T) {
|
|
timeout_t timeout = ~TIMEOUT_C(0), _timeout;
|
|
timeout_t relmask;
|
|
int wheel, slot;
|
|
|
|
relmask = 0;
|
|
|
|
for (wheel = 0; wheel < WHEEL_NUM; wheel++) {
|
|
if (T->pending[wheel]) {
|
|
slot = WHEEL_MASK & (T->curtime >> (wheel * WHEEL_BIT));
|
|
|
|
/* ctz input cannot be zero: T->pending[wheel] is
|
|
* nonzero, so rotr() is nonzero. */
|
|
_timeout = (ctz(rotr(T->pending[wheel], slot)) + !!wheel) << (wheel * WHEEL_BIT);
|
|
/* +1 to higher order wheels as those timeouts are one rotation in the future (otherwise they'd be on a lower wheel or expired) */
|
|
|
|
_timeout -= relmask & T->curtime;
|
|
/* reduce by how much lower wheels have progressed */
|
|
|
|
timeout = MIN(_timeout, timeout);
|
|
}
|
|
|
|
relmask <<= WHEEL_BIT;
|
|
relmask |= WHEEL_MASK;
|
|
}
|
|
|
|
return timeout;
|
|
} /* timeouts_int() */
|
|
|
|
|
|
/*
|
|
* Calculate the interval our caller can wait before needing to process
|
|
* events.
|
|
*/
|
|
TIMEOUT_PUBLIC timeout_t timeouts_timeout(struct timeouts *T) {
|
|
if (!TAILQ_EMPTY(&T->expired))
|
|
return 0;
|
|
|
|
return timeouts_int(T);
|
|
} /* timeouts_timeout() */
|
|
|
|
|
|
TIMEOUT_PUBLIC struct timeout *timeouts_get(struct timeouts *T) {
|
|
if (!TAILQ_EMPTY(&T->expired)) {
|
|
struct timeout *to = TAILQ_FIRST(&T->expired);
|
|
|
|
TAILQ_REMOVE(&T->expired, to, tqe);
|
|
to->pending = NULL;
|
|
TO_SET_TIMEOUTS(to, NULL);
|
|
|
|
#ifndef TIMEOUT_DISABLE_INTERVALS
|
|
if ((to->flags & TIMEOUT_INT) && to->interval > 0)
|
|
timeouts_readd(T, to);
|
|
#endif
|
|
|
|
return to;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} /* timeouts_get() */
|
|
|
|
|
|
/*
|
|
* Use dumb looping to locate the earliest timeout pending on the wheel so
|
|
* our invariant assertions can check the result of our optimized code.
|
|
*/
|
|
static struct timeout *timeouts_min(struct timeouts *T) {
|
|
struct timeout *to, *min = NULL;
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < countof(T->wheel); i++) {
|
|
for (j = 0; j < countof(T->wheel[i]); j++) {
|
|
TAILQ_FOREACH(to, &T->wheel[i][j], tqe) {
|
|
if (!min || to->expires < min->expires)
|
|
min = to;
|
|
}
|
|
}
|
|
}
|
|
|
|
return min;
|
|
} /* timeouts_min() */
|
|
|
|
|
|
/*
|
|
* Check some basic algorithm invariants. If these invariants fail then
|
|
* something is definitely broken.
|
|
*/
|
|
#define report(...) do { \
|
|
if ((fp)) \
|
|
fprintf(fp, __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#define check(expr, ...) do { \
|
|
if (!(expr)) { \
|
|
report(__VA_ARGS__); \
|
|
return 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
TIMEOUT_PUBLIC bool timeouts_check(struct timeouts *T, FILE *fp) {
|
|
timeout_t timeout;
|
|
struct timeout *to;
|
|
|
|
if ((to = timeouts_min(T))) {
|
|
check(to->expires > T->curtime, "missed timeout (expires:%" TIMEOUT_PRIu " <= curtime:%" TIMEOUT_PRIu ")\n", to->expires, T->curtime);
|
|
|
|
timeout = timeouts_int(T);
|
|
check(timeout <= to->expires - T->curtime, "wrong soft timeout (soft:%" TIMEOUT_PRIu " > hard:%" TIMEOUT_PRIu ") (expires:%" TIMEOUT_PRIu "; curtime:%" TIMEOUT_PRIu ")\n", timeout, (to->expires - T->curtime), to->expires, T->curtime);
|
|
|
|
timeout = timeouts_timeout(T);
|
|
check(timeout <= to->expires - T->curtime, "wrong soft timeout (soft:%" TIMEOUT_PRIu " > hard:%" TIMEOUT_PRIu ") (expires:%" TIMEOUT_PRIu "; curtime:%" TIMEOUT_PRIu ")\n", timeout, (to->expires - T->curtime), to->expires, T->curtime);
|
|
} else {
|
|
timeout = timeouts_timeout(T);
|
|
|
|
if (!TAILQ_EMPTY(&T->expired))
|
|
check(timeout == 0, "wrong soft timeout (soft:%" TIMEOUT_PRIu " != hard:%" TIMEOUT_PRIu ")\n", timeout, TIMEOUT_C(0));
|
|
else
|
|
check(timeout == ~TIMEOUT_C(0), "wrong soft timeout (soft:%" TIMEOUT_PRIu " != hard:%" TIMEOUT_PRIu ")\n", timeout, ~TIMEOUT_C(0));
|
|
}
|
|
|
|
return 1;
|
|
} /* timeouts_check() */
|
|
|
|
|
|
#define ENTER \
|
|
do { \
|
|
static const int pc0 = __LINE__; \
|
|
switch (pc0 + it->pc) { \
|
|
case __LINE__: (void)0
|
|
|
|
#define SAVE_AND_DO(do_statement) \
|
|
do { \
|
|
it->pc = __LINE__ - pc0; \
|
|
do_statement; \
|
|
case __LINE__: (void)0; \
|
|
} while (0)
|
|
|
|
#define YIELD(rv) \
|
|
SAVE_AND_DO(return (rv))
|
|
|
|
#define LEAVE \
|
|
SAVE_AND_DO(break); \
|
|
} \
|
|
} while (0)
|
|
|
|
TIMEOUT_PUBLIC struct timeout *timeouts_next(struct timeouts *T, struct timeouts_it *it) {
|
|
struct timeout *to;
|
|
|
|
ENTER;
|
|
|
|
if (it->flags & TIMEOUTS_EXPIRED) {
|
|
if (it->flags & TIMEOUTS_CLEAR) {
|
|
while ((to = timeouts_get(T))) {
|
|
YIELD(to);
|
|
}
|
|
} else {
|
|
TAILQ_FOREACH_SAFE(to, &T->expired, tqe, it->to) {
|
|
YIELD(to);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (it->flags & TIMEOUTS_PENDING) {
|
|
for (it->i = 0; it->i < countof(T->wheel); it->i++) {
|
|
for (it->j = 0; it->j < countof(T->wheel[it->i]); it->j++) {
|
|
TAILQ_FOREACH_SAFE(to, &T->wheel[it->i][it->j], tqe, it->to) {
|
|
YIELD(to);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LEAVE;
|
|
|
|
return NULL;
|
|
} /* timeouts_next */
|
|
|
|
#undef LEAVE
|
|
#undef YIELD
|
|
#undef SAVE_AND_DO
|
|
#undef ENTER
|
|
|
|
|
|
/*
|
|
* T I M E O U T R O U T I N E S
|
|
*
|
|
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
TIMEOUT_PUBLIC struct timeout *timeout_init(struct timeout *to, int flags) {
|
|
memset(to, 0, sizeof *to);
|
|
|
|
to->flags = flags;
|
|
|
|
return to;
|
|
} /* timeout_init() */
|
|
|
|
|
|
#ifndef TIMEOUT_DISABLE_RELATIVE_ACCESS
|
|
TIMEOUT_PUBLIC bool timeout_pending(struct timeout *to) {
|
|
return to->pending && to->pending != &to->timeouts->expired;
|
|
} /* timeout_pending() */
|
|
|
|
|
|
TIMEOUT_PUBLIC bool timeout_expired(struct timeout *to) {
|
|
return to->pending && to->pending == &to->timeouts->expired;
|
|
} /* timeout_expired() */
|
|
|
|
|
|
TIMEOUT_PUBLIC void timeout_del(struct timeout *to) {
|
|
timeouts_del(to->timeouts, to);
|
|
} /* timeout_del() */
|
|
#endif
|
|
|
|
|
|
/*
|
|
* V E R S I O N I N T E R F A C E S
|
|
*
|
|
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
|
|
TIMEOUT_PUBLIC int timeout_version(void) {
|
|
return TIMEOUT_VERSION;
|
|
} /* timeout_version() */
|
|
|
|
|
|
TIMEOUT_PUBLIC const char *timeout_vendor(void) {
|
|
return TIMEOUT_VENDOR;
|
|
} /* timeout_version() */
|
|
|
|
|
|
TIMEOUT_PUBLIC int timeout_v_rel(void) {
|
|
return TIMEOUT_V_REL;
|
|
} /* timeout_version() */
|
|
|
|
|
|
TIMEOUT_PUBLIC int timeout_v_abi(void) {
|
|
return TIMEOUT_V_ABI;
|
|
} /* timeout_version() */
|
|
|
|
|
|
TIMEOUT_PUBLIC int timeout_v_api(void) {
|
|
return TIMEOUT_V_API;
|
|
} /* timeout_version() */
|
|
|