tor/doc/spec/proposals/ideas/xxx-bridge-disbursement.txt
Nick Mathewson 2dd9d87d07 r15220@tombo: nickm | 2007-12-07 19:53:27 -0500
add draft sketch of bridge disbursement designs.


svn:r12717
2007-12-08 00:53:43 +00:00

116 lines
3.2 KiB
Plaintext

How to hand out bridges.
Divide bridges into 'strategies' as they come in. Do this uniformly
at random for now.
For each strategy, we'll hand out bridges in a different way to
clients. This document describes two strategies: email-based and
IP-based.
0. Notation:
HMAC(k,v) : an HMAC of v using the key k.
A|B: The string A concatenated with the string B.
1. Email-based.
Goal: bootstrap based on one or more popular email service's sybil
prevention algorithms.
Parameters:
HMAC -- an HMAC function
P -- a time period
K -- the number of bridges to send in a period.
Setup: Generate two nonces, N and M.
As bridges arrive, put them into a ring according to HMAC(N,ID)
where ID is the bridges's identity digest.
Divide time into divisions of length P.
When we get an email:
If it's not from a supported email service, reject it.
If we already sent a response to that email address (normalized)
in this period, send _exactly_ the same response.
If it is from a supported service, generate X = HMAC(M,PS|E) where E
is the lowercased normalized email address for the user, and
where PS is the start of the currrent period. Send
the first K bridges in the ring after point X.
To normalize an email address:
Start with the RFC822 address. Consider only the mailbox {???}
portion of the address (username@host). Put this into lowercase
ascii.
Questions:
What to do with weird character encodings? Look up the RFC.
Notes:
Make sure that you can't force a single email address to appear
in lots of different ways. IOW, if nickm@freehaven.net and
NICKM@freehaven.net aren't treated the same, then I can get lots
more bridges than I should.
Make sure you can't construct a distinct address to match an
existing one. IOW, if we treat nickm@X and nickm@Y as the same
user, then anybody can register nickm@Z and use it to tell which
bridges nickm@X got (or would get).
Make sure that we actually check headers so we can't be trivially
used to sapam people.
2. IP-based.
Goal: avoid handing out all the bridges to users in a similar IP
space and time.
Parameters:
T_Flush -- how long it should take a user on a single network to
see a whole cluster of bridges.
N_C
K -- the number of bridges we hand out in response to a single
request.
Setup: using an AS map or a geoip map or some other flawed input
source, divide IP space into "areas" such that surveying a large
collection of "areas" is hard. For v0, use /24 adress blocks.
Group areas into N_C clusters.
Generate nonces L, M, N.
Set the period P such that P*(bridges-per-cluster/K) = T_flush.
Don't set P to greater than a week, or less than three hours.
When we get a bridge:
Based on HMAC(L,ID), assign the bridge to a cluster. Within each
cluster, keep the bridges in a ring based on HMAC(M,ID).
When we get a connection:
If it's http, redirect it to https.
Let net be the incoming IP network. Let PS be the current
period. Compute X = HMAC(N, PS|net). Return the next K bridges
in the ring after X.
3. Open issues
Denial of service attacks
A good view of network topology