mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
2174 lines
64 KiB
C
2174 lines
64 KiB
C
/* Copyright (c) 2003-2004, Roger Dingledine
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file address.c
|
|
* \brief Functions to use and manipulate the tor_addr_t structure.
|
|
**/
|
|
|
|
#define ADDRESS_PRIVATE
|
|
|
|
#include "orconfig.h"
|
|
|
|
#ifdef _WIN32
|
|
/* For access to structs needed by GetAdaptersAddresses */
|
|
#ifndef WIN32_LEAN_AND_MEAN
|
|
#error "orconfig.h didn't define WIN32_LEAN_AND_MEAN"
|
|
#endif
|
|
#ifndef WINVER
|
|
#error "orconfig.h didn't define WINVER"
|
|
#endif
|
|
#ifndef _WIN32_WINNT
|
|
#error "orconfig.h didn't define _WIN32_WINNT"
|
|
#endif
|
|
#if WINVER < 0x0501
|
|
#error "winver too low"
|
|
#endif
|
|
#if _WIN32_WINNT < 0x0501
|
|
#error "winver too low"
|
|
#endif
|
|
#include <winsock2.h>
|
|
#include <process.h>
|
|
#include <windows.h>
|
|
#include <iphlpapi.h>
|
|
#endif /* defined(_WIN32) */
|
|
|
|
#include "compat.h"
|
|
#include "util.h"
|
|
#include "util_format.h"
|
|
#include "address.h"
|
|
#include "torlog.h"
|
|
#include "container.h"
|
|
#include "sandbox.h"
|
|
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_ERRNO_H
|
|
#include <errno.h>
|
|
#endif
|
|
#ifdef HAVE_NETINET_IN_H
|
|
#include <netinet/in.h>
|
|
#endif
|
|
#ifdef HAVE_ARPA_INET_H
|
|
#include <arpa/inet.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SOCKET_H
|
|
#include <sys/socket.h>
|
|
#endif
|
|
#ifdef HAVE_NETDB_H
|
|
#include <netdb.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_PARAM_H
|
|
#include <sys/param.h> /* FreeBSD needs this to know what version it is */
|
|
#endif
|
|
#ifdef HAVE_SYS_UN_H
|
|
#include <sys/un.h>
|
|
#endif
|
|
#ifdef HAVE_IFADDRS_H
|
|
#include <ifaddrs.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
#ifdef HAVE_NET_IF_H
|
|
#include <net/if.h>
|
|
#endif
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
/* tor_addr_is_null() and maybe other functions rely on AF_UNSPEC being 0 to
|
|
* work correctly. Bail out here if we've found a platform where AF_UNSPEC
|
|
* isn't 0. */
|
|
#if AF_UNSPEC != 0
|
|
#error We rely on AF_UNSPEC being 0. Let us know about your platform, please!
|
|
#endif
|
|
|
|
/** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
|
|
* sockaddr object in *<b>sa_out</b> of object size <b>len</b>. If not enough
|
|
* room is available in sa_out, or on error, return 0. On success, return
|
|
* the length of the sockaddr.
|
|
*
|
|
* Interface note: ordinarily, we return -1 for error. We can't do that here,
|
|
* since socklen_t is unsigned on some platforms.
|
|
**/
|
|
socklen_t
|
|
tor_addr_to_sockaddr(const tor_addr_t *a,
|
|
uint16_t port,
|
|
struct sockaddr *sa_out,
|
|
socklen_t len)
|
|
{
|
|
memset(sa_out, 0, len);
|
|
|
|
sa_family_t family = tor_addr_family(a);
|
|
if (family == AF_INET) {
|
|
struct sockaddr_in *sin;
|
|
if (len < (int)sizeof(struct sockaddr_in))
|
|
return 0;
|
|
sin = (struct sockaddr_in *)sa_out;
|
|
#ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
#endif
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_port = htons(port);
|
|
sin->sin_addr.s_addr = tor_addr_to_ipv4n(a);
|
|
return sizeof(struct sockaddr_in);
|
|
} else if (family == AF_INET6) {
|
|
struct sockaddr_in6 *sin6;
|
|
if (len < (int)sizeof(struct sockaddr_in6))
|
|
return 0;
|
|
sin6 = (struct sockaddr_in6 *)sa_out;
|
|
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
|
|
sin6->sin6_len = sizeof(struct sockaddr_in6);
|
|
#endif
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_port = htons(port);
|
|
memcpy(&sin6->sin6_addr, tor_addr_to_in6_assert(a),
|
|
sizeof(struct in6_addr));
|
|
return sizeof(struct sockaddr_in6);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/** Set address <b>a</b> to zero. This address belongs to
|
|
* the AF_UNIX family. */
|
|
static void
|
|
tor_addr_make_af_unix(tor_addr_t *a)
|
|
{
|
|
memset(a, 0, sizeof(*a));
|
|
a->family = AF_UNIX;
|
|
}
|
|
|
|
/** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
|
|
* <b>sa</b>. IF <b>port_out</b> is non-NULL and <b>sa</b> contains a port,
|
|
* set *<b>port_out</b> to that port. Return 0 on success and -1 on
|
|
* failure. */
|
|
int
|
|
tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa,
|
|
uint16_t *port_out)
|
|
{
|
|
tor_assert(a);
|
|
tor_assert(sa);
|
|
|
|
/* This memset is redundant; leaving it in to avoid any future accidents,
|
|
however. */
|
|
memset(a, 0, sizeof(*a));
|
|
|
|
if (sa->sa_family == AF_INET) {
|
|
struct sockaddr_in *sin = (struct sockaddr_in *) sa;
|
|
tor_addr_from_ipv4n(a, sin->sin_addr.s_addr);
|
|
if (port_out)
|
|
*port_out = ntohs(sin->sin_port);
|
|
} else if (sa->sa_family == AF_INET6) {
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
|
|
tor_addr_from_in6(a, &sin6->sin6_addr);
|
|
if (port_out)
|
|
*port_out = ntohs(sin6->sin6_port);
|
|
} else if (sa->sa_family == AF_UNIX) {
|
|
tor_addr_make_af_unix(a);
|
|
return 0;
|
|
} else {
|
|
tor_addr_make_unspec(a);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Return a newly allocated string holding the address described in
|
|
* <b>sa</b>. AF_UNIX, AF_UNSPEC, AF_INET, and AF_INET6 are supported. */
|
|
char *
|
|
tor_sockaddr_to_str(const struct sockaddr *sa)
|
|
{
|
|
char address[TOR_ADDR_BUF_LEN];
|
|
char *result;
|
|
tor_addr_t addr;
|
|
uint16_t port;
|
|
#ifdef HAVE_SYS_UN_H
|
|
if (sa->sa_family == AF_UNIX) {
|
|
struct sockaddr_un *s_un = (struct sockaddr_un *)sa;
|
|
tor_asprintf(&result, "unix:%s", s_un->sun_path);
|
|
return result;
|
|
}
|
|
#endif /* defined(HAVE_SYS_UN_H) */
|
|
if (sa->sa_family == AF_UNSPEC)
|
|
return tor_strdup("unspec");
|
|
|
|
if (tor_addr_from_sockaddr(&addr, sa, &port) < 0)
|
|
return NULL;
|
|
if (! tor_addr_to_str(address, &addr, sizeof(address), 1))
|
|
return NULL;
|
|
tor_asprintf(&result, "%s:%d", address, (int)port);
|
|
return result;
|
|
}
|
|
|
|
/** Set address <b>a</b> to the unspecified address. This address belongs to
|
|
* no family. */
|
|
void
|
|
tor_addr_make_unspec(tor_addr_t *a)
|
|
{
|
|
memset(a, 0, sizeof(*a));
|
|
a->family = AF_UNSPEC;
|
|
}
|
|
|
|
/** Set address <b>a</b> to the null address in address family <b>family</b>.
|
|
* The null address for AF_INET is 0.0.0.0. The null address for AF_INET6 is
|
|
* [::]. AF_UNSPEC is all null. */
|
|
void
|
|
tor_addr_make_null(tor_addr_t *a, sa_family_t family)
|
|
{
|
|
memset(a, 0, sizeof(*a));
|
|
a->family = family;
|
|
}
|
|
|
|
/** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
|
|
* *<b>addr</b> to the proper IP address and family. The <b>family</b>
|
|
* argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
|
|
* <i>preferred</i> family, though another one may be returned if only one
|
|
* family is implemented for this address.
|
|
*
|
|
* Return 0 on success, -1 on failure; 1 on transient failure.
|
|
*/
|
|
MOCK_IMPL(int,
|
|
tor_addr_lookup,(const char *name, uint16_t family, tor_addr_t *addr))
|
|
{
|
|
/* Perhaps eventually this should be replaced by a tor_getaddrinfo or
|
|
* something.
|
|
*/
|
|
struct in_addr iaddr;
|
|
struct in6_addr iaddr6;
|
|
tor_assert(name);
|
|
tor_assert(addr);
|
|
tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
|
|
if (!*name) {
|
|
/* Empty address is an error. */
|
|
return -1;
|
|
} else if (tor_inet_pton(AF_INET, name, &iaddr)) {
|
|
/* It's an IPv4 IP. */
|
|
if (family == AF_INET6)
|
|
return -1;
|
|
tor_addr_from_in(addr, &iaddr);
|
|
return 0;
|
|
} else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
|
|
if (family == AF_INET)
|
|
return -1;
|
|
tor_addr_from_in6(addr, &iaddr6);
|
|
return 0;
|
|
} else {
|
|
#ifdef HAVE_GETADDRINFO
|
|
int err;
|
|
struct addrinfo *res=NULL, *res_p;
|
|
struct addrinfo *best=NULL;
|
|
struct addrinfo hints;
|
|
int result = -1;
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = family;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
err = sandbox_getaddrinfo(name, NULL, &hints, &res);
|
|
/* The check for 'res' here shouldn't be necessary, but it makes static
|
|
* analysis tools happy. */
|
|
if (!err && res) {
|
|
best = NULL;
|
|
for (res_p = res; res_p; res_p = res_p->ai_next) {
|
|
if (family == AF_UNSPEC) {
|
|
if (res_p->ai_family == AF_INET) {
|
|
best = res_p;
|
|
break;
|
|
} else if (res_p->ai_family == AF_INET6 && !best) {
|
|
best = res_p;
|
|
}
|
|
} else if (family == res_p->ai_family) {
|
|
best = res_p;
|
|
break;
|
|
}
|
|
}
|
|
if (!best)
|
|
best = res;
|
|
if (best->ai_family == AF_INET) {
|
|
tor_addr_from_in(addr,
|
|
&((struct sockaddr_in*)best->ai_addr)->sin_addr);
|
|
result = 0;
|
|
} else if (best->ai_family == AF_INET6) {
|
|
tor_addr_from_in6(addr,
|
|
&((struct sockaddr_in6*)best->ai_addr)->sin6_addr);
|
|
result = 0;
|
|
}
|
|
sandbox_freeaddrinfo(res);
|
|
return result;
|
|
}
|
|
return (err == EAI_AGAIN) ? 1 : -1;
|
|
#else /* !(defined(HAVE_GETADDRINFO)) */
|
|
struct hostent *ent;
|
|
int err;
|
|
#ifdef HAVE_GETHOSTBYNAME_R_6_ARG
|
|
char buf[2048];
|
|
struct hostent hostent;
|
|
int r;
|
|
r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
|
|
#elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
|
|
char buf[2048];
|
|
struct hostent hostent;
|
|
ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
|
|
#elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
|
|
struct hostent_data data;
|
|
struct hostent hent;
|
|
memset(&data, 0, sizeof(data));
|
|
err = gethostbyname_r(name, &hent, &data);
|
|
ent = err ? NULL : &hent;
|
|
#else
|
|
ent = gethostbyname(name);
|
|
#ifdef _WIN32
|
|
err = WSAGetLastError();
|
|
#else
|
|
err = h_errno;
|
|
#endif
|
|
#endif /* defined(HAVE_GETHOSTBYNAME_R_6_ARG) || ... */
|
|
if (ent) {
|
|
if (ent->h_addrtype == AF_INET) {
|
|
tor_addr_from_in(addr, (struct in_addr*) ent->h_addr);
|
|
} else if (ent->h_addrtype == AF_INET6) {
|
|
tor_addr_from_in6(addr, (struct in6_addr*) ent->h_addr);
|
|
} else {
|
|
tor_assert(0); // LCOV_EXCL_LINE: gethostbyname() returned bizarre type
|
|
}
|
|
return 0;
|
|
}
|
|
#ifdef _WIN32
|
|
return (err == WSATRY_AGAIN) ? 1 : -1;
|
|
#else
|
|
return (err == TRY_AGAIN) ? 1 : -1;
|
|
#endif
|
|
#endif /* defined(HAVE_GETADDRINFO) */
|
|
}
|
|
}
|
|
|
|
/** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
|
|
* in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
|
|
* also treated as internal for now.)
|
|
*/
|
|
int
|
|
tor_addr_is_internal_(const tor_addr_t *addr, int for_listening,
|
|
const char *filename, int lineno)
|
|
{
|
|
uint32_t iph4 = 0;
|
|
uint32_t iph6[4];
|
|
|
|
tor_assert(addr);
|
|
sa_family_t v_family = tor_addr_family(addr);
|
|
|
|
if (v_family == AF_INET) {
|
|
iph4 = tor_addr_to_ipv4h(addr);
|
|
} else if (v_family == AF_INET6) {
|
|
if (tor_addr_is_v4(addr)) { /* v4-mapped */
|
|
uint32_t *addr32 = NULL;
|
|
v_family = AF_INET;
|
|
// Work around an incorrect NULL pointer dereference warning in
|
|
// "clang --analyze" due to limited analysis depth
|
|
addr32 = tor_addr_to_in6_addr32(addr);
|
|
// To improve performance, wrap this assertion in:
|
|
// #if !defined(__clang_analyzer__) || PARANOIA
|
|
tor_assert(addr32);
|
|
iph4 = ntohl(addr32[3]);
|
|
}
|
|
}
|
|
|
|
if (v_family == AF_INET6) {
|
|
const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
|
|
iph6[0] = ntohl(a32[0]);
|
|
iph6[1] = ntohl(a32[1]);
|
|
iph6[2] = ntohl(a32[2]);
|
|
iph6[3] = ntohl(a32[3]);
|
|
if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
|
|
return 0;
|
|
|
|
if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
|
|
((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
|
|
((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
|
|
return 1;
|
|
|
|
if (!iph6[0] && !iph6[1] && !iph6[2] &&
|
|
((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
|
|
return 1;
|
|
|
|
return 0;
|
|
} else if (v_family == AF_INET) {
|
|
if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
|
|
return 0;
|
|
if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
|
|
((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
|
|
((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
|
|
((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
|
|
((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
|
|
((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* unknown address family... assume it's not safe for external use */
|
|
/* rather than tor_assert(0) */
|
|
log_warn(LD_BUG, "tor_addr_is_internal() called from %s:%d with a "
|
|
"non-IP address of type %d", filename, lineno, (int)v_family);
|
|
tor_fragile_assert();
|
|
return 1;
|
|
}
|
|
|
|
/** Convert a tor_addr_t <b>addr</b> into a string, and store it in
|
|
* <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
|
|
* or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
|
|
* brackets.
|
|
*/
|
|
const char *
|
|
tor_addr_to_str(char *dest, const tor_addr_t *addr, size_t len, int decorate)
|
|
{
|
|
const char *ptr;
|
|
tor_assert(addr && dest);
|
|
|
|
switch (tor_addr_family(addr)) {
|
|
case AF_INET:
|
|
/* Shortest addr x.x.x.x + \0 */
|
|
if (len < 8)
|
|
return NULL;
|
|
ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
|
|
break;
|
|
case AF_INET6:
|
|
/* Shortest addr [ :: ] + \0 */
|
|
if (len < (3 + (decorate ? 2 : 0)))
|
|
return NULL;
|
|
|
|
if (decorate)
|
|
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
|
|
else
|
|
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
|
|
|
|
if (ptr && decorate) {
|
|
*dest = '[';
|
|
memcpy(dest+strlen(dest), "]", 2);
|
|
tor_assert(ptr == dest+1);
|
|
ptr = dest;
|
|
}
|
|
break;
|
|
case AF_UNIX:
|
|
tor_snprintf(dest, len, "AF_UNIX");
|
|
ptr = dest;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/** Parse an .in-addr.arpa or .ip6.arpa address from <b>address</b>. Return 0
|
|
* if this is not an .in-addr.arpa address or an .ip6.arpa address. Return -1
|
|
* if this is an ill-formed .in-addr.arpa address or an .ip6.arpa address.
|
|
* Also return -1 if <b>family</b> is not AF_UNSPEC, and the parsed address
|
|
* family does not match <b>family</b>. On success, return 1, and store the
|
|
* result, if any, into <b>result</b>, if provided.
|
|
*
|
|
* If <b>accept_regular</b> is set and the address is in neither recognized
|
|
* reverse lookup hostname format, try parsing the address as a regular
|
|
* IPv4 or IPv6 address too.
|
|
*/
|
|
int
|
|
tor_addr_parse_PTR_name(tor_addr_t *result, const char *address,
|
|
int family, int accept_regular)
|
|
{
|
|
if (!strcasecmpend(address, ".in-addr.arpa")) {
|
|
/* We have an in-addr.arpa address. */
|
|
char buf[INET_NTOA_BUF_LEN];
|
|
size_t len;
|
|
struct in_addr inaddr;
|
|
if (family == AF_INET6)
|
|
return -1;
|
|
|
|
len = strlen(address) - strlen(".in-addr.arpa");
|
|
if (len >= INET_NTOA_BUF_LEN)
|
|
return -1; /* Too long. */
|
|
|
|
memcpy(buf, address, len);
|
|
buf[len] = '\0';
|
|
if (tor_inet_aton(buf, &inaddr) == 0)
|
|
return -1; /* malformed. */
|
|
|
|
/* reverse the bytes */
|
|
inaddr.s_addr = (uint32_t)
|
|
(((inaddr.s_addr & 0x000000ff) << 24)
|
|
|((inaddr.s_addr & 0x0000ff00) << 8)
|
|
|((inaddr.s_addr & 0x00ff0000) >> 8)
|
|
|((inaddr.s_addr & 0xff000000) >> 24));
|
|
|
|
if (result) {
|
|
tor_addr_from_in(result, &inaddr);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (!strcasecmpend(address, ".ip6.arpa")) {
|
|
const char *cp;
|
|
int n0, n1;
|
|
struct in6_addr in6;
|
|
|
|
if (family == AF_INET)
|
|
return -1;
|
|
|
|
cp = address;
|
|
for (int i = 0; i < 16; ++i) {
|
|
n0 = hex_decode_digit(*cp++); /* The low-order nybble appears first. */
|
|
if (*cp++ != '.') return -1; /* Then a dot. */
|
|
n1 = hex_decode_digit(*cp++); /* The high-order nybble appears first. */
|
|
if (*cp++ != '.') return -1; /* Then another dot. */
|
|
if (n0<0 || n1 < 0) /* Both nybbles must be hex. */
|
|
return -1;
|
|
|
|
/* We don't check the length of the string in here. But that's okay,
|
|
* since we already know that the string ends with ".ip6.arpa", and
|
|
* there is no way to frameshift .ip6.arpa so it fits into the pattern
|
|
* of hexdigit, period, hexdigit, period that we enforce above.
|
|
*/
|
|
|
|
/* Assign from low-byte to high-byte. */
|
|
in6.s6_addr[15-i] = n0 | (n1 << 4);
|
|
}
|
|
if (strcasecmp(cp, "ip6.arpa"))
|
|
return -1;
|
|
|
|
if (result) {
|
|
tor_addr_from_in6(result, &in6);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (accept_regular) {
|
|
tor_addr_t tmp;
|
|
int r = tor_addr_parse(&tmp, address);
|
|
if (r < 0)
|
|
return 0;
|
|
if (r != family && family != AF_UNSPEC)
|
|
return -1;
|
|
|
|
if (result)
|
|
memcpy(result, &tmp, sizeof(tor_addr_t));
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Convert <b>addr</b> to an in-addr.arpa name or a .ip6.arpa name,
|
|
* and store the result in the <b>outlen</b>-byte buffer at
|
|
* <b>out</b>. Returns a non-negative integer on success.
|
|
* Returns -1 on failure. */
|
|
int
|
|
tor_addr_to_PTR_name(char *out, size_t outlen,
|
|
const tor_addr_t *addr)
|
|
{
|
|
tor_assert(out);
|
|
tor_assert(addr);
|
|
|
|
if (addr->family == AF_INET) {
|
|
uint32_t a = tor_addr_to_ipv4h(addr);
|
|
|
|
return tor_snprintf(out, outlen, "%d.%d.%d.%d.in-addr.arpa",
|
|
(int)(uint8_t)((a )&0xff),
|
|
(int)(uint8_t)((a>>8 )&0xff),
|
|
(int)(uint8_t)((a>>16)&0xff),
|
|
(int)(uint8_t)((a>>24)&0xff));
|
|
} else if (addr->family == AF_INET6) {
|
|
int i;
|
|
char *cp = out;
|
|
const uint8_t *bytes = tor_addr_to_in6_addr8(addr);
|
|
if (outlen < REVERSE_LOOKUP_NAME_BUF_LEN)
|
|
return -1;
|
|
for (i = 15; i >= 0; --i) {
|
|
uint8_t byte = bytes[i];
|
|
*cp++ = "0123456789abcdef"[byte & 0x0f];
|
|
*cp++ = '.';
|
|
*cp++ = "0123456789abcdef"[byte >> 4];
|
|
*cp++ = '.';
|
|
}
|
|
memcpy(cp, "ip6.arpa", 9); /* 8 characters plus NUL */
|
|
return 32 * 2 + 8;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
|
|
* a mask and port or port range. Store the parsed address in
|
|
* <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
|
|
* in <b>port_min_out</b> and <b>port_max_out</b>.
|
|
*
|
|
* The syntax is:
|
|
* Address OptMask OptPortRange
|
|
* Address ::= IPv4Address / "[" IPv6Address "]" / "*"
|
|
* OptMask ::= "/" Integer /
|
|
* OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
|
|
*
|
|
* - If mask, minport, or maxport are NULL, we do not want these
|
|
* options to be set; treat them as an error if present.
|
|
* - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
|
|
* - If the string has one port, it is placed in both min and max port
|
|
* variables.
|
|
* - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
|
|
*
|
|
* Return an address family on success, or -1 if an invalid address string is
|
|
* provided.
|
|
*
|
|
* If 'flags & TAPMP_EXTENDED_STAR' is false, then the wildcard address '*'
|
|
* yield an IPv4 wildcard.
|
|
*
|
|
* If 'flags & TAPMP_EXTENDED_STAR' is true, then the wildcard address '*'
|
|
* yields an AF_UNSPEC wildcard address, which expands to corresponding
|
|
* wildcard IPv4 and IPv6 rules, and the following change is made
|
|
* in the grammar above:
|
|
* Address ::= IPv4Address / "[" IPv6Address "]" / "*" / "*4" / "*6"
|
|
* with the new "*4" and "*6" productions creating a wildcard to match
|
|
* IPv4 or IPv6 addresses.
|
|
*
|
|
* If 'flags & TAPMP_EXTENDED_STAR' and 'flags & TAPMP_STAR_IPV4_ONLY' are
|
|
* both true, then the wildcard address '*' yields an IPv4 wildcard.
|
|
*
|
|
* If 'flags & TAPMP_EXTENDED_STAR' and 'flags & TAPMP_STAR_IPV6_ONLY' are
|
|
* both true, then the wildcard address '*' yields an IPv6 wildcard.
|
|
*
|
|
* TAPMP_STAR_IPV4_ONLY and TAPMP_STAR_IPV6_ONLY are mutually exclusive. */
|
|
int
|
|
tor_addr_parse_mask_ports(const char *s,
|
|
unsigned flags,
|
|
tor_addr_t *addr_out,
|
|
maskbits_t *maskbits_out,
|
|
uint16_t *port_min_out, uint16_t *port_max_out)
|
|
{
|
|
char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
|
|
char *endptr;
|
|
int any_flag=0, v4map=0;
|
|
sa_family_t family;
|
|
struct in6_addr in6_tmp;
|
|
struct in_addr in_tmp = { .s_addr = 0 };
|
|
|
|
tor_assert(s);
|
|
tor_assert(addr_out);
|
|
/* We can either only want an IPv4 address or only want an IPv6 address,
|
|
* but we can't only want IPv4 & IPv6 at the same time. */
|
|
tor_assert(!((flags & TAPMP_STAR_IPV4_ONLY)
|
|
&& (flags & TAPMP_STAR_IPV6_ONLY)));
|
|
|
|
/** Longest possible length for an address, mask, and port-range combination.
|
|
* Includes IP, [], /mask, :, ports */
|
|
#define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
|
|
|
|
if (strlen(s) > MAX_ADDRESS_LENGTH) {
|
|
log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
|
|
goto err;
|
|
}
|
|
base = tor_strdup(s);
|
|
|
|
/* Break 'base' into separate strings. */
|
|
address = base;
|
|
if (*address == '[') { /* Probably IPv6 */
|
|
address++;
|
|
rbracket = strchr(address, ']');
|
|
if (!rbracket) {
|
|
log_warn(LD_GENERAL,
|
|
"No closing IPv6 bracket in address pattern; rejecting.");
|
|
goto err;
|
|
}
|
|
}
|
|
mask = strchr((rbracket?rbracket:address),'/');
|
|
port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
|
|
if (port)
|
|
*port++ = '\0';
|
|
if (mask)
|
|
*mask++ = '\0';
|
|
if (rbracket)
|
|
*rbracket = '\0';
|
|
if (port && mask)
|
|
tor_assert(port > mask);
|
|
if (mask && rbracket)
|
|
tor_assert(mask > rbracket);
|
|
|
|
/* Now "address" is the a.b.c.d|'*'|abcd::1 part...
|
|
* "mask" is the Mask|Maskbits part...
|
|
* and "port" is the *|port|min-max part.
|
|
*/
|
|
|
|
/* Process the address portion */
|
|
memset(addr_out, 0, sizeof(tor_addr_t));
|
|
|
|
if (!strcmp(address, "*")) {
|
|
if (flags & TAPMP_EXTENDED_STAR) {
|
|
if (flags & TAPMP_STAR_IPV4_ONLY) {
|
|
family = AF_INET;
|
|
tor_addr_from_ipv4h(addr_out, 0);
|
|
} else if (flags & TAPMP_STAR_IPV6_ONLY) {
|
|
static char nil_bytes[16] = { [0]=0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
|
|
family = AF_INET6;
|
|
tor_addr_from_ipv6_bytes(addr_out, nil_bytes);
|
|
} else {
|
|
family = AF_UNSPEC;
|
|
tor_addr_make_unspec(addr_out);
|
|
log_info(LD_GENERAL,
|
|
"'%s' expands into rules which apply to all IPv4 and IPv6 "
|
|
"addresses. (Use accept/reject *4:* for IPv4 or "
|
|
"accept[6]/reject[6] *6:* for IPv6.)", s);
|
|
}
|
|
} else {
|
|
family = AF_INET;
|
|
tor_addr_from_ipv4h(addr_out, 0);
|
|
}
|
|
any_flag = 1;
|
|
} else if (!strcmp(address, "*4") && (flags & TAPMP_EXTENDED_STAR)) {
|
|
family = AF_INET;
|
|
tor_addr_from_ipv4h(addr_out, 0);
|
|
any_flag = 1;
|
|
} else if (!strcmp(address, "*6") && (flags & TAPMP_EXTENDED_STAR)) {
|
|
static char nil_bytes[16] = { [0]=0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
|
|
family = AF_INET6;
|
|
tor_addr_from_ipv6_bytes(addr_out, nil_bytes);
|
|
any_flag = 1;
|
|
} else if (tor_inet_pton(AF_INET6, address, &in6_tmp) > 0) {
|
|
family = AF_INET6;
|
|
tor_addr_from_in6(addr_out, &in6_tmp);
|
|
} else if (tor_inet_pton(AF_INET, address, &in_tmp) > 0) {
|
|
family = AF_INET;
|
|
tor_addr_from_in(addr_out, &in_tmp);
|
|
} else {
|
|
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
|
|
escaped(address));
|
|
goto err;
|
|
}
|
|
|
|
v4map = tor_addr_is_v4(addr_out);
|
|
|
|
/* Parse mask */
|
|
if (maskbits_out) {
|
|
int bits = 0;
|
|
struct in_addr v4mask;
|
|
|
|
if (mask) { /* the caller (tried to) specify a mask */
|
|
bits = (int) strtol(mask, &endptr, 10);
|
|
if (!*endptr) { /* strtol converted everything, so it was an integer */
|
|
if ((bits<0 || bits>128) ||
|
|
(family == AF_INET && bits > 32)) {
|
|
log_warn(LD_GENERAL,
|
|
"Bad number of mask bits (%d) on address range; rejecting.",
|
|
bits);
|
|
goto err;
|
|
}
|
|
} else { /* mask might still be an address-style mask */
|
|
if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
|
|
bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
|
|
if (bits < 0) {
|
|
log_warn(LD_GENERAL,
|
|
"IPv4-style mask %s is not a prefix address; rejecting.",
|
|
escaped(mask));
|
|
goto err;
|
|
}
|
|
} else { /* Not IPv4; we don't do address-style IPv6 masks. */
|
|
log_warn(LD_GENERAL,
|
|
"Malformed mask on address range %s; rejecting.",
|
|
escaped(s));
|
|
goto err;
|
|
}
|
|
}
|
|
if (family == AF_INET6 && v4map) {
|
|
if (bits > 32 && bits < 96) { /* Crazy */
|
|
log_warn(LD_GENERAL,
|
|
"Bad mask bits %d for V4-mapped V6 address; rejecting.",
|
|
bits);
|
|
goto err;
|
|
}
|
|
/* XXXX_IP6 is this really what we want? */
|
|
bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
|
|
}
|
|
if (any_flag) {
|
|
log_warn(LD_GENERAL,
|
|
"Found bit prefix with wildcard address; rejecting");
|
|
goto err;
|
|
}
|
|
} else { /* pick an appropriate mask, as none was given */
|
|
if (any_flag)
|
|
bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
|
|
else if (tor_addr_family(addr_out) == AF_INET)
|
|
bits = 32;
|
|
else if (tor_addr_family(addr_out) == AF_INET6)
|
|
bits = 128;
|
|
}
|
|
*maskbits_out = (maskbits_t) bits;
|
|
} else {
|
|
if (mask) {
|
|
log_warn(LD_GENERAL,
|
|
"Unexpected mask in address %s; rejecting", escaped(s));
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Parse port(s) */
|
|
if (port_min_out) {
|
|
uint16_t port2;
|
|
if (!port_max_out) /* caller specified one port; fake the second one */
|
|
port_max_out = &port2;
|
|
|
|
if (parse_port_range(port, port_min_out, port_max_out) < 0) {
|
|
goto err;
|
|
} else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
|
|
log_warn(LD_GENERAL,
|
|
"Wanted one port from address range, but there are two.");
|
|
|
|
port_max_out = NULL; /* caller specified one port, so set this back */
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (port) {
|
|
log_warn(LD_GENERAL,
|
|
"Unexpected ports in address %s; rejecting", escaped(s));
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
tor_free(base);
|
|
return tor_addr_family(addr_out);
|
|
err:
|
|
tor_free(base);
|
|
return -1;
|
|
}
|
|
|
|
/** Determine whether an address is IPv4, either native or IPv4-mapped IPv6.
|
|
* Note that this is about representation only, as any decent stack will
|
|
* reject IPv4-mapped addresses received on the wire (and won't use them
|
|
* on the wire either).
|
|
*/
|
|
int
|
|
tor_addr_is_v4(const tor_addr_t *addr)
|
|
{
|
|
tor_assert(addr);
|
|
|
|
if (tor_addr_family(addr) == AF_INET)
|
|
return 1;
|
|
|
|
if (tor_addr_family(addr) == AF_INET6) {
|
|
/* First two don't need to be ordered */
|
|
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
|
|
if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
|
|
return 1;
|
|
}
|
|
|
|
return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
|
|
}
|
|
|
|
/** Determine whether an address <b>addr</b> is null, either all zeroes or
|
|
* belonging to family AF_UNSPEC.
|
|
*/
|
|
int
|
|
tor_addr_is_null(const tor_addr_t *addr)
|
|
{
|
|
tor_assert(addr);
|
|
|
|
switch (tor_addr_family(addr)) {
|
|
case AF_INET6: {
|
|
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
|
|
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
|
|
}
|
|
case AF_INET:
|
|
return (tor_addr_to_ipv4n(addr) == 0);
|
|
case AF_UNIX:
|
|
return 1;
|
|
case AF_UNSPEC:
|
|
return 1;
|
|
default:
|
|
log_warn(LD_BUG, "Called with unknown address family %d",
|
|
(int)tor_addr_family(addr));
|
|
return 0;
|
|
}
|
|
//return 1;
|
|
}
|
|
|
|
/** Return true iff <b>addr</b> is a loopback address */
|
|
int
|
|
tor_addr_is_loopback(const tor_addr_t *addr)
|
|
{
|
|
tor_assert(addr);
|
|
switch (tor_addr_family(addr)) {
|
|
case AF_INET6: {
|
|
/* ::1 */
|
|
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
|
|
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) &&
|
|
(ntohl(a32[3]) == 1);
|
|
}
|
|
case AF_INET:
|
|
/* 127.0.0.1 */
|
|
return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
|
|
case AF_UNSPEC:
|
|
return 0;
|
|
/* LCOV_EXCL_START */
|
|
default:
|
|
tor_fragile_assert();
|
|
return 0;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
}
|
|
|
|
/* Is addr valid?
|
|
* Checks that addr is non-NULL and not tor_addr_is_null().
|
|
* If for_listening is true, IPv4 addr 0.0.0.0 is allowed.
|
|
* It means "bind to all addresses on the local machine". */
|
|
int
|
|
tor_addr_is_valid(const tor_addr_t *addr, int for_listening)
|
|
{
|
|
/* NULL addresses are invalid regardless of for_listening */
|
|
if (addr == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* Only allow IPv4 0.0.0.0 for_listening. */
|
|
if (for_listening && addr->family == AF_INET
|
|
&& tor_addr_to_ipv4h(addr) == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise, the address is valid if it's not tor_addr_is_null() */
|
|
return !tor_addr_is_null(addr);
|
|
}
|
|
|
|
/* Is the network-order IPv4 address v4n_addr valid?
|
|
* Checks that addr is not zero.
|
|
* Except if for_listening is true, where IPv4 addr 0.0.0.0 is allowed. */
|
|
int
|
|
tor_addr_is_valid_ipv4n(uint32_t v4n_addr, int for_listening)
|
|
{
|
|
/* Any IPv4 address is valid with for_listening. */
|
|
if (for_listening) {
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise, zero addresses are invalid. */
|
|
return v4n_addr != 0;
|
|
}
|
|
|
|
/* Is port valid?
|
|
* Checks that port is not 0.
|
|
* Except if for_listening is true, where port 0 is allowed.
|
|
* It means "OS chooses a port". */
|
|
int
|
|
tor_port_is_valid(uint16_t port, int for_listening)
|
|
{
|
|
/* Any port value is valid with for_listening. */
|
|
if (for_listening) {
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise, zero ports are invalid. */
|
|
return port != 0;
|
|
}
|
|
|
|
/** Set <b>dest</b> to equal the IPv4 address in <b>v4addr</b> (given in
|
|
* network order). */
|
|
void
|
|
tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr)
|
|
{
|
|
tor_assert(dest);
|
|
memset(dest, 0, sizeof(tor_addr_t));
|
|
dest->family = AF_INET;
|
|
dest->addr.in_addr.s_addr = v4addr;
|
|
}
|
|
|
|
/** Set <b>dest</b> to equal the IPv6 address in the 16 bytes at
|
|
* <b>ipv6_bytes</b>. */
|
|
void
|
|
tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes)
|
|
{
|
|
tor_assert(dest);
|
|
tor_assert(ipv6_bytes);
|
|
memset(dest, 0, sizeof(tor_addr_t));
|
|
dest->family = AF_INET6;
|
|
memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16);
|
|
}
|
|
|
|
/** Set <b>dest</b> equal to the IPv6 address in the in6_addr <b>in6</b>. */
|
|
void
|
|
tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6)
|
|
{
|
|
tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr);
|
|
}
|
|
|
|
/** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
|
|
*/
|
|
void
|
|
tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
|
|
{
|
|
if (src == dest)
|
|
return;
|
|
tor_assert(src);
|
|
tor_assert(dest);
|
|
memcpy(dest, src, sizeof(tor_addr_t));
|
|
}
|
|
|
|
/** Copy a tor_addr_t from <b>src</b> to <b>dest</b>, taking extra care to
|
|
* copy only the well-defined portions. Used for computing hashes of
|
|
* addresses.
|
|
*/
|
|
void
|
|
tor_addr_copy_tight(tor_addr_t *dest, const tor_addr_t *src)
|
|
{
|
|
tor_assert(src != dest);
|
|
tor_assert(src);
|
|
tor_assert(dest);
|
|
memset(dest, 0, sizeof(tor_addr_t));
|
|
dest->family = src->family;
|
|
switch (tor_addr_family(src))
|
|
{
|
|
case AF_INET:
|
|
dest->addr.in_addr.s_addr = src->addr.in_addr.s_addr;
|
|
break;
|
|
case AF_INET6:
|
|
memcpy(dest->addr.in6_addr.s6_addr, src->addr.in6_addr.s6_addr, 16);
|
|
case AF_UNSPEC:
|
|
break;
|
|
// LCOV_EXCL_START
|
|
default:
|
|
tor_fragile_assert();
|
|
// LCOV_EXCL_STOP
|
|
}
|
|
}
|
|
|
|
/** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
|
|
* addresses are equivalent under the mask mbits, less than 0 if addr1
|
|
* precedes addr2, and greater than 0 otherwise.
|
|
*
|
|
* Different address families (IPv4 vs IPv6) are always considered unequal if
|
|
* <b>how</b> is CMP_EXACT; otherwise, IPv6-mapped IPv4 addresses are
|
|
* considered equivalent to their IPv4 equivalents.
|
|
*
|
|
* As a special case, all pointer-wise distinct AF_UNIX addresses are always
|
|
* considered unequal since tor_addr_t currently does not contain the
|
|
* information required to make the comparison.
|
|
*/
|
|
int
|
|
tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
|
|
tor_addr_comparison_t how)
|
|
{
|
|
return tor_addr_compare_masked(addr1, addr2, 128, how);
|
|
}
|
|
|
|
/** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
|
|
* the address.
|
|
*
|
|
* Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
|
|
*
|
|
* The mask is interpreted relative to <b>addr1</b>, so that if a is
|
|
* \::ffff:1.2.3.4, and b is 3.4.5.6,
|
|
* tor_addr_compare_masked(a,b,100,CMP_SEMANTIC) is the same as
|
|
* -tor_addr_compare_masked(b,a,4,CMP_SEMANTIC).
|
|
*
|
|
* We guarantee that the ordering from tor_addr_compare_masked is a total
|
|
* order on addresses, but not that it is any particular order, or that it
|
|
* will be the same from one version to the next.
|
|
*/
|
|
int
|
|
tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
|
|
maskbits_t mbits, tor_addr_comparison_t how)
|
|
{
|
|
/** Helper: Evaluates to -1 if a is less than b, 0 if a equals b, or 1 if a
|
|
* is greater than b. May evaluate a and b more than once. */
|
|
#define TRISTATE(a,b) (((a)<(b))?-1: (((a)==(b))?0:1))
|
|
sa_family_t family1, family2, v_family1, v_family2;
|
|
|
|
tor_assert(addr1 && addr2);
|
|
|
|
v_family1 = family1 = tor_addr_family(addr1);
|
|
v_family2 = family2 = tor_addr_family(addr2);
|
|
|
|
if (family1==family2) {
|
|
/* When the families are the same, there's only one way to do the
|
|
* comparison: exactly. */
|
|
int r;
|
|
switch (family1) {
|
|
case AF_UNSPEC:
|
|
return 0; /* All unspecified addresses are equal */
|
|
case AF_INET: {
|
|
uint32_t a1 = tor_addr_to_ipv4h(addr1);
|
|
uint32_t a2 = tor_addr_to_ipv4h(addr2);
|
|
if (mbits <= 0)
|
|
return 0;
|
|
if (mbits > 32)
|
|
mbits = 32;
|
|
a1 >>= (32-mbits);
|
|
a2 >>= (32-mbits);
|
|
r = TRISTATE(a1, a2);
|
|
return r;
|
|
}
|
|
case AF_INET6: {
|
|
if (mbits > 128)
|
|
mbits = 128;
|
|
|
|
const uint8_t *a1 = tor_addr_to_in6_addr8(addr1);
|
|
const uint8_t *a2 = tor_addr_to_in6_addr8(addr2);
|
|
const int bytes = mbits >> 3;
|
|
const int leftover_bits = mbits & 7;
|
|
if (bytes && (r = tor_memcmp(a1, a2, bytes))) {
|
|
return r;
|
|
} else if (leftover_bits) {
|
|
uint8_t b1 = a1[bytes] >> (8-leftover_bits);
|
|
uint8_t b2 = a2[bytes] >> (8-leftover_bits);
|
|
return TRISTATE(b1, b2);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
case AF_UNIX:
|
|
/* HACKHACKHACKHACKHACK:
|
|
* tor_addr_t doesn't contain a copy of sun_path, so it's not
|
|
* possible to compare this at all.
|
|
*
|
|
* Since the only time we currently actually should be comparing
|
|
* 2 AF_UNIX addresses is when dealing with ISO_CLIENTADDR (which
|
|
* is disabled for AF_UNIX SocksPorts anyway), this just does
|
|
* a pointer comparison.
|
|
*
|
|
* See: #20261.
|
|
*/
|
|
if (addr1 < addr2)
|
|
return -1;
|
|
else if (addr1 == addr2)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
/* LCOV_EXCL_START */
|
|
default:
|
|
tor_fragile_assert();
|
|
return 0;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
} else if (how == CMP_EXACT) {
|
|
/* Unequal families and an exact comparison? Stop now! */
|
|
return TRISTATE(family1, family2);
|
|
}
|
|
|
|
if (mbits == 0)
|
|
return 0;
|
|
|
|
if (family1 == AF_INET6 && tor_addr_is_v4(addr1))
|
|
v_family1 = AF_INET;
|
|
if (family2 == AF_INET6 && tor_addr_is_v4(addr2))
|
|
v_family2 = AF_INET;
|
|
if (v_family1 == v_family2) {
|
|
/* One or both addresses are a mapped ipv4 address. */
|
|
uint32_t a1, a2;
|
|
if (family1 == AF_INET6) {
|
|
a1 = tor_addr_to_mapped_ipv4h(addr1);
|
|
if (mbits <= 96)
|
|
return 0;
|
|
mbits -= 96; /* We just decided that the first 96 bits of a1 "match". */
|
|
} else {
|
|
a1 = tor_addr_to_ipv4h(addr1);
|
|
}
|
|
if (family2 == AF_INET6) {
|
|
a2 = tor_addr_to_mapped_ipv4h(addr2);
|
|
} else {
|
|
a2 = tor_addr_to_ipv4h(addr2);
|
|
}
|
|
if (mbits > 32) mbits = 32;
|
|
a1 >>= (32-mbits);
|
|
a2 >>= (32-mbits);
|
|
return TRISTATE(a1, a2);
|
|
} else {
|
|
/* Unequal families, and semantic comparison, and no semantic family
|
|
* matches. */
|
|
return TRISTATE(family1, family2);
|
|
}
|
|
}
|
|
|
|
/** Input for siphash, to produce some output for an unspec value. */
|
|
static const uint32_t unspec_hash_input[] = { 0x4e4df09f, 0x92985342 };
|
|
|
|
/** Return a hash code based on the address addr. DOCDOC extra */
|
|
uint64_t
|
|
tor_addr_hash(const tor_addr_t *addr)
|
|
{
|
|
switch (tor_addr_family(addr)) {
|
|
case AF_INET:
|
|
return siphash24g(&addr->addr.in_addr.s_addr, 4);
|
|
case AF_UNSPEC:
|
|
return siphash24g(unspec_hash_input, sizeof(unspec_hash_input));
|
|
case AF_INET6:
|
|
return siphash24g(&addr->addr.in6_addr.s6_addr, 16);
|
|
/* LCOV_EXCL_START */
|
|
default:
|
|
tor_fragile_assert();
|
|
return 0;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
}
|
|
|
|
/** As tor_addr_hash, but use a particular siphash key. */
|
|
uint64_t
|
|
tor_addr_keyed_hash(const struct sipkey *key, const tor_addr_t *addr)
|
|
{
|
|
/* This is duplicate code with tor_addr_hash, since this function needs to
|
|
* be backportable all the way to 0.2.9. */
|
|
|
|
switch (tor_addr_family(addr)) {
|
|
case AF_INET:
|
|
return siphash24(&addr->addr.in_addr.s_addr, 4, key);
|
|
case AF_UNSPEC:
|
|
return siphash24(unspec_hash_input, sizeof(unspec_hash_input), key);
|
|
case AF_INET6:
|
|
return siphash24(&addr->addr.in6_addr.s6_addr, 16, key);
|
|
default:
|
|
/* LCOV_EXCL_START */
|
|
tor_fragile_assert();
|
|
return 0;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
}
|
|
|
|
/** Return a newly allocated string with a representation of <b>addr</b>. */
|
|
char *
|
|
tor_addr_to_str_dup(const tor_addr_t *addr)
|
|
{
|
|
char buf[TOR_ADDR_BUF_LEN];
|
|
if (tor_addr_to_str(buf, addr, sizeof(buf), 0)) {
|
|
return tor_strdup(buf);
|
|
} else {
|
|
return tor_strdup("<unknown address type>");
|
|
}
|
|
}
|
|
|
|
/** Return a string representing the address <b>addr</b>. This string
|
|
* is statically allocated, and must not be freed. Each call to
|
|
* <b>fmt_addr_impl</b> invalidates the last result of the function.
|
|
* This function is not thread-safe. If <b>decorate</b> is set, add
|
|
* brackets to IPv6 addresses.
|
|
*
|
|
* It's better to use the wrapper macros of this function:
|
|
* <b>fmt_addr()</b> and <b>fmt_and_decorate_addr()</b>.
|
|
*/
|
|
const char *
|
|
fmt_addr_impl(const tor_addr_t *addr, int decorate)
|
|
{
|
|
static char buf[TOR_ADDR_BUF_LEN];
|
|
if (!addr) return "<null>";
|
|
if (tor_addr_to_str(buf, addr, sizeof(buf), decorate))
|
|
return buf;
|
|
else
|
|
return "???";
|
|
}
|
|
|
|
/** Return a string representing the pair <b>addr</b> and <b>port</b>.
|
|
* This calls fmt_and_decorate_addr internally, so IPv6 addresses will
|
|
* have brackets, and the caveats of fmt_addr_impl apply.
|
|
*/
|
|
const char *
|
|
fmt_addrport(const tor_addr_t *addr, uint16_t port)
|
|
{
|
|
/* Add space for a colon and up to 5 digits. */
|
|
static char buf[TOR_ADDR_BUF_LEN + 6];
|
|
tor_snprintf(buf, sizeof(buf), "%s:%u", fmt_and_decorate_addr(addr), port);
|
|
return buf;
|
|
}
|
|
|
|
/** Like fmt_addr(), but takes <b>addr</b> as a host-order IPv4
|
|
* addresses. Also not thread-safe, also clobbers its return buffer on
|
|
* repeated calls. */
|
|
const char *
|
|
fmt_addr32(uint32_t addr)
|
|
{
|
|
static char buf[INET_NTOA_BUF_LEN];
|
|
struct in_addr in;
|
|
in.s_addr = htonl(addr);
|
|
tor_inet_ntoa(&in, buf, sizeof(buf));
|
|
return buf;
|
|
}
|
|
|
|
/** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
|
|
* may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
|
|
* square brackets.
|
|
*
|
|
* Return an address family on success, or -1 if an invalid address string is
|
|
* provided. */
|
|
int
|
|
tor_addr_parse(tor_addr_t *addr, const char *src)
|
|
{
|
|
/* Holds substring of IPv6 address after removing square brackets */
|
|
char *tmp = NULL;
|
|
int result;
|
|
struct in_addr in_tmp;
|
|
struct in6_addr in6_tmp;
|
|
tor_assert(addr && src);
|
|
if (src[0] == '[' && src[1])
|
|
src = tmp = tor_strndup(src+1, strlen(src)-2);
|
|
|
|
if (tor_inet_pton(AF_INET6, src, &in6_tmp) > 0) {
|
|
result = AF_INET6;
|
|
tor_addr_from_in6(addr, &in6_tmp);
|
|
} else if (tor_inet_pton(AF_INET, src, &in_tmp) > 0) {
|
|
result = AF_INET;
|
|
tor_addr_from_in(addr, &in_tmp);
|
|
} else {
|
|
result = -1;
|
|
}
|
|
|
|
tor_free(tmp);
|
|
return result;
|
|
}
|
|
|
|
/** Parse an address or address-port combination from <b>s</b>, resolve the
|
|
* address as needed, and put the result in <b>addr_out</b> and (optionally)
|
|
* <b>port_out</b>. Return 0 on success, negative on failure. */
|
|
int
|
|
tor_addr_port_lookup(const char *s, tor_addr_t *addr_out, uint16_t *port_out)
|
|
{
|
|
const char *port;
|
|
tor_addr_t addr;
|
|
uint16_t portval;
|
|
char *tmp = NULL;
|
|
|
|
tor_assert(s);
|
|
tor_assert(addr_out);
|
|
|
|
s = eat_whitespace(s);
|
|
|
|
if (*s == '[') {
|
|
port = strstr(s, "]");
|
|
if (!port)
|
|
goto err;
|
|
tmp = tor_strndup(s+1, port-(s+1));
|
|
port = port+1;
|
|
if (*port == ':')
|
|
port++;
|
|
else
|
|
port = NULL;
|
|
} else {
|
|
port = strchr(s, ':');
|
|
if (port)
|
|
tmp = tor_strndup(s, port-s);
|
|
else
|
|
tmp = tor_strdup(s);
|
|
if (port)
|
|
++port;
|
|
}
|
|
|
|
if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) != 0)
|
|
goto err;
|
|
tor_free(tmp);
|
|
|
|
if (port) {
|
|
portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL);
|
|
if (!portval)
|
|
goto err;
|
|
} else {
|
|
portval = 0;
|
|
}
|
|
|
|
if (port_out)
|
|
*port_out = portval;
|
|
tor_addr_copy(addr_out, &addr);
|
|
|
|
return 0;
|
|
err:
|
|
tor_free(tmp);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
typedef ULONG (WINAPI *GetAdaptersAddresses_fn_t)(
|
|
ULONG, ULONG, PVOID, PIP_ADAPTER_ADDRESSES, PULONG);
|
|
#endif
|
|
|
|
#ifdef HAVE_IFADDRS_TO_SMARTLIST
|
|
/*
|
|
* Convert a linked list consisting of <b>ifaddrs</b> structures
|
|
* into smartlist of <b>tor_addr_t</b> structures.
|
|
*/
|
|
STATIC smartlist_t *
|
|
ifaddrs_to_smartlist(const struct ifaddrs *ifa, sa_family_t family)
|
|
{
|
|
smartlist_t *result = smartlist_new();
|
|
const struct ifaddrs *i;
|
|
|
|
for (i = ifa; i; i = i->ifa_next) {
|
|
tor_addr_t tmp;
|
|
if ((i->ifa_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
|
|
continue;
|
|
if (!i->ifa_addr)
|
|
continue;
|
|
if (i->ifa_addr->sa_family != AF_INET &&
|
|
i->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (family != AF_UNSPEC && i->ifa_addr->sa_family != family)
|
|
continue;
|
|
if (tor_addr_from_sockaddr(&tmp, i->ifa_addr, NULL) < 0)
|
|
continue;
|
|
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Use getiffaddrs() function to get list of current machine
|
|
* network interface addresses. Represent the result by smartlist of
|
|
* <b>tor_addr_t</b> structures.
|
|
*/
|
|
STATIC smartlist_t *
|
|
get_interface_addresses_ifaddrs(int severity, sa_family_t family)
|
|
{
|
|
|
|
/* Most free Unixy systems provide getifaddrs, which gives us a linked list
|
|
* of struct ifaddrs. */
|
|
struct ifaddrs *ifa = NULL;
|
|
smartlist_t *result;
|
|
if (getifaddrs(&ifa) < 0) {
|
|
log_fn(severity, LD_NET, "Unable to call getifaddrs(): %s",
|
|
strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
result = ifaddrs_to_smartlist(ifa, family);
|
|
|
|
freeifaddrs(ifa);
|
|
|
|
return result;
|
|
}
|
|
#endif /* defined(HAVE_IFADDRS_TO_SMARTLIST) */
|
|
|
|
#ifdef HAVE_IP_ADAPTER_TO_SMARTLIST
|
|
|
|
/** Convert a Windows-specific <b>addresses</b> linked list into smartlist
|
|
* of <b>tor_addr_t</b> structures.
|
|
*/
|
|
|
|
STATIC smartlist_t *
|
|
ip_adapter_addresses_to_smartlist(const IP_ADAPTER_ADDRESSES *addresses)
|
|
{
|
|
smartlist_t *result = smartlist_new();
|
|
const IP_ADAPTER_ADDRESSES *address;
|
|
|
|
for (address = addresses; address; address = address->Next) {
|
|
const IP_ADAPTER_UNICAST_ADDRESS *a;
|
|
for (a = address->FirstUnicastAddress; a; a = a->Next) {
|
|
/* Yes, it's a linked list inside a linked list */
|
|
const struct sockaddr *sa = a->Address.lpSockaddr;
|
|
tor_addr_t tmp;
|
|
if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
|
|
continue;
|
|
if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
|
|
continue;
|
|
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Windows only: use GetAdaptersInfo() function to retrieve network interface
|
|
* addresses of current machine and return them to caller as smartlist of
|
|
* <b>tor_addr_t</b> structures.
|
|
*/
|
|
STATIC smartlist_t *
|
|
get_interface_addresses_win32(int severity, sa_family_t family)
|
|
{
|
|
|
|
/* Windows XP began to provide GetAdaptersAddresses. Windows 2000 had a
|
|
"GetAdaptersInfo", but that's deprecated; let's just try
|
|
GetAdaptersAddresses and fall back to connect+getsockname.
|
|
*/
|
|
HANDLE lib = load_windows_system_library(TEXT("iphlpapi.dll"));
|
|
smartlist_t *result = NULL;
|
|
GetAdaptersAddresses_fn_t fn;
|
|
ULONG size, res;
|
|
IP_ADAPTER_ADDRESSES *addresses = NULL;
|
|
|
|
(void) severity;
|
|
|
|
#define FLAGS (GAA_FLAG_SKIP_ANYCAST | \
|
|
GAA_FLAG_SKIP_MULTICAST | \
|
|
GAA_FLAG_SKIP_DNS_SERVER)
|
|
|
|
if (!lib) {
|
|
log_fn(severity, LD_NET, "Unable to load iphlpapi.dll");
|
|
goto done;
|
|
}
|
|
|
|
if (!(fn = (GetAdaptersAddresses_fn_t)
|
|
GetProcAddress(lib, "GetAdaptersAddresses"))) {
|
|
log_fn(severity, LD_NET, "Unable to obtain pointer to "
|
|
"GetAdaptersAddresses");
|
|
goto done;
|
|
}
|
|
|
|
/* Guess how much space we need. */
|
|
size = 15*1024;
|
|
addresses = tor_malloc(size);
|
|
res = fn(family, FLAGS, NULL, addresses, &size);
|
|
if (res == ERROR_BUFFER_OVERFLOW) {
|
|
/* we didn't guess that we needed enough space; try again */
|
|
tor_free(addresses);
|
|
addresses = tor_malloc(size);
|
|
res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
|
|
}
|
|
if (res != NO_ERROR) {
|
|
log_fn(severity, LD_NET, "GetAdaptersAddresses failed (result: %lu)", res);
|
|
goto done;
|
|
}
|
|
|
|
result = ip_adapter_addresses_to_smartlist(addresses);
|
|
|
|
done:
|
|
if (lib)
|
|
FreeLibrary(lib);
|
|
tor_free(addresses);
|
|
return result;
|
|
}
|
|
|
|
#endif /* defined(HAVE_IP_ADAPTER_TO_SMARTLIST) */
|
|
|
|
#ifdef HAVE_IFCONF_TO_SMARTLIST
|
|
|
|
/* Guess how much space we need. There shouldn't be any struct ifreqs
|
|
* larger than this, even on OS X where the struct's size is dynamic. */
|
|
#define IFREQ_SIZE 4096
|
|
|
|
/* This is defined on Mac OS X */
|
|
#ifndef _SIZEOF_ADDR_IFREQ
|
|
#define _SIZEOF_ADDR_IFREQ sizeof
|
|
#endif
|
|
|
|
/* Free ifc->ifc_buf safely. */
|
|
static void
|
|
ifconf_free_ifc_buf(struct ifconf *ifc)
|
|
{
|
|
/* On macOS, tor_free() takes the address of ifc.ifc_buf, which leads to
|
|
* undefined behaviour, because pointer-to-pointers are expected to be
|
|
* aligned at 8-bytes, but the ifconf structure is packed. So we use
|
|
* raw_free() instead. */
|
|
raw_free(ifc->ifc_buf);
|
|
ifc->ifc_buf = NULL;
|
|
}
|
|
|
|
/** Convert <b>*buf</b>, an ifreq structure array of size <b>buflen</b>,
|
|
* into smartlist of <b>tor_addr_t</b> structures.
|
|
*/
|
|
STATIC smartlist_t *
|
|
ifreq_to_smartlist(char *buf, size_t buflen)
|
|
{
|
|
smartlist_t *result = smartlist_new();
|
|
char *end = buf + buflen;
|
|
|
|
/* These acrobatics are due to alignment issues which trigger
|
|
* undefined behaviour traps on OSX. */
|
|
struct ifreq *r = tor_malloc(IFREQ_SIZE);
|
|
|
|
while (buf < end) {
|
|
/* Copy up to IFREQ_SIZE bytes into the struct ifreq, but don't overrun
|
|
* buf. */
|
|
memcpy(r, buf, end - buf < IFREQ_SIZE ? end - buf : IFREQ_SIZE);
|
|
|
|
const struct sockaddr *sa = &r->ifr_addr;
|
|
tor_addr_t tmp;
|
|
int valid_sa_family = (sa->sa_family == AF_INET ||
|
|
sa->sa_family == AF_INET6);
|
|
|
|
int conversion_success = (tor_addr_from_sockaddr(&tmp, sa, NULL) == 0);
|
|
|
|
if (valid_sa_family && conversion_success)
|
|
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
|
|
|
|
buf += _SIZEOF_ADDR_IFREQ(*r);
|
|
}
|
|
|
|
tor_free(r);
|
|
return result;
|
|
}
|
|
|
|
/** Use ioctl(.,SIOCGIFCONF,.) to get a list of current machine
|
|
* network interface addresses. Represent the result by smartlist of
|
|
* <b>tor_addr_t</b> structures.
|
|
*/
|
|
STATIC smartlist_t *
|
|
get_interface_addresses_ioctl(int severity, sa_family_t family)
|
|
{
|
|
/* Some older unixy systems make us use ioctl(SIOCGIFCONF) */
|
|
struct ifconf ifc;
|
|
ifc.ifc_buf = NULL;
|
|
int fd;
|
|
smartlist_t *result = NULL;
|
|
|
|
/* This interface, AFAICT, only supports AF_INET addresses,
|
|
* except on AIX. For Solaris, we could use SIOCGLIFCONF. */
|
|
|
|
/* Bail out if family is neither AF_INET nor AF_UNSPEC since
|
|
* ioctl() technique supports non-IPv4 interface addresses on
|
|
* a small number of niche systems only. If family is AF_UNSPEC,
|
|
* fall back to getting AF_INET addresses only. */
|
|
if (family == AF_UNSPEC)
|
|
family = AF_INET;
|
|
else if (family != AF_INET)
|
|
return NULL;
|
|
|
|
fd = socket(family, SOCK_DGRAM, 0);
|
|
if (fd < 0) {
|
|
tor_log(severity, LD_NET, "socket failed: %s", strerror(errno));
|
|
goto done;
|
|
}
|
|
|
|
int mult = 1;
|
|
do {
|
|
mult *= 2;
|
|
ifc.ifc_len = mult * IFREQ_SIZE;
|
|
ifc.ifc_buf = tor_realloc(ifc.ifc_buf, ifc.ifc_len);
|
|
|
|
tor_assert(ifc.ifc_buf);
|
|
|
|
if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) {
|
|
tor_log(severity, LD_NET, "ioctl failed: %s", strerror(errno));
|
|
goto done;
|
|
}
|
|
/* Ensure we have least IFREQ_SIZE bytes unused at the end. Otherwise, we
|
|
* don't know if we got everything during ioctl. */
|
|
} while (mult * IFREQ_SIZE - ifc.ifc_len <= IFREQ_SIZE);
|
|
result = ifreq_to_smartlist(ifc.ifc_buf, ifc.ifc_len);
|
|
|
|
done:
|
|
if (fd >= 0)
|
|
close(fd);
|
|
ifconf_free_ifc_buf(&ifc);
|
|
return result;
|
|
}
|
|
#endif /* defined(HAVE_IFCONF_TO_SMARTLIST) */
|
|
|
|
/** Try to ask our network interfaces what addresses they are bound to.
|
|
* Return a new smartlist of tor_addr_t on success, and NULL on failure.
|
|
* (An empty smartlist indicates that we successfully learned that we have no
|
|
* addresses.) Log failure messages at <b>severity</b>. Only return the
|
|
* interface addresses of requested <b>family</b> and ignore the addresses
|
|
* of other address families. */
|
|
MOCK_IMPL(smartlist_t *,
|
|
get_interface_addresses_raw,(int severity, sa_family_t family))
|
|
{
|
|
smartlist_t *result = NULL;
|
|
#if defined(HAVE_IFADDRS_TO_SMARTLIST)
|
|
if ((result = get_interface_addresses_ifaddrs(severity, family)))
|
|
return result;
|
|
#endif
|
|
#if defined(HAVE_IP_ADAPTER_TO_SMARTLIST)
|
|
if ((result = get_interface_addresses_win32(severity, family)))
|
|
return result;
|
|
#endif
|
|
#if defined(HAVE_IFCONF_TO_SMARTLIST)
|
|
if ((result = get_interface_addresses_ioctl(severity, family)))
|
|
return result;
|
|
#endif
|
|
(void) severity;
|
|
(void) result;
|
|
return NULL;
|
|
}
|
|
|
|
/** Return true iff <b>a</b> is a multicast address. */
|
|
int
|
|
tor_addr_is_multicast(const tor_addr_t *a)
|
|
{
|
|
sa_family_t family = tor_addr_family(a);
|
|
if (family == AF_INET) {
|
|
uint32_t ipv4h = tor_addr_to_ipv4h(a);
|
|
if ((ipv4h >> 24) == 0xe0)
|
|
return 1; /* Multicast */
|
|
} else if (family == AF_INET6) {
|
|
const uint8_t *a32 = tor_addr_to_in6_addr8(a);
|
|
if (a32[0] == 0xff)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Attempt to retrieve IP address of current host by utilizing some
|
|
* UDP socket trickery. Only look for address of given <b>family</b>
|
|
* (only AF_INET and AF_INET6 are supported). Set result to *<b>addr</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
MOCK_IMPL(int,
|
|
get_interface_address6_via_udp_socket_hack,(int severity,
|
|
sa_family_t family,
|
|
tor_addr_t *addr))
|
|
{
|
|
struct sockaddr_storage target_addr;
|
|
int sock=-1, r=-1;
|
|
socklen_t addr_len;
|
|
|
|
memset(addr, 0, sizeof(tor_addr_t));
|
|
memset(&target_addr, 0, sizeof(target_addr));
|
|
|
|
/* Don't worry: no packets are sent. We just need to use a real address
|
|
* on the actual Internet. */
|
|
if (family == AF_INET6) {
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
|
|
/* Use the "discard" service port */
|
|
sin6->sin6_port = htons(9);
|
|
sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
|
|
addr_len = (socklen_t)sizeof(struct sockaddr_in6);
|
|
sin6->sin6_family = AF_INET6;
|
|
S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
|
|
} else if (family == AF_INET) {
|
|
struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
|
|
/* Use the "discard" service port */
|
|
sin->sin_port = htons(9);
|
|
sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
|
|
addr_len = (socklen_t)sizeof(struct sockaddr_in);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
if (sock < 0) {
|
|
int e = tor_socket_errno(-1);
|
|
log_fn(severity, LD_NET, "unable to create socket: %s",
|
|
tor_socket_strerror(e));
|
|
goto err;
|
|
}
|
|
|
|
if (tor_connect_socket(sock,(struct sockaddr *)&target_addr,
|
|
addr_len) < 0) {
|
|
int e = tor_socket_errno(sock);
|
|
log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
|
|
goto err;
|
|
}
|
|
|
|
if (tor_addr_from_getsockname(addr, sock) < 0) {
|
|
int e = tor_socket_errno(sock);
|
|
log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
|
|
tor_socket_strerror(e));
|
|
goto err;
|
|
}
|
|
|
|
if (tor_addr_is_loopback(addr) || tor_addr_is_multicast(addr)) {
|
|
log_fn(severity, LD_NET, "Address that we determined via UDP socket"
|
|
" magic is unsuitable for public comms.");
|
|
} else {
|
|
r=0;
|
|
}
|
|
|
|
err:
|
|
if (sock >= 0)
|
|
tor_close_socket(sock);
|
|
if (r == -1)
|
|
memset(addr, 0, sizeof(tor_addr_t));
|
|
return r;
|
|
}
|
|
|
|
/** Set *<b>addr</b> to an arbitrary IP address (if any) of an interface that
|
|
* connects to the Internet. Prefer public IP addresses to internal IP
|
|
* addresses. This address should only be used in checking whether our
|
|
* address has changed, as it may be an internal IP address. Return 0 on
|
|
* success, -1 on failure.
|
|
* Prefer get_interface_address6_list for a list of all addresses on all
|
|
* interfaces which connect to the Internet.
|
|
*/
|
|
MOCK_IMPL(int,
|
|
get_interface_address6,(int severity, sa_family_t family, tor_addr_t *addr))
|
|
{
|
|
smartlist_t *addrs;
|
|
int rv = -1;
|
|
tor_assert(addr);
|
|
|
|
memset(addr, 0, sizeof(tor_addr_t));
|
|
|
|
/* Get a list of public or internal IPs in arbitrary order */
|
|
addrs = get_interface_address6_list(severity, family, 1);
|
|
|
|
/* Find the first non-internal address, or the last internal address
|
|
* Ideally, we want the default route, see #12377 for details */
|
|
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a) {
|
|
tor_addr_copy(addr, a);
|
|
rv = 0;
|
|
|
|
/* If we found a non-internal address, declare success. Otherwise,
|
|
* keep looking. */
|
|
if (!tor_addr_is_internal(a, 0))
|
|
break;
|
|
} SMARTLIST_FOREACH_END(a);
|
|
|
|
interface_address6_list_free(addrs);
|
|
return rv;
|
|
}
|
|
|
|
/** Free a smartlist of IP addresses returned by get_interface_address6_list.
|
|
*/
|
|
void
|
|
interface_address6_list_free_(smartlist_t *addrs)
|
|
{
|
|
if (addrs != NULL) {
|
|
SMARTLIST_FOREACH(addrs, tor_addr_t *, a, tor_free(a));
|
|
smartlist_free(addrs);
|
|
}
|
|
}
|
|
|
|
/** Return a smartlist of the IP addresses of type family from all interfaces
|
|
* on the server. Excludes loopback and multicast addresses. Only includes
|
|
* internal addresses if include_internal is true. (Note that a relay behind
|
|
* NAT may use an internal address to connect to the Internet.)
|
|
* An empty smartlist means that there are no addresses of the selected type
|
|
* matching these criteria.
|
|
* Returns NULL on failure.
|
|
* Use interface_address6_list_free to free the returned list.
|
|
*/
|
|
MOCK_IMPL(smartlist_t *,
|
|
get_interface_address6_list,(int severity,
|
|
sa_family_t family,
|
|
int include_internal))
|
|
{
|
|
smartlist_t *addrs;
|
|
tor_addr_t addr;
|
|
|
|
/* Try to do this the smart way if possible. */
|
|
if ((addrs = get_interface_addresses_raw(severity, family))) {
|
|
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a)
|
|
{
|
|
if (tor_addr_is_loopback(a) ||
|
|
tor_addr_is_multicast(a)) {
|
|
SMARTLIST_DEL_CURRENT_KEEPORDER(addrs, a);
|
|
tor_free(a);
|
|
continue;
|
|
}
|
|
|
|
if (!include_internal && tor_addr_is_internal(a, 0)) {
|
|
SMARTLIST_DEL_CURRENT_KEEPORDER(addrs, a);
|
|
tor_free(a);
|
|
continue;
|
|
}
|
|
} SMARTLIST_FOREACH_END(a);
|
|
}
|
|
|
|
if (addrs && smartlist_len(addrs) > 0) {
|
|
return addrs;
|
|
}
|
|
|
|
/* if we removed all entries as unsuitable */
|
|
if (addrs) {
|
|
smartlist_free(addrs);
|
|
}
|
|
|
|
/* Okay, the smart way is out. */
|
|
addrs = smartlist_new();
|
|
|
|
if (family == AF_INET || family == AF_UNSPEC) {
|
|
if (get_interface_address6_via_udp_socket_hack(severity,AF_INET,
|
|
&addr) == 0) {
|
|
if (include_internal || !tor_addr_is_internal(&addr, 0)) {
|
|
smartlist_add(addrs, tor_memdup(&addr, sizeof(addr)));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (family == AF_INET6 || family == AF_UNSPEC) {
|
|
if (get_interface_address6_via_udp_socket_hack(severity,AF_INET6,
|
|
&addr) == 0) {
|
|
if (include_internal || !tor_addr_is_internal(&addr, 0)) {
|
|
smartlist_add(addrs, tor_memdup(&addr, sizeof(addr)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return addrs;
|
|
}
|
|
|
|
/* ======
|
|
* IPv4 helpers
|
|
* XXXX IPv6 deprecate some of these.
|
|
*/
|
|
|
|
/** Given an address of the form "ip:port", try to divide it into its
|
|
* ip and port portions, setting *<b>address_out</b> to a newly
|
|
* allocated string holding the address portion and *<b>port_out</b>
|
|
* to the port.
|
|
*
|
|
* Don't do DNS lookups and don't allow domain names in the "ip" field.
|
|
*
|
|
* If <b>default_port</b> is less than 0, don't accept <b>addrport</b> of the
|
|
* form "ip" or "ip:0". Otherwise, accept those forms, and set
|
|
* *<b>port_out</b> to <b>default_port</b>.
|
|
*
|
|
* Return 0 on success, -1 on failure. */
|
|
int
|
|
tor_addr_port_parse(int severity, const char *addrport,
|
|
tor_addr_t *address_out, uint16_t *port_out,
|
|
int default_port)
|
|
{
|
|
int retval = -1;
|
|
int r;
|
|
char *addr_tmp = NULL;
|
|
|
|
tor_assert(addrport);
|
|
tor_assert(address_out);
|
|
tor_assert(port_out);
|
|
|
|
r = tor_addr_port_split(severity, addrport, &addr_tmp, port_out);
|
|
if (r < 0)
|
|
goto done;
|
|
|
|
if (!*port_out) {
|
|
if (default_port >= 0)
|
|
*port_out = default_port;
|
|
else
|
|
goto done;
|
|
}
|
|
|
|
/* make sure that address_out is an IP address */
|
|
if (tor_addr_parse(address_out, addr_tmp) < 0)
|
|
goto done;
|
|
|
|
retval = 0;
|
|
|
|
done:
|
|
tor_free(addr_tmp);
|
|
return retval;
|
|
}
|
|
|
|
/** Given an address of the form "host[:port]", try to divide it into its host
|
|
* and port portions, setting *<b>address_out</b> to a newly allocated string
|
|
* holding the address portion and *<b>port_out</b> to the port (or 0 if no
|
|
* port is given). Return 0 on success, -1 on failure. */
|
|
int
|
|
tor_addr_port_split(int severity, const char *addrport,
|
|
char **address_out, uint16_t *port_out)
|
|
{
|
|
tor_addr_t a_tmp;
|
|
tor_assert(addrport);
|
|
tor_assert(address_out);
|
|
tor_assert(port_out);
|
|
/* We need to check for IPv6 manually because addr_port_lookup() doesn't
|
|
* do a good job on IPv6 addresses that lack a port. */
|
|
if (tor_addr_parse(&a_tmp, addrport) == AF_INET6) {
|
|
*port_out = 0;
|
|
*address_out = tor_strdup(addrport);
|
|
return 0;
|
|
}
|
|
|
|
return addr_port_lookup(severity, addrport, address_out, NULL, port_out);
|
|
}
|
|
|
|
/** Parse a string of the form "host[:port]" from <b>addrport</b>. If
|
|
* <b>address</b> is provided, set *<b>address</b> to a copy of the
|
|
* host portion of the string. If <b>addr</b> is provided, try to
|
|
* resolve the host portion of the string and store it into
|
|
* *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
|
|
* store the port number into *<b>port_out</b>, or 0 if no port is given.
|
|
* If <b>port_out</b> is NULL, then there must be no port number in
|
|
* <b>addrport</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
addr_port_lookup(int severity, const char *addrport, char **address,
|
|
uint32_t *addr, uint16_t *port_out)
|
|
{
|
|
const char *colon;
|
|
char *address_ = NULL;
|
|
int port_;
|
|
int ok = 1;
|
|
|
|
tor_assert(addrport);
|
|
|
|
colon = strrchr(addrport, ':');
|
|
if (colon) {
|
|
address_ = tor_strndup(addrport, colon-addrport);
|
|
port_ = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
|
|
if (!port_) {
|
|
log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
|
|
ok = 0;
|
|
}
|
|
if (!port_out) {
|
|
char *esc_addrport = esc_for_log(addrport);
|
|
log_fn(severity, LD_GENERAL,
|
|
"Port %s given on %s when not required",
|
|
escaped(colon+1), esc_addrport);
|
|
tor_free(esc_addrport);
|
|
ok = 0;
|
|
}
|
|
} else {
|
|
address_ = tor_strdup(addrport);
|
|
port_ = 0;
|
|
}
|
|
|
|
if (addr) {
|
|
/* There's an addr pointer, so we need to resolve the hostname. */
|
|
if (tor_lookup_hostname(address_,addr)) {
|
|
log_fn(severity, LD_NET, "Couldn't look up %s", escaped(address_));
|
|
ok = 0;
|
|
*addr = 0;
|
|
}
|
|
}
|
|
|
|
if (address && ok) {
|
|
*address = address_;
|
|
} else {
|
|
if (address)
|
|
*address = NULL;
|
|
tor_free(address_);
|
|
}
|
|
if (port_out)
|
|
*port_out = ok ? ((uint16_t) port_) : 0;
|
|
|
|
return ok ? 0 : -1;
|
|
}
|
|
|
|
/** If <b>mask</b> is an address mask for a bit-prefix, return the number of
|
|
* bits. Otherwise, return -1. */
|
|
int
|
|
addr_mask_get_bits(uint32_t mask)
|
|
{
|
|
int i;
|
|
if (mask == 0)
|
|
return 0;
|
|
if (mask == 0xFFFFFFFFu)
|
|
return 32;
|
|
for (i=1; i<=32; ++i) {
|
|
if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
|
|
* various *out pointers as appropriate. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
parse_port_range(const char *port, uint16_t *port_min_out,
|
|
uint16_t *port_max_out)
|
|
{
|
|
int port_min, port_max, ok;
|
|
tor_assert(port_min_out);
|
|
tor_assert(port_max_out);
|
|
|
|
if (!port || *port == '\0' || strcmp(port, "*") == 0) {
|
|
port_min = 1;
|
|
port_max = 65535;
|
|
} else {
|
|
char *endptr = NULL;
|
|
port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
|
|
if (!ok) {
|
|
log_warn(LD_GENERAL,
|
|
"Malformed port %s on address range; rejecting.",
|
|
escaped(port));
|
|
return -1;
|
|
} else if (endptr && *endptr == '-') {
|
|
port = endptr+1;
|
|
endptr = NULL;
|
|
port_max = (int)tor_parse_long(port, 10, 1, 65535, &ok, &endptr);
|
|
if (!ok) {
|
|
log_warn(LD_GENERAL,
|
|
"Malformed port %s on address range; rejecting.",
|
|
escaped(port));
|
|
return -1;
|
|
}
|
|
} else {
|
|
port_max = port_min;
|
|
}
|
|
if (port_min > port_max) {
|
|
log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (port_min < 1)
|
|
port_min = 1;
|
|
if (port_max > 65535)
|
|
port_max = 65535;
|
|
|
|
*port_min_out = (uint16_t) port_min;
|
|
*port_max_out = (uint16_t) port_max;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
|
|
* write it as a string into the <b>buf_len</b>-byte buffer in
|
|
* <b>buf</b>. Returns a non-negative integer on success.
|
|
* Returns -1 on failure.
|
|
*/
|
|
int
|
|
tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
|
|
{
|
|
uint32_t a = ntohl(in->s_addr);
|
|
return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
|
|
(int)(uint8_t)((a>>24)&0xff),
|
|
(int)(uint8_t)((a>>16)&0xff),
|
|
(int)(uint8_t)((a>>8 )&0xff),
|
|
(int)(uint8_t)((a )&0xff));
|
|
}
|
|
|
|
/** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
|
|
* and return a strdup of the resulting address.
|
|
*/
|
|
char *
|
|
tor_dup_ip(uint32_t addr)
|
|
{
|
|
char buf[TOR_ADDR_BUF_LEN];
|
|
struct in_addr in;
|
|
|
|
in.s_addr = htonl(addr);
|
|
tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
|
|
return tor_strdup(buf);
|
|
}
|
|
|
|
/**
|
|
* Set *<b>addr</b> to a host-order IPv4 address (if any) of an
|
|
* interface that connects to the Internet. Prefer public IP addresses to
|
|
* internal IP addresses. This address should only be used in checking
|
|
* whether our address has changed, as it may be an internal IPv4 address.
|
|
* Return 0 on success, -1 on failure.
|
|
* Prefer get_interface_address_list6 for a list of all IPv4 and IPv6
|
|
* addresses on all interfaces which connect to the Internet.
|
|
*/
|
|
MOCK_IMPL(int,
|
|
get_interface_address,(int severity, uint32_t *addr))
|
|
{
|
|
tor_addr_t local_addr;
|
|
int r;
|
|
|
|
memset(addr, 0, sizeof(uint32_t));
|
|
|
|
r = get_interface_address6(severity, AF_INET, &local_addr);
|
|
if (r>=0)
|
|
*addr = tor_addr_to_ipv4h(&local_addr);
|
|
return r;
|
|
}
|
|
|
|
/** Return true if we can tell that <b>name</b> is a canonical name for the
|
|
* loopback address. Return true also for *.local hostnames, which are
|
|
* multicast DNS names for hosts on the local network. */
|
|
int
|
|
tor_addr_hostname_is_local(const char *name)
|
|
{
|
|
return !strcasecmp(name, "localhost") ||
|
|
!strcasecmp(name, "local") ||
|
|
!strcasecmpend(name, ".local");
|
|
}
|
|
|
|
/** Return a newly allocated tor_addr_port_t with <b>addr</b> and
|
|
<b>port</b> filled in. */
|
|
tor_addr_port_t *
|
|
tor_addr_port_new(const tor_addr_t *addr, uint16_t port)
|
|
{
|
|
tor_addr_port_t *ap = tor_malloc_zero(sizeof(tor_addr_port_t));
|
|
if (addr)
|
|
tor_addr_copy(&ap->addr, addr);
|
|
ap->port = port;
|
|
return ap;
|
|
}
|
|
|
|
/** Return true iff <a>a</b> and <b>b</b> are the same address and port */
|
|
int
|
|
tor_addr_port_eq(const tor_addr_port_t *a,
|
|
const tor_addr_port_t *b)
|
|
{
|
|
return tor_addr_eq(&a->addr, &b->addr) && a->port == b->port;
|
|
}
|
|
|