mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 21:53:48 +01:00
50b0bc5bfe
and also does the key expansion.
627 lines
25 KiB
C
627 lines
25 KiB
C
/* Copyright (c) 2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/** \file hs_ntor.c
|
|
* \brief Implements the ntor variant used in Tor hidden services.
|
|
*
|
|
* \details
|
|
* This module handles the variant of the ntor handshake that is documented in
|
|
* section [NTOR-WITH-EXTRA-DATA] of rend-spec-ng.txt .
|
|
*
|
|
* The functions in this file provide an API that should be used when sending
|
|
* or receiving INTRODUCE1/RENDEZVOUS1 cells to generate the various key
|
|
* material required to create and handle those cells.
|
|
*
|
|
* In the case of INTRODUCE1 it provides encryption and MAC keys to
|
|
* encode/decode the encrypted blob (see hs_ntor_intro_cell_keys_t). The
|
|
* relevant pub functions are hs_ntor_{client,service}_get_introduce1_keys().
|
|
*
|
|
* In the case of RENDEZVOUS1 it calculates the MAC required to authenticate
|
|
* the cell, and also provides the key seed that is used to derive the crypto
|
|
* material for rendezvous encryption (see hs_ntor_rend_cell_keys_t). The
|
|
* relevant pub functions are hs_ntor_{client,service}_get_rendezvous1_keys().
|
|
* It also provides a function (hs_ntor_circuit_key_expansion()) that does the
|
|
* rendezvous key expansion to setup end-to-end rend circuit keys.
|
|
*/
|
|
|
|
#include "or.h"
|
|
#include "hs_ntor.h"
|
|
|
|
/* String constants used by the ntor HS protocol */
|
|
#define PROTOID "tor-hs-ntor-curve25519-sha3-256-1"
|
|
#define PROTOID_LEN (sizeof(PROTOID) - 1)
|
|
#define SERVER_STR "Server"
|
|
#define SERVER_STR_LEN (sizeof(SERVER_STR) - 1)
|
|
|
|
/* Protocol-specific tweaks to our crypto inputs */
|
|
#define T_HSENC PROTOID ":hs_key_extract"
|
|
#define T_HSENC_LEN (sizeof(T_HSENC) - 1)
|
|
#define T_HSVERIFY PROTOID ":hs_verify"
|
|
#define T_HSMAC PROTOID ":hs_mac"
|
|
#define M_HSEXPAND PROTOID ":hs_key_expand"
|
|
#define M_HSEXPAND_LEN (sizeof(M_HSEXPAND) - 1)
|
|
|
|
/************************* Helper functions: *******************************/
|
|
|
|
/** Helper macro: copy <b>len</b> bytes from <b>inp</b> to <b>ptr</b> and
|
|
*advance <b>ptr</b> by the number of bytes copied. Stolen from onion_ntor.c */
|
|
#define APPEND(ptr, inp, len) \
|
|
STMT_BEGIN { \
|
|
memcpy(ptr, (inp), (len)); \
|
|
ptr += len; \
|
|
} STMT_END
|
|
|
|
/* Length of EXP(X,y) | EXP(X,b) | AUTH_KEY | B | X | Y | PROTOID */
|
|
#define REND_SECRET_HS_INPUT_LEN (CURVE25519_OUTPUT_LEN * 2 + \
|
|
ED25519_PUBKEY_LEN + CURVE25519_PUBKEY_LEN * 3 + PROTOID_LEN)
|
|
/* Length of auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | "Server" */
|
|
#define REND_AUTH_INPUT_LEN (DIGEST256_LEN + ED25519_PUBKEY_LEN + \
|
|
CURVE25519_PUBKEY_LEN * 3 + PROTOID_LEN + SERVER_STR_LEN)
|
|
|
|
/** Helper function: Compute the last part of the HS ntor handshake which
|
|
* derives key material necessary to create and handle RENDEZVOUS1
|
|
* cells. Function used by both client and service. The actual calculations is
|
|
* as follows:
|
|
*
|
|
* NTOR_KEY_SEED = MAC(rend_secret_hs_input, t_hsenc)
|
|
* verify = MAC(rend_secret_hs_input, t_hsverify)
|
|
* auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | "Server"
|
|
* auth_input_mac = MAC(auth_input, t_hsmac)
|
|
*
|
|
* where in the above, AUTH_KEY is <b>intro_auth_pubkey</b>, B is
|
|
* <b>intro_enc_pubkey</b>, Y is <b>service_ephemeral_rend_pubkey</b>, and X
|
|
* is <b>client_ephemeral_enc_pubkey</b>. The provided
|
|
* <b>rend_secret_hs_input</b> is of size REND_SECRET_HS_INPUT_LEN.
|
|
*
|
|
* The final results of NTOR_KEY_SEED and auth_input_mac are placed in
|
|
* <b>hs_ntor_rend_cell_keys_out</b>. Return 0 if everything went fine. */
|
|
static int
|
|
get_rendezvous1_key_material(const uint8_t *rend_secret_hs_input,
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_public_key_t *intro_enc_pubkey,
|
|
const curve25519_public_key_t *service_ephemeral_rend_pubkey,
|
|
const curve25519_public_key_t *client_ephemeral_enc_pubkey,
|
|
hs_ntor_rend_cell_keys_t *hs_ntor_rend_cell_keys_out)
|
|
{
|
|
int bad = 0;
|
|
uint8_t ntor_key_seed[DIGEST256_LEN];
|
|
uint8_t ntor_verify[DIGEST256_LEN];
|
|
uint8_t rend_auth_input[REND_AUTH_INPUT_LEN];
|
|
uint8_t rend_cell_auth[DIGEST256_LEN];
|
|
uint8_t *ptr;
|
|
|
|
/* Let's build NTOR_KEY_SEED */
|
|
crypto_mac_sha3_256(ntor_key_seed, sizeof(ntor_key_seed),
|
|
rend_secret_hs_input, REND_SECRET_HS_INPUT_LEN,
|
|
(const uint8_t *)T_HSENC, strlen(T_HSENC));
|
|
bad |= safe_mem_is_zero(ntor_key_seed, DIGEST256_LEN);
|
|
|
|
/* Let's build ntor_verify */
|
|
crypto_mac_sha3_256(ntor_verify, sizeof(ntor_verify),
|
|
rend_secret_hs_input, REND_SECRET_HS_INPUT_LEN,
|
|
(const uint8_t *)T_HSVERIFY, strlen(T_HSVERIFY));
|
|
bad |= safe_mem_is_zero(ntor_verify, DIGEST256_LEN);
|
|
|
|
/* Let's build auth_input: */
|
|
ptr = rend_auth_input;
|
|
/* Append ntor_verify */
|
|
APPEND(ptr, ntor_verify, sizeof(ntor_verify));
|
|
/* Append AUTH_KEY */
|
|
APPEND(ptr, intro_auth_pubkey->pubkey, ED25519_PUBKEY_LEN);
|
|
/* Append B */
|
|
APPEND(ptr, intro_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append Y */
|
|
APPEND(ptr,
|
|
service_ephemeral_rend_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append X */
|
|
APPEND(ptr,
|
|
client_ephemeral_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append PROTOID */
|
|
APPEND(ptr, PROTOID, strlen(PROTOID));
|
|
/* Append "Server" */
|
|
APPEND(ptr, SERVER_STR, strlen(SERVER_STR));
|
|
tor_assert(ptr == rend_auth_input + sizeof(rend_auth_input));
|
|
|
|
/* Let's build auth_input_mac that goes in RENDEZVOUS1 cell */
|
|
crypto_mac_sha3_256(rend_cell_auth, sizeof(rend_cell_auth),
|
|
rend_auth_input, sizeof(rend_auth_input),
|
|
(const uint8_t *)T_HSMAC, strlen(T_HSMAC));
|
|
bad |= safe_mem_is_zero(ntor_verify, DIGEST256_LEN);
|
|
|
|
{ /* Get the computed RENDEZVOUS1 material! */
|
|
memcpy(&hs_ntor_rend_cell_keys_out->rend_cell_auth_mac,
|
|
rend_cell_auth, DIGEST256_LEN);
|
|
memcpy(&hs_ntor_rend_cell_keys_out->ntor_key_seed,
|
|
ntor_key_seed, DIGEST256_LEN);
|
|
}
|
|
|
|
memwipe(rend_cell_auth, 0, sizeof(rend_cell_auth));
|
|
memwipe(rend_auth_input, 0, sizeof(rend_auth_input));
|
|
memwipe(ntor_key_seed, 0, sizeof(ntor_key_seed));
|
|
|
|
return bad;
|
|
}
|
|
|
|
/** Length of secret_input = EXP(B,x) | AUTH_KEY | X | B | PROTOID */
|
|
#define INTRO_SECRET_HS_INPUT_LEN (CURVE25519_OUTPUT_LEN +ED25519_PUBKEY_LEN +\
|
|
CURVE25519_PUBKEY_LEN + CURVE25519_PUBKEY_LEN + PROTOID_LEN)
|
|
/* Length of info = m_hsexpand | subcredential */
|
|
#define INFO_BLOB_LEN (M_HSEXPAND_LEN + DIGEST256_LEN)
|
|
/* Length of KDF input = intro_secret_hs_input | t_hsenc | info */
|
|
#define KDF_INPUT_LEN (INTRO_SECRET_HS_INPUT_LEN + T_HSENC_LEN + INFO_BLOB_LEN)
|
|
|
|
/** Helper function: Compute the part of the HS ntor handshake that generates
|
|
* key material for creating and handling INTRODUCE1 cells. Function used
|
|
* by both client and service. Specifically, calculate the following:
|
|
*
|
|
* info = m_hsexpand | subcredential
|
|
* hs_keys = KDF(intro_secret_hs_input | t_hsenc | info, S_KEY_LEN+MAC_LEN)
|
|
* ENC_KEY = hs_keys[0:S_KEY_LEN]
|
|
* MAC_KEY = hs_keys[S_KEY_LEN:S_KEY_LEN+MAC_KEY_LEN]
|
|
*
|
|
* where intro_secret_hs_input is <b>secret_input</b> (of size
|
|
* INTRO_SECRET_HS_INPUT_LEN), and <b>subcredential</b> is of size
|
|
* DIGEST256_LEN.
|
|
*
|
|
* If everything went well, fill <b>hs_ntor_intro_cell_keys_out</b> with the
|
|
* necessary key material, and return 0. */
|
|
static void
|
|
get_introduce1_key_material(const uint8_t *secret_input,
|
|
const uint8_t *subcredential,
|
|
hs_ntor_intro_cell_keys_t *hs_ntor_intro_cell_keys_out)
|
|
{
|
|
uint8_t keystream[CIPHER256_KEY_LEN + DIGEST256_LEN];
|
|
uint8_t info_blob[INFO_BLOB_LEN];
|
|
uint8_t kdf_input[KDF_INPUT_LEN];
|
|
crypto_xof_t *xof;
|
|
uint8_t *ptr;
|
|
|
|
/* Let's build info */
|
|
ptr = info_blob;
|
|
APPEND(ptr, M_HSEXPAND, strlen(M_HSEXPAND));
|
|
APPEND(ptr, subcredential, DIGEST256_LEN);
|
|
tor_assert(ptr == info_blob + sizeof(info_blob));
|
|
|
|
/* Let's build the input to the KDF */
|
|
ptr = kdf_input;
|
|
APPEND(ptr, secret_input, INTRO_SECRET_HS_INPUT_LEN);
|
|
APPEND(ptr, T_HSENC, strlen(T_HSENC));
|
|
APPEND(ptr, info_blob, sizeof(info_blob));
|
|
tor_assert(ptr == kdf_input + sizeof(kdf_input));
|
|
|
|
/* Now we need to run kdf_input over SHAKE-256 */
|
|
xof = crypto_xof_new();
|
|
crypto_xof_add_bytes(xof, kdf_input, sizeof(kdf_input));
|
|
crypto_xof_squeeze_bytes(xof, keystream, sizeof(keystream)) ;
|
|
crypto_xof_free(xof);
|
|
|
|
{ /* Get the keys */
|
|
memcpy(&hs_ntor_intro_cell_keys_out->enc_key, keystream,CIPHER256_KEY_LEN);
|
|
memcpy(&hs_ntor_intro_cell_keys_out->mac_key,
|
|
keystream+CIPHER256_KEY_LEN, DIGEST256_LEN);
|
|
}
|
|
|
|
memwipe(keystream, 0, sizeof(keystream));
|
|
memwipe(kdf_input, 0, sizeof(kdf_input));
|
|
}
|
|
|
|
/** Helper function: Calculate the 'intro_secret_hs_input' element used by the
|
|
* HS ntor handshake and place it in <b>secret_input_out</b>. This function is
|
|
* used by both client and service code.
|
|
*
|
|
* For the client-side it looks like this:
|
|
*
|
|
* intro_secret_hs_input = EXP(B,x) | AUTH_KEY | X | B | PROTOID
|
|
*
|
|
* whereas for the service-side it looks like this:
|
|
*
|
|
* intro_secret_hs_input = EXP(X,b) | AUTH_KEY | X | B | PROTOID
|
|
*
|
|
* In this function, <b>dh_result</b> carries the EXP() result (and has size
|
|
* CURVE25519_OUTPUT_LEN) <b>intro_auth_pubkey</b> is AUTH_KEY,
|
|
* <b>client_ephemeral_enc_pubkey</b> is X, and <b>intro_enc_pubkey</b> is B.
|
|
*/
|
|
static void
|
|
get_intro_secret_hs_input(const uint8_t *dh_result,
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_public_key_t *client_ephemeral_enc_pubkey,
|
|
const curve25519_public_key_t *intro_enc_pubkey,
|
|
uint8_t *secret_input_out)
|
|
{
|
|
uint8_t *ptr;
|
|
|
|
/* Append EXP() */
|
|
ptr = secret_input_out;
|
|
APPEND(ptr, dh_result, CURVE25519_OUTPUT_LEN);
|
|
/* Append AUTH_KEY */
|
|
APPEND(ptr, intro_auth_pubkey->pubkey, ED25519_PUBKEY_LEN);
|
|
/* Append X */
|
|
APPEND(ptr, client_ephemeral_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append B */
|
|
APPEND(ptr, intro_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append PROTOID */
|
|
APPEND(ptr, PROTOID, strlen(PROTOID));
|
|
tor_assert(ptr == secret_input_out + INTRO_SECRET_HS_INPUT_LEN);
|
|
}
|
|
|
|
/** Calculate the 'rend_secret_hs_input' element used by the HS ntor handshake
|
|
* and place it in <b>rend_secret_hs_input_out</b>. This function is used by
|
|
* both client and service code.
|
|
*
|
|
* The computation on the client side is:
|
|
* rend_secret_hs_input = EXP(X,y) | EXP(X,b) | AUTH_KEY | B | X | Y | PROTOID
|
|
* whereas on the service side it is:
|
|
* rend_secret_hs_input = EXP(Y,x) | EXP(B,x) | AUTH_KEY | B | X | Y | PROTOID
|
|
*
|
|
* where:
|
|
* <b>dh_result1</b> and <b>dh_result2</b> carry the two EXP() results (of size
|
|
* CURVE25519_OUTPUT_LEN)
|
|
* <b>intro_auth_pubkey</b> is AUTH_KEY,
|
|
* <b>intro_enc_pubkey</b> is B,
|
|
* <b>client_ephemeral_enc_pubkey</b> is X, and
|
|
* <b>service_ephemeral_rend_pubkey</b> is Y.
|
|
*/
|
|
static void
|
|
get_rend_secret_hs_input(const uint8_t *dh_result1, const uint8_t *dh_result2,
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_public_key_t *intro_enc_pubkey,
|
|
const curve25519_public_key_t *client_ephemeral_enc_pubkey,
|
|
const curve25519_public_key_t *service_ephemeral_rend_pubkey,
|
|
uint8_t *rend_secret_hs_input_out)
|
|
{
|
|
uint8_t *ptr;
|
|
|
|
ptr = rend_secret_hs_input_out;
|
|
/* Append the first EXP() */
|
|
APPEND(ptr, dh_result1, CURVE25519_OUTPUT_LEN);
|
|
/* Append the other EXP() */
|
|
APPEND(ptr, dh_result2, CURVE25519_OUTPUT_LEN);
|
|
/* Append AUTH_KEY */
|
|
APPEND(ptr, intro_auth_pubkey->pubkey, ED25519_PUBKEY_LEN);
|
|
/* Append B */
|
|
APPEND(ptr, intro_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append X */
|
|
APPEND(ptr,
|
|
client_ephemeral_enc_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append Y */
|
|
APPEND(ptr,
|
|
service_ephemeral_rend_pubkey->public_key, CURVE25519_PUBKEY_LEN);
|
|
/* Append PROTOID */
|
|
APPEND(ptr, PROTOID, strlen(PROTOID));
|
|
tor_assert(ptr == rend_secret_hs_input_out + REND_SECRET_HS_INPUT_LEN);
|
|
}
|
|
|
|
/************************* Public functions: *******************************/
|
|
|
|
/* Public function: Do the appropriate ntor calculations and derive the keys
|
|
* needed to encrypt and authenticate INTRODUCE1 cells. Return 0 and place the
|
|
* final key material in <b>hs_ntor_intro_cell_keys_out</b> if everything went
|
|
* well, otherwise return -1;
|
|
*
|
|
* The relevant calculations are as follows:
|
|
*
|
|
* intro_secret_hs_input = EXP(B,x) | AUTH_KEY | X | B | PROTOID
|
|
* info = m_hsexpand | subcredential
|
|
* hs_keys = KDF(intro_secret_hs_input | t_hsenc | info, S_KEY_LEN+MAC_LEN)
|
|
* ENC_KEY = hs_keys[0:S_KEY_LEN]
|
|
* MAC_KEY = hs_keys[S_KEY_LEN:S_KEY_LEN+MAC_KEY_LEN]
|
|
*
|
|
* where:
|
|
* <b>intro_auth_pubkey</b> is AUTH_KEY (found in HS descriptor),
|
|
* <b>intro_enc_pubkey</b> is B (also found in HS descriptor),
|
|
* <b>client_ephemeral_enc_keypair</b> is freshly generated keypair (x,X)
|
|
* <b>subcredential</b> is the hidden service subcredential (of size
|
|
* DIGEST256_LEN). */
|
|
int
|
|
hs_ntor_client_get_introduce1_keys(
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_public_key_t *intro_enc_pubkey,
|
|
const curve25519_keypair_t *client_ephemeral_enc_keypair,
|
|
const uint8_t *subcredential,
|
|
hs_ntor_intro_cell_keys_t *hs_ntor_intro_cell_keys_out)
|
|
{
|
|
int bad = 0;
|
|
uint8_t secret_input[INTRO_SECRET_HS_INPUT_LEN];
|
|
uint8_t dh_result[CURVE25519_OUTPUT_LEN];
|
|
|
|
tor_assert(intro_auth_pubkey);
|
|
tor_assert(intro_enc_pubkey);
|
|
tor_assert(client_ephemeral_enc_keypair);
|
|
tor_assert(subcredential);
|
|
tor_assert(hs_ntor_intro_cell_keys_out);
|
|
|
|
/* Calculate EXP(B,x) */
|
|
curve25519_handshake(dh_result,
|
|
&client_ephemeral_enc_keypair->seckey,
|
|
intro_enc_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get intro_secret_hs_input */
|
|
get_intro_secret_hs_input(dh_result, intro_auth_pubkey,
|
|
&client_ephemeral_enc_keypair->pubkey,
|
|
intro_enc_pubkey, secret_input);
|
|
bad |= safe_mem_is_zero(secret_input, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get ENC_KEY and MAC_KEY! */
|
|
get_introduce1_key_material(secret_input, subcredential,
|
|
hs_ntor_intro_cell_keys_out);
|
|
|
|
/* Cleanup */
|
|
memwipe(secret_input, 0, sizeof(secret_input));
|
|
if (bad) {
|
|
memwipe(hs_ntor_intro_cell_keys_out, 0, sizeof(hs_ntor_intro_cell_keys_t));
|
|
}
|
|
|
|
return bad ? -1 : 0;
|
|
}
|
|
|
|
/* Public function: Do the appropriate ntor calculations and derive the keys
|
|
* needed to verify RENDEZVOUS1 cells and encrypt further rendezvous
|
|
* traffic. Return 0 and place the final key material in
|
|
* <b>hs_ntor_rend_cell_keys_out</b> if everything went well, else return -1.
|
|
*
|
|
* The relevant calculations are as follows:
|
|
*
|
|
* rend_secret_hs_input = EXP(Y,x) | EXP(B,x) | AUTH_KEY | B | X | Y | PROTOID
|
|
* NTOR_KEY_SEED = MAC(rend_secret_hs_input, t_hsenc)
|
|
* verify = MAC(rend_secret_hs_input, t_hsverify)
|
|
* auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | "Server"
|
|
* auth_input_mac = MAC(auth_input, t_hsmac)
|
|
*
|
|
* where:
|
|
* <b>intro_auth_pubkey</b> is AUTH_KEY (found in HS descriptor),
|
|
* <b>client_ephemeral_enc_keypair</b> is freshly generated keypair (x,X)
|
|
* <b>intro_enc_pubkey</b> is B (also found in HS descriptor),
|
|
* <b>service_ephemeral_rend_pubkey</b> is Y (SERVER_PK in RENDEZVOUS1 cell) */
|
|
int
|
|
hs_ntor_client_get_rendezvous1_keys(
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_keypair_t *client_ephemeral_enc_keypair,
|
|
const curve25519_public_key_t *intro_enc_pubkey,
|
|
const curve25519_public_key_t *service_ephemeral_rend_pubkey,
|
|
hs_ntor_rend_cell_keys_t *hs_ntor_rend_cell_keys_out)
|
|
{
|
|
int bad = 0;
|
|
uint8_t rend_secret_hs_input[REND_SECRET_HS_INPUT_LEN];
|
|
uint8_t dh_result1[CURVE25519_OUTPUT_LEN];
|
|
uint8_t dh_result2[CURVE25519_OUTPUT_LEN];
|
|
|
|
tor_assert(intro_auth_pubkey);
|
|
tor_assert(client_ephemeral_enc_keypair);
|
|
tor_assert(intro_enc_pubkey);
|
|
tor_assert(service_ephemeral_rend_pubkey);
|
|
tor_assert(hs_ntor_rend_cell_keys_out);
|
|
|
|
/* Compute EXP(Y, x) */
|
|
curve25519_handshake(dh_result1,
|
|
&client_ephemeral_enc_keypair->seckey,
|
|
service_ephemeral_rend_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result1, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Compute EXP(B, x) */
|
|
curve25519_handshake(dh_result2,
|
|
&client_ephemeral_enc_keypair->seckey,
|
|
intro_enc_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result2, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get rend_secret_hs_input */
|
|
get_rend_secret_hs_input(dh_result1, dh_result2,
|
|
intro_auth_pubkey, intro_enc_pubkey,
|
|
&client_ephemeral_enc_keypair->pubkey,
|
|
service_ephemeral_rend_pubkey,
|
|
rend_secret_hs_input);
|
|
|
|
/* Get NTOR_KEY_SEED and the auth_input MAC */
|
|
bad |= get_rendezvous1_key_material(rend_secret_hs_input,
|
|
intro_auth_pubkey,
|
|
intro_enc_pubkey,
|
|
service_ephemeral_rend_pubkey,
|
|
&client_ephemeral_enc_keypair->pubkey,
|
|
hs_ntor_rend_cell_keys_out);
|
|
|
|
memwipe(rend_secret_hs_input, 0, sizeof(rend_secret_hs_input));
|
|
if (bad) {
|
|
memwipe(hs_ntor_rend_cell_keys_out, 0, sizeof(hs_ntor_rend_cell_keys_t));
|
|
}
|
|
|
|
return bad ? -1 : 0;
|
|
}
|
|
|
|
/* Public function: Do the appropriate ntor calculations and derive the keys
|
|
* needed to decrypt and verify INTRODUCE1 cells. Return 0 and place the final
|
|
* key material in <b>hs_ntor_intro_cell_keys_out</b> if everything went well,
|
|
* otherwise return -1;
|
|
*
|
|
* The relevant calculations are as follows:
|
|
*
|
|
* intro_secret_hs_input = EXP(X,b) | AUTH_KEY | X | B | PROTOID
|
|
* info = m_hsexpand | subcredential
|
|
* hs_keys = KDF(intro_secret_hs_input | t_hsenc | info, S_KEY_LEN+MAC_LEN)
|
|
* HS_DEC_KEY = hs_keys[0:S_KEY_LEN]
|
|
* HS_MAC_KEY = hs_keys[S_KEY_LEN:S_KEY_LEN+MAC_KEY_LEN]
|
|
*
|
|
* where:
|
|
* <b>intro_auth_pubkey</b> is AUTH_KEY (introduction point auth key),
|
|
* <b>intro_enc_keypair</b> is (b,B) (introduction point encryption keypair),
|
|
* <b>client_ephemeral_enc_pubkey</b> is X (CLIENT_PK in INTRODUCE2 cell),
|
|
* <b>subcredential</b> is the HS subcredential (of size DIGEST256_LEN) */
|
|
int
|
|
hs_ntor_service_get_introduce1_keys(
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_keypair_t *intro_enc_keypair,
|
|
const curve25519_public_key_t *client_ephemeral_enc_pubkey,
|
|
const uint8_t *subcredential,
|
|
hs_ntor_intro_cell_keys_t *hs_ntor_intro_cell_keys_out)
|
|
{
|
|
int bad = 0;
|
|
uint8_t secret_input[INTRO_SECRET_HS_INPUT_LEN];
|
|
uint8_t dh_result[CURVE25519_OUTPUT_LEN];
|
|
|
|
tor_assert(intro_auth_pubkey);
|
|
tor_assert(intro_enc_keypair);
|
|
tor_assert(client_ephemeral_enc_pubkey);
|
|
tor_assert(subcredential);
|
|
tor_assert(hs_ntor_intro_cell_keys_out);
|
|
|
|
/* Compute EXP(X, b) */
|
|
curve25519_handshake(dh_result,
|
|
&intro_enc_keypair->seckey,
|
|
client_ephemeral_enc_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get intro_secret_hs_input */
|
|
get_intro_secret_hs_input(dh_result, intro_auth_pubkey,
|
|
client_ephemeral_enc_pubkey,
|
|
&intro_enc_keypair->pubkey,
|
|
secret_input);
|
|
bad |= safe_mem_is_zero(secret_input, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get ENC_KEY and MAC_KEY! */
|
|
get_introduce1_key_material(secret_input, subcredential,
|
|
hs_ntor_intro_cell_keys_out);
|
|
|
|
memwipe(secret_input, 0, sizeof(secret_input));
|
|
if (bad) {
|
|
memwipe(hs_ntor_intro_cell_keys_out, 0, sizeof(hs_ntor_intro_cell_keys_t));
|
|
}
|
|
|
|
return bad ? -1 : 0;
|
|
}
|
|
|
|
/* Public function: Do the appropriate ntor calculations and derive the keys
|
|
* needed to create and authenticate RENDEZVOUS1 cells. Return 0 and place the
|
|
* final key material in <b>hs_ntor_rend_cell_keys_out</b> if all went fine,
|
|
* return -1 if error happened.
|
|
*
|
|
* The relevant calculations are as follows:
|
|
*
|
|
* rend_secret_hs_input = EXP(X,y) | EXP(X,b) | AUTH_KEY | B | X | Y | PROTOID
|
|
* NTOR_KEY_SEED = MAC(rend_secret_hs_input, t_hsenc)
|
|
* verify = MAC(rend_secret_hs_input, t_hsverify)
|
|
* auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | "Server"
|
|
* auth_input_mac = MAC(auth_input, t_hsmac)
|
|
*
|
|
* where:
|
|
* <b>intro_auth_pubkey</b> is AUTH_KEY (intro point auth key),
|
|
* <b>intro_enc_keypair</b> is (b,B) (intro point enc keypair)
|
|
* <b>service_ephemeral_rend_keypair</b> is a fresh (y,Y) keypair
|
|
* <b>client_ephemeral_enc_pubkey</b> is X (CLIENT_PK in INTRODUCE2 cell) */
|
|
int
|
|
hs_ntor_service_get_rendezvous1_keys(
|
|
const ed25519_public_key_t *intro_auth_pubkey,
|
|
const curve25519_keypair_t *intro_enc_keypair,
|
|
const curve25519_keypair_t *service_ephemeral_rend_keypair,
|
|
const curve25519_public_key_t *client_ephemeral_enc_pubkey,
|
|
hs_ntor_rend_cell_keys_t *hs_ntor_rend_cell_keys_out)
|
|
{
|
|
int bad = 0;
|
|
uint8_t rend_secret_hs_input[REND_SECRET_HS_INPUT_LEN];
|
|
uint8_t dh_result1[CURVE25519_OUTPUT_LEN];
|
|
uint8_t dh_result2[CURVE25519_OUTPUT_LEN];
|
|
|
|
tor_assert(intro_auth_pubkey);
|
|
tor_assert(intro_enc_keypair);
|
|
tor_assert(service_ephemeral_rend_keypair);
|
|
tor_assert(client_ephemeral_enc_pubkey);
|
|
tor_assert(hs_ntor_rend_cell_keys_out);
|
|
|
|
/* Compute EXP(X, y) */
|
|
curve25519_handshake(dh_result1,
|
|
&service_ephemeral_rend_keypair->seckey,
|
|
client_ephemeral_enc_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result1, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Compute EXP(X, b) */
|
|
curve25519_handshake(dh_result2,
|
|
&intro_enc_keypair->seckey,
|
|
client_ephemeral_enc_pubkey);
|
|
bad |= safe_mem_is_zero(dh_result2, CURVE25519_OUTPUT_LEN);
|
|
|
|
/* Get rend_secret_hs_input */
|
|
get_rend_secret_hs_input(dh_result1, dh_result2,
|
|
intro_auth_pubkey,
|
|
&intro_enc_keypair->pubkey,
|
|
client_ephemeral_enc_pubkey,
|
|
&service_ephemeral_rend_keypair->pubkey,
|
|
rend_secret_hs_input);
|
|
|
|
/* Get NTOR_KEY_SEED and AUTH_INPUT_MAC! */
|
|
bad |= get_rendezvous1_key_material(rend_secret_hs_input,
|
|
intro_auth_pubkey,
|
|
&intro_enc_keypair->pubkey,
|
|
&service_ephemeral_rend_keypair->pubkey,
|
|
client_ephemeral_enc_pubkey,
|
|
hs_ntor_rend_cell_keys_out);
|
|
|
|
memwipe(rend_secret_hs_input, 0, sizeof(rend_secret_hs_input));
|
|
if (bad) {
|
|
memwipe(hs_ntor_rend_cell_keys_out, 0, sizeof(hs_ntor_rend_cell_keys_t));
|
|
}
|
|
|
|
return bad ? -1 : 0;
|
|
}
|
|
|
|
/** Given a received RENDEZVOUS2 MAC in <b>mac</b> (of length DIGEST256_LEN),
|
|
* and the RENDEZVOUS1 key material in <b>hs_ntor_rend_cell_keys</b>, return 1
|
|
* if the MAC is good, otherwise return 0. */
|
|
int
|
|
hs_ntor_client_rendezvous2_mac_is_good(
|
|
const hs_ntor_rend_cell_keys_t *hs_ntor_rend_cell_keys,
|
|
const uint8_t *rcvd_mac)
|
|
{
|
|
tor_assert(rcvd_mac);
|
|
tor_assert(hs_ntor_rend_cell_keys);
|
|
|
|
return tor_memeq(hs_ntor_rend_cell_keys->rend_cell_auth_mac,
|
|
rcvd_mac, DIGEST256_LEN);
|
|
}
|
|
|
|
/* Input length to KDF for key expansion */
|
|
#define NTOR_KEY_EXPANSION_KDF_INPUT_LEN (DIGEST256_LEN + M_HSEXPAND_LEN)
|
|
/* Output length of KDF for key expansion */
|
|
#define NTOR_KEY_EXPANSION_KDF_OUTPUT_LEN (DIGEST256_LEN*3+CIPHER256_KEY_LEN*2)
|
|
|
|
/** Given the rendezvous key material in <b>hs_ntor_rend_cell_keys</b>, do the
|
|
* circuit key expansion as specified by section '4.2.1. Key expansion' and
|
|
* return a hs_ntor_rend_circuit_keys_t structure with the computed keys. */
|
|
hs_ntor_rend_circuit_keys_t *
|
|
hs_ntor_circuit_key_expansion(
|
|
const hs_ntor_rend_cell_keys_t *hs_ntor_rend_cell_keys)
|
|
{
|
|
uint8_t *ptr;
|
|
uint8_t kdf_input[NTOR_KEY_EXPANSION_KDF_INPUT_LEN];
|
|
uint8_t keys[NTOR_KEY_EXPANSION_KDF_OUTPUT_LEN];
|
|
crypto_xof_t *xof;
|
|
hs_ntor_rend_circuit_keys_t *rend_circuit_keys = NULL;
|
|
|
|
/* Let's build the input to the KDF */
|
|
ptr = kdf_input;
|
|
APPEND(ptr, hs_ntor_rend_cell_keys->ntor_key_seed, DIGEST256_LEN);
|
|
APPEND(ptr, M_HSEXPAND, strlen(M_HSEXPAND));
|
|
tor_assert(ptr == kdf_input + sizeof(kdf_input));
|
|
|
|
/* Generate the keys */
|
|
xof = crypto_xof_new();
|
|
crypto_xof_add_bytes(xof, kdf_input, sizeof(kdf_input));
|
|
crypto_xof_squeeze_bytes(xof, keys, sizeof(keys));
|
|
crypto_xof_free(xof);
|
|
|
|
/* Generate keys structure and assign keys to it */
|
|
rend_circuit_keys = tor_malloc_zero(sizeof(hs_ntor_rend_circuit_keys_t));
|
|
ptr = keys;
|
|
memcpy(rend_circuit_keys->KH, ptr, DIGEST256_LEN);
|
|
ptr += DIGEST256_LEN;;
|
|
memcpy(rend_circuit_keys->Df, ptr, DIGEST256_LEN);
|
|
ptr += DIGEST256_LEN;
|
|
memcpy(rend_circuit_keys->Db, ptr, DIGEST256_LEN);
|
|
ptr += DIGEST256_LEN;
|
|
memcpy(rend_circuit_keys->Kf, ptr, CIPHER256_KEY_LEN);
|
|
ptr += CIPHER256_KEY_LEN;
|
|
memcpy(rend_circuit_keys->Kb, ptr, CIPHER256_KEY_LEN);
|
|
ptr += CIPHER256_KEY_LEN;
|
|
tor_assert(ptr == keys + sizeof(keys));
|
|
|
|
return rend_circuit_keys;
|
|
}
|
|
|