mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 21:53:48 +01:00
7ee0a2b9aa
The exposed get_voting_schedule() allocates and return a new object everytime it is called leading to an awful lot of memory allocation when getting the start time of the current round which is done for each node in the consensus. Closes #23623 Signed-off-by: David Goulet <dgoulet@torproject.org>
1394 lines
41 KiB
C
1394 lines
41 KiB
C
/* Copyright (c) 2016-2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file shared_random_state.c
|
|
*
|
|
* \brief Functions and data structures for the state of the random protocol
|
|
* as defined in proposal #250.
|
|
**/
|
|
|
|
#define SHARED_RANDOM_STATE_PRIVATE
|
|
|
|
#include "or.h"
|
|
#include "shared_random.h"
|
|
#include "config.h"
|
|
#include "confparse.h"
|
|
#include "dirvote.h"
|
|
#include "networkstatus.h"
|
|
#include "router.h"
|
|
#include "shared_random_state.h"
|
|
|
|
/* Default filename of the shared random state on disk. */
|
|
static const char default_fname[] = "sr-state";
|
|
|
|
/* String representation of a protocol phase. */
|
|
static const char *phase_str[] = { "unknown", "commit", "reveal" };
|
|
|
|
/* Our shared random protocol state. There is only one possible state per
|
|
* protocol run so this is the global state which is reset at every run once
|
|
* the shared random value has been computed. */
|
|
static sr_state_t *sr_state = NULL;
|
|
|
|
/* Representation of our persistent state on disk. The sr_state above
|
|
* contains the data parsed from this state. When we save to disk, we
|
|
* translate the sr_state to this sr_disk_state. */
|
|
static sr_disk_state_t *sr_disk_state = NULL;
|
|
|
|
/* Disk state file keys. */
|
|
static const char dstate_commit_key[] = "Commit";
|
|
static const char dstate_prev_srv_key[] = "SharedRandPreviousValue";
|
|
static const char dstate_cur_srv_key[] = "SharedRandCurrentValue";
|
|
|
|
/** dummy instance of sr_disk_state_t, used for type-checking its
|
|
* members with CONF_CHECK_VAR_TYPE. */
|
|
DUMMY_TYPECHECK_INSTANCE(sr_disk_state_t);
|
|
|
|
/* These next two are duplicates or near-duplicates from config.c */
|
|
#define VAR(name, conftype, member, initvalue) \
|
|
{ name, CONFIG_TYPE_ ## conftype, offsetof(sr_disk_state_t, member), \
|
|
initvalue CONF_TEST_MEMBERS(sr_disk_state_t, conftype, member) }
|
|
/* As VAR, but the option name and member name are the same. */
|
|
#define V(member, conftype, initvalue) \
|
|
VAR(#member, conftype, member, initvalue)
|
|
/* Our persistent state magic number. */
|
|
#define SR_DISK_STATE_MAGIC 0x98AB1254
|
|
/* Each protocol phase has 12 rounds */
|
|
#define SHARED_RANDOM_N_ROUNDS 12
|
|
/* Number of phase we have in a protocol. */
|
|
#define SHARED_RANDOM_N_PHASES 2
|
|
|
|
static int
|
|
disk_state_validate_cb(void *old_state, void *state, void *default_state,
|
|
int from_setconf, char **msg);
|
|
|
|
/* Array of variables that are saved to disk as a persistent state. */
|
|
static config_var_t state_vars[] = {
|
|
V(Version, UINT, "0"),
|
|
V(TorVersion, STRING, NULL),
|
|
V(ValidAfter, ISOTIME, NULL),
|
|
V(ValidUntil, ISOTIME, NULL),
|
|
|
|
V(Commit, LINELIST, NULL),
|
|
|
|
V(SharedRandValues, LINELIST_V, NULL),
|
|
VAR("SharedRandPreviousValue",LINELIST_S, SharedRandValues, NULL),
|
|
VAR("SharedRandCurrentValue", LINELIST_S, SharedRandValues, NULL),
|
|
END_OF_CONFIG_VARS
|
|
};
|
|
|
|
/* "Extra" variable in the state that receives lines we can't parse. This
|
|
* lets us preserve options from versions of Tor newer than us. */
|
|
static config_var_t state_extra_var = {
|
|
"__extra", CONFIG_TYPE_LINELIST,
|
|
offsetof(sr_disk_state_t, ExtraLines), NULL
|
|
CONF_TEST_MEMBERS(sr_disk_state_t, LINELIST, ExtraLines)
|
|
};
|
|
|
|
/* Configuration format of sr_disk_state_t. */
|
|
static const config_format_t state_format = {
|
|
sizeof(sr_disk_state_t),
|
|
SR_DISK_STATE_MAGIC,
|
|
offsetof(sr_disk_state_t, magic_),
|
|
NULL,
|
|
NULL,
|
|
state_vars,
|
|
disk_state_validate_cb,
|
|
&state_extra_var,
|
|
};
|
|
|
|
/* Return a string representation of a protocol phase. */
|
|
STATIC const char *
|
|
get_phase_str(sr_phase_t phase)
|
|
{
|
|
const char *the_string = NULL;
|
|
|
|
switch (phase) {
|
|
case SR_PHASE_COMMIT:
|
|
case SR_PHASE_REVEAL:
|
|
the_string = phase_str[phase];
|
|
break;
|
|
default:
|
|
/* Unknown phase shouldn't be possible. */
|
|
tor_assert(0);
|
|
}
|
|
|
|
return the_string;
|
|
}
|
|
|
|
/* Return the voting interval of the tor vote subsystem. */
|
|
static int
|
|
get_voting_interval(void)
|
|
{
|
|
int interval;
|
|
networkstatus_t *consensus = networkstatus_get_live_consensus(time(NULL));
|
|
|
|
if (consensus) {
|
|
interval = (int)(consensus->fresh_until - consensus->valid_after);
|
|
} else {
|
|
/* Same for both a testing and real network. We voluntarily ignore the
|
|
* InitialVotingInterval since it complexifies things and it doesn't
|
|
* affect the SR protocol. */
|
|
interval = get_options()->V3AuthVotingInterval;
|
|
}
|
|
tor_assert(interval > 0);
|
|
return interval;
|
|
}
|
|
|
|
/* Given the time <b>now</b>, return the start time of the current round of
|
|
* the SR protocol. For example, if it's 23:47:08, the current round thus
|
|
* started at 23:47:00 for a voting interval of 10 seconds. */
|
|
STATIC time_t
|
|
get_start_time_of_current_round(void)
|
|
{
|
|
const or_options_t *options = get_options();
|
|
int voting_interval = get_voting_interval();
|
|
/* First, get the start time of the next round */
|
|
time_t next_start = dirvote_get_next_valid_after_time();
|
|
/* Now roll back next_start by a voting interval to find the start time of
|
|
the current round. */
|
|
time_t curr_start = dirvote_get_start_of_next_interval(
|
|
next_start - voting_interval - 1,
|
|
voting_interval,
|
|
options->TestingV3AuthVotingStartOffset);
|
|
return curr_start;
|
|
}
|
|
|
|
/** Return the start time of the current SR protocol run. For example, if the
|
|
* time is 23/06/2017 23:47:08 and a full SR protocol run is 24 hours, this
|
|
* function should return 23/06/2017 00:00:00. */
|
|
time_t
|
|
sr_state_get_start_time_of_current_protocol_run(time_t now)
|
|
{
|
|
int total_rounds = SHARED_RANDOM_N_ROUNDS * SHARED_RANDOM_N_PHASES;
|
|
int voting_interval = get_voting_interval();
|
|
/* Find the time the current round started. */
|
|
time_t beginning_of_current_round = get_start_time_of_current_round();
|
|
|
|
/* Get current SR protocol round */
|
|
int current_round = (now / voting_interval) % total_rounds;
|
|
|
|
/* Get start time by subtracting the time elapsed from the beginning of the
|
|
protocol run */
|
|
time_t time_elapsed_since_start_of_run = current_round * voting_interval;
|
|
return beginning_of_current_round - time_elapsed_since_start_of_run;
|
|
}
|
|
|
|
/** Return the time (in seconds) it takes to complete a full SR protocol phase
|
|
* (e.g. the commit phase). */
|
|
unsigned int
|
|
sr_state_get_phase_duration(void)
|
|
{
|
|
return SHARED_RANDOM_N_ROUNDS * get_voting_interval();
|
|
}
|
|
|
|
/** Return the time (in seconds) it takes to complete a full SR protocol run */
|
|
unsigned int
|
|
sr_state_get_protocol_run_duration(void)
|
|
{
|
|
int total_protocol_rounds = SHARED_RANDOM_N_ROUNDS * SHARED_RANDOM_N_PHASES;
|
|
return total_protocol_rounds * get_voting_interval();
|
|
}
|
|
|
|
/* Return the time we should expire the state file created at <b>now</b>.
|
|
* We expire the state file in the beginning of the next protocol run. */
|
|
STATIC time_t
|
|
get_state_valid_until_time(time_t now)
|
|
{
|
|
int total_rounds = SHARED_RANDOM_N_ROUNDS * SHARED_RANDOM_N_PHASES;
|
|
int current_round, voting_interval, rounds_left;
|
|
time_t valid_until, beginning_of_current_round;
|
|
|
|
voting_interval = get_voting_interval();
|
|
/* Find the time the current round started. */
|
|
beginning_of_current_round = get_start_time_of_current_round();
|
|
|
|
/* Find how many rounds are left till the end of the protocol run */
|
|
current_round = (now / voting_interval) % total_rounds;
|
|
rounds_left = total_rounds - current_round;
|
|
|
|
/* To find the valid-until time now, take the start time of the current
|
|
* round and add to it the time it takes for the leftover rounds to
|
|
* complete. */
|
|
valid_until = beginning_of_current_round + (rounds_left * voting_interval);
|
|
|
|
{ /* Logging */
|
|
char tbuf[ISO_TIME_LEN + 1];
|
|
format_iso_time(tbuf, valid_until);
|
|
log_debug(LD_DIR, "SR: Valid until time for state set to %s.", tbuf);
|
|
}
|
|
|
|
return valid_until;
|
|
}
|
|
|
|
/* Given the consensus 'valid-after' time, return the protocol phase we should
|
|
* be in. */
|
|
STATIC sr_phase_t
|
|
get_sr_protocol_phase(time_t valid_after)
|
|
{
|
|
/* Shared random protocol has two phases, commit and reveal. */
|
|
int total_periods = SHARED_RANDOM_N_ROUNDS * SHARED_RANDOM_N_PHASES;
|
|
int current_slot;
|
|
|
|
/* Split time into slots of size 'voting_interval'. See which slot we are
|
|
* currently into, and find which phase it corresponds to. */
|
|
current_slot = (valid_after / get_voting_interval()) % total_periods;
|
|
|
|
if (current_slot < SHARED_RANDOM_N_ROUNDS) {
|
|
return SR_PHASE_COMMIT;
|
|
} else {
|
|
return SR_PHASE_REVEAL;
|
|
}
|
|
}
|
|
|
|
/* Add the given <b>commit</b> to <b>state</b>. It MUST be a valid commit
|
|
* and there shouldn't be a commit from the same authority in the state
|
|
* already else verification hasn't been done prior. This takes ownership of
|
|
* the commit once in our state. */
|
|
static void
|
|
commit_add_to_state(sr_commit_t *commit, sr_state_t *state)
|
|
{
|
|
sr_commit_t *saved_commit;
|
|
|
|
tor_assert(commit);
|
|
tor_assert(state);
|
|
|
|
saved_commit = digestmap_set(state->commits, commit->rsa_identity,
|
|
commit);
|
|
if (saved_commit != NULL) {
|
|
/* This means we already have that commit in our state so adding twice
|
|
* the same commit is either a code flow error, a corrupted disk state
|
|
* or some new unknown issue. */
|
|
log_warn(LD_DIR, "SR: Commit from %s exists in our state while "
|
|
"adding it: '%s'", sr_commit_get_rsa_fpr(commit),
|
|
commit->encoded_commit);
|
|
sr_commit_free(saved_commit);
|
|
}
|
|
}
|
|
|
|
/* Helper: deallocate a commit object. (Used with digestmap_free(), which
|
|
* requires a function pointer whose argument is void *). */
|
|
static void
|
|
commit_free_(void *p)
|
|
{
|
|
sr_commit_free(p);
|
|
}
|
|
|
|
/* Free a state that was allocated with state_new(). */
|
|
static void
|
|
state_free(sr_state_t *state)
|
|
{
|
|
if (state == NULL) {
|
|
return;
|
|
}
|
|
tor_free(state->fname);
|
|
digestmap_free(state->commits, commit_free_);
|
|
tor_free(state->current_srv);
|
|
tor_free(state->previous_srv);
|
|
tor_free(state);
|
|
}
|
|
|
|
/* Allocate an sr_state_t object and returns it. If no <b>fname</b>, the
|
|
* default file name is used. This function does NOT initialize the state
|
|
* timestamp, phase or shared random value. NULL is never returned. */
|
|
static sr_state_t *
|
|
state_new(const char *fname, time_t now)
|
|
{
|
|
sr_state_t *new_state = tor_malloc_zero(sizeof(*new_state));
|
|
/* If file name is not provided, use default. */
|
|
if (fname == NULL) {
|
|
fname = default_fname;
|
|
}
|
|
new_state->fname = tor_strdup(fname);
|
|
new_state->version = SR_PROTO_VERSION;
|
|
new_state->commits = digestmap_new();
|
|
new_state->phase = get_sr_protocol_phase(now);
|
|
new_state->valid_until = get_state_valid_until_time(now);
|
|
return new_state;
|
|
}
|
|
|
|
/* Set our global state pointer with the one given. */
|
|
static void
|
|
state_set(sr_state_t *state)
|
|
{
|
|
tor_assert(state);
|
|
if (sr_state != NULL) {
|
|
state_free(sr_state);
|
|
}
|
|
sr_state = state;
|
|
}
|
|
|
|
/* Free an allocated disk state. */
|
|
static void
|
|
disk_state_free(sr_disk_state_t *state)
|
|
{
|
|
if (state == NULL) {
|
|
return;
|
|
}
|
|
config_free(&state_format, state);
|
|
}
|
|
|
|
/* Allocate a new disk state, initialize it and return it. */
|
|
static sr_disk_state_t *
|
|
disk_state_new(time_t now)
|
|
{
|
|
sr_disk_state_t *new_state = tor_malloc_zero(sizeof(*new_state));
|
|
|
|
new_state->magic_ = SR_DISK_STATE_MAGIC;
|
|
new_state->Version = SR_PROTO_VERSION;
|
|
new_state->TorVersion = tor_strdup(get_version());
|
|
new_state->ValidUntil = get_state_valid_until_time(now);
|
|
new_state->ValidAfter = now;
|
|
|
|
/* Init config format. */
|
|
config_init(&state_format, new_state);
|
|
return new_state;
|
|
}
|
|
|
|
/* Set our global disk state with the given state. */
|
|
static void
|
|
disk_state_set(sr_disk_state_t *state)
|
|
{
|
|
tor_assert(state);
|
|
if (sr_disk_state != NULL) {
|
|
disk_state_free(sr_disk_state);
|
|
}
|
|
sr_disk_state = state;
|
|
}
|
|
|
|
/* Return -1 if the disk state is invalid (something in there that we can't or
|
|
* shouldn't use). Return 0 if everything checks out. */
|
|
static int
|
|
disk_state_validate(const sr_disk_state_t *state)
|
|
{
|
|
time_t now;
|
|
|
|
tor_assert(state);
|
|
|
|
/* Do we support the protocol version in the state or is it 0 meaning
|
|
* Version wasn't found in the state file or bad anyway ? */
|
|
if (state->Version == 0 || state->Version > SR_PROTO_VERSION) {
|
|
goto invalid;
|
|
}
|
|
|
|
/* If the valid until time is before now, we shouldn't use that state. */
|
|
now = time(NULL);
|
|
if (state->ValidUntil < now) {
|
|
log_info(LD_DIR, "SR: Disk state has expired. Ignoring it.");
|
|
goto invalid;
|
|
}
|
|
|
|
/* Make sure we don't have a valid after time that is earlier than a valid
|
|
* until time which would make things not work well. */
|
|
if (state->ValidAfter >= state->ValidUntil) {
|
|
log_info(LD_DIR, "SR: Disk state valid after/until times are invalid.");
|
|
goto invalid;
|
|
}
|
|
|
|
return 0;
|
|
|
|
invalid:
|
|
return -1;
|
|
}
|
|
|
|
/* Validate the disk state (NOP for now). */
|
|
static int
|
|
disk_state_validate_cb(void *old_state, void *state, void *default_state,
|
|
int from_setconf, char **msg)
|
|
{
|
|
/* We don't use these; only options do. */
|
|
(void) from_setconf;
|
|
(void) default_state;
|
|
(void) old_state;
|
|
|
|
/* This is called by config_dump which is just before we are about to
|
|
* write it to disk. At that point, our global memory state has been
|
|
* copied to the disk state so it's fair to assume it's trustable. */
|
|
(void) state;
|
|
(void) msg;
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the Commit line(s) in the disk state and translate them to the
|
|
* the memory state. Return 0 on success else -1 on error. */
|
|
static int
|
|
disk_state_parse_commits(sr_state_t *state,
|
|
const sr_disk_state_t *disk_state)
|
|
{
|
|
config_line_t *line;
|
|
smartlist_t *args = NULL;
|
|
|
|
tor_assert(state);
|
|
tor_assert(disk_state);
|
|
|
|
for (line = disk_state->Commit; line; line = line->next) {
|
|
sr_commit_t *commit = NULL;
|
|
|
|
/* Extra safety. */
|
|
if (strcasecmp(line->key, dstate_commit_key) ||
|
|
line->value == NULL) {
|
|
/* Ignore any lines that are not commits. */
|
|
tor_fragile_assert();
|
|
continue;
|
|
}
|
|
args = smartlist_new();
|
|
smartlist_split_string(args, line->value, " ",
|
|
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, 0);
|
|
if (smartlist_len(args) < 3) {
|
|
log_warn(LD_BUG, "SR: Too few arguments in Commit Line: %s",
|
|
escaped(line->value));
|
|
goto error;
|
|
}
|
|
commit = sr_parse_commit(args);
|
|
if (commit == NULL) {
|
|
/* Ignore badly formed commit. It could also be a authority
|
|
* fingerprint that we don't know about so it shouldn't be used. */
|
|
continue;
|
|
}
|
|
/* We consider parseable commit from our disk state to be valid because
|
|
* they need to be in the first place to get in there. */
|
|
commit->valid = 1;
|
|
/* Add commit to our state pointer. */
|
|
commit_add_to_state(commit, state);
|
|
|
|
SMARTLIST_FOREACH(args, char *, cp, tor_free(cp));
|
|
smartlist_free(args);
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
SMARTLIST_FOREACH(args, char *, cp, tor_free(cp));
|
|
smartlist_free(args);
|
|
return -1;
|
|
}
|
|
|
|
/* Parse a share random value line from the disk state and save it to dst
|
|
* which is an allocated srv object. Return 0 on success else -1. */
|
|
static int
|
|
disk_state_parse_srv(const char *value, sr_srv_t *dst)
|
|
{
|
|
int ret = -1;
|
|
smartlist_t *args;
|
|
sr_srv_t *srv;
|
|
|
|
tor_assert(value);
|
|
tor_assert(dst);
|
|
|
|
args = smartlist_new();
|
|
smartlist_split_string(args, value, " ",
|
|
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, 0);
|
|
if (smartlist_len(args) < 2) {
|
|
log_warn(LD_BUG, "SR: Too few arguments in shared random value. "
|
|
"Line: %s", escaped(value));
|
|
goto error;
|
|
}
|
|
srv = sr_parse_srv(args);
|
|
if (srv == NULL) {
|
|
goto error;
|
|
}
|
|
dst->num_reveals = srv->num_reveals;
|
|
memcpy(dst->value, srv->value, sizeof(dst->value));
|
|
tor_free(srv);
|
|
ret = 0;
|
|
|
|
error:
|
|
SMARTLIST_FOREACH(args, char *, s, tor_free(s));
|
|
smartlist_free(args);
|
|
return ret;
|
|
}
|
|
|
|
/* Parse both SharedRandCurrentValue and SharedRandPreviousValue line from
|
|
* the state. Return 0 on success else -1. */
|
|
static int
|
|
disk_state_parse_sr_values(sr_state_t *state,
|
|
const sr_disk_state_t *disk_state)
|
|
{
|
|
/* Only one value per type (current or previous) is allowed so we keep
|
|
* track of it with these flag. */
|
|
unsigned int seen_previous = 0, seen_current = 0;
|
|
config_line_t *line;
|
|
sr_srv_t *srv = NULL;
|
|
|
|
tor_assert(state);
|
|
tor_assert(disk_state);
|
|
|
|
for (line = disk_state->SharedRandValues; line; line = line->next) {
|
|
if (line->value == NULL) {
|
|
continue;
|
|
}
|
|
srv = tor_malloc_zero(sizeof(*srv));
|
|
if (disk_state_parse_srv(line->value, srv) < 0) {
|
|
log_warn(LD_BUG, "SR: Broken current SRV line in state %s",
|
|
escaped(line->value));
|
|
goto bad;
|
|
}
|
|
if (!strcasecmp(line->key, dstate_prev_srv_key)) {
|
|
if (seen_previous) {
|
|
log_warn(LD_DIR, "SR: Second previous SRV value seen. Bad state");
|
|
goto bad;
|
|
}
|
|
state->previous_srv = srv;
|
|
seen_previous = 1;
|
|
} else if (!strcasecmp(line->key, dstate_cur_srv_key)) {
|
|
if (seen_current) {
|
|
log_warn(LD_DIR, "SR: Second current SRV value seen. Bad state");
|
|
goto bad;
|
|
}
|
|
state->current_srv = srv;
|
|
seen_current = 1;
|
|
} else {
|
|
/* Unknown key. Ignoring. */
|
|
tor_free(srv);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
bad:
|
|
tor_free(srv);
|
|
return -1;
|
|
}
|
|
|
|
/* Parse the given disk state and set a newly allocated state. On success,
|
|
* return that state else NULL. */
|
|
static sr_state_t *
|
|
disk_state_parse(const sr_disk_state_t *new_disk_state)
|
|
{
|
|
sr_state_t *new_state = state_new(default_fname, time(NULL));
|
|
|
|
tor_assert(new_disk_state);
|
|
|
|
new_state->version = new_disk_state->Version;
|
|
new_state->valid_until = new_disk_state->ValidUntil;
|
|
new_state->valid_after = new_disk_state->ValidAfter;
|
|
|
|
/* Set our current phase according to the valid-after time in our disk
|
|
* state. The disk state we are parsing contains everything for the phase
|
|
* starting at valid_after so make sure our phase reflects that. */
|
|
new_state->phase = get_sr_protocol_phase(new_state->valid_after);
|
|
|
|
/* Parse the shared random values. */
|
|
if (disk_state_parse_sr_values(new_state, new_disk_state) < 0) {
|
|
goto error;
|
|
}
|
|
/* Parse the commits. */
|
|
if (disk_state_parse_commits(new_state, new_disk_state) < 0) {
|
|
goto error;
|
|
}
|
|
/* Great! This new state contains everything we had on disk. */
|
|
return new_state;
|
|
|
|
error:
|
|
state_free(new_state);
|
|
return NULL;
|
|
}
|
|
|
|
/* From a valid commit object and an allocated config line, set the line's
|
|
* value to the state string representation of a commit. */
|
|
static void
|
|
disk_state_put_commit_line(const sr_commit_t *commit, config_line_t *line)
|
|
{
|
|
char *reveal_str = NULL;
|
|
|
|
tor_assert(commit);
|
|
tor_assert(line);
|
|
|
|
if (!tor_mem_is_zero(commit->encoded_reveal,
|
|
sizeof(commit->encoded_reveal))) {
|
|
/* Add extra whitespace so we can format the line correctly. */
|
|
tor_asprintf(&reveal_str, " %s", commit->encoded_reveal);
|
|
}
|
|
tor_asprintf(&line->value, "%u %s %s %s%s",
|
|
SR_PROTO_VERSION,
|
|
crypto_digest_algorithm_get_name(commit->alg),
|
|
sr_commit_get_rsa_fpr(commit),
|
|
commit->encoded_commit,
|
|
reveal_str != NULL ? reveal_str : "");
|
|
if (reveal_str != NULL) {
|
|
memwipe(reveal_str, 0, strlen(reveal_str));
|
|
tor_free(reveal_str);
|
|
}
|
|
}
|
|
|
|
/* From a valid srv object and an allocated config line, set the line's
|
|
* value to the state string representation of a shared random value. */
|
|
static void
|
|
disk_state_put_srv_line(const sr_srv_t *srv, config_line_t *line)
|
|
{
|
|
char encoded[SR_SRV_VALUE_BASE64_LEN + 1];
|
|
|
|
tor_assert(line);
|
|
|
|
/* No SRV value thus don't add the line. This is possible since we might
|
|
* not have a current or previous SRV value in our state. */
|
|
if (srv == NULL) {
|
|
return;
|
|
}
|
|
sr_srv_encode(encoded, sizeof(encoded), srv);
|
|
tor_asprintf(&line->value, "%" PRIu64 " %s", srv->num_reveals, encoded);
|
|
}
|
|
|
|
/* Reset disk state that is free allocated memory and zeroed the object. */
|
|
static void
|
|
disk_state_reset(void)
|
|
{
|
|
/* Free allocated memory */
|
|
config_free_lines(sr_disk_state->Commit);
|
|
config_free_lines(sr_disk_state->SharedRandValues);
|
|
config_free_lines(sr_disk_state->ExtraLines);
|
|
tor_free(sr_disk_state->TorVersion);
|
|
|
|
/* Clean up the struct */
|
|
memset(sr_disk_state, 0, sizeof(*sr_disk_state));
|
|
|
|
/* Reset it with useful data */
|
|
sr_disk_state->magic_ = SR_DISK_STATE_MAGIC;
|
|
sr_disk_state->TorVersion = tor_strdup(get_version());
|
|
}
|
|
|
|
/* Update our disk state based on our global SR state. */
|
|
static void
|
|
disk_state_update(void)
|
|
{
|
|
config_line_t **next, *line;
|
|
|
|
tor_assert(sr_disk_state);
|
|
tor_assert(sr_state);
|
|
|
|
/* Reset current disk state. */
|
|
disk_state_reset();
|
|
|
|
/* First, update elements that we don't need to do a construction. */
|
|
sr_disk_state->Version = sr_state->version;
|
|
sr_disk_state->ValidUntil = sr_state->valid_until;
|
|
sr_disk_state->ValidAfter = sr_state->valid_after;
|
|
|
|
/* Shared random values. */
|
|
next = &sr_disk_state->SharedRandValues;
|
|
if (sr_state->previous_srv != NULL) {
|
|
*next = line = tor_malloc_zero(sizeof(config_line_t));
|
|
line->key = tor_strdup(dstate_prev_srv_key);
|
|
disk_state_put_srv_line(sr_state->previous_srv, line);
|
|
/* Go to the next shared random value. */
|
|
next = &(line->next);
|
|
}
|
|
if (sr_state->current_srv != NULL) {
|
|
*next = line = tor_malloc_zero(sizeof(*line));
|
|
line->key = tor_strdup(dstate_cur_srv_key);
|
|
disk_state_put_srv_line(sr_state->current_srv, line);
|
|
}
|
|
|
|
/* Parse the commits and construct config line(s). */
|
|
next = &sr_disk_state->Commit;
|
|
DIGESTMAP_FOREACH(sr_state->commits, key, sr_commit_t *, commit) {
|
|
*next = line = tor_malloc_zero(sizeof(*line));
|
|
line->key = tor_strdup(dstate_commit_key);
|
|
disk_state_put_commit_line(commit, line);
|
|
next = &(line->next);
|
|
} DIGESTMAP_FOREACH_END;
|
|
}
|
|
|
|
/* Load state from disk and put it into our disk state. If the state passes
|
|
* validation, our global state will be updated with it. Return 0 on
|
|
* success. On error, -EINVAL is returned if the state on disk did contained
|
|
* something malformed or is unreadable. -ENOENT is returned indicating that
|
|
* the state file is either empty of non existing. */
|
|
static int
|
|
disk_state_load_from_disk(void)
|
|
{
|
|
int ret;
|
|
char *fname;
|
|
|
|
fname = get_datadir_fname(default_fname);
|
|
ret = disk_state_load_from_disk_impl(fname);
|
|
tor_free(fname);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Helper for disk_state_load_from_disk(). */
|
|
STATIC int
|
|
disk_state_load_from_disk_impl(const char *fname)
|
|
{
|
|
int ret;
|
|
char *content = NULL;
|
|
sr_state_t *parsed_state = NULL;
|
|
sr_disk_state_t *disk_state = NULL;
|
|
|
|
/* Read content of file so we can parse it. */
|
|
if ((content = read_file_to_str(fname, 0, NULL)) == NULL) {
|
|
log_warn(LD_FS, "SR: Unable to read SR state file %s",
|
|
escaped(fname));
|
|
ret = -errno;
|
|
goto error;
|
|
}
|
|
|
|
{
|
|
config_line_t *lines = NULL;
|
|
char *errmsg = NULL;
|
|
|
|
/* Every error in this code path will return EINVAL. */
|
|
ret = -EINVAL;
|
|
if (config_get_lines(content, &lines, 0) < 0) {
|
|
config_free_lines(lines);
|
|
goto error;
|
|
}
|
|
|
|
disk_state = disk_state_new(time(NULL));
|
|
config_assign(&state_format, disk_state, lines, 0, &errmsg);
|
|
config_free_lines(lines);
|
|
if (errmsg) {
|
|
log_warn(LD_DIR, "SR: Reading state error: %s", errmsg);
|
|
tor_free(errmsg);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* So far so good, we've loaded our state file into our disk state. Let's
|
|
* validate it and then parse it. */
|
|
if (disk_state_validate(disk_state) < 0) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
parsed_state = disk_state_parse(disk_state);
|
|
if (parsed_state == NULL) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
state_set(parsed_state);
|
|
disk_state_set(disk_state);
|
|
tor_free(content);
|
|
log_info(LD_DIR, "SR: State loaded successfully from file %s", fname);
|
|
return 0;
|
|
|
|
error:
|
|
disk_state_free(disk_state);
|
|
tor_free(content);
|
|
return ret;
|
|
}
|
|
|
|
/* Save the disk state to disk but before that update it from the current
|
|
* state so we always have the latest. Return 0 on success else -1. */
|
|
static int
|
|
disk_state_save_to_disk(void)
|
|
{
|
|
int ret;
|
|
char *state, *content = NULL, *fname = NULL;
|
|
char tbuf[ISO_TIME_LEN + 1];
|
|
time_t now = time(NULL);
|
|
|
|
/* If we didn't have the opportunity to setup an internal disk state,
|
|
* don't bother saving something to disk. */
|
|
if (sr_disk_state == NULL) {
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* Make sure that our disk state is up to date with our memory state
|
|
* before saving it to disk. */
|
|
disk_state_update();
|
|
state = config_dump(&state_format, NULL, sr_disk_state, 0, 0);
|
|
format_local_iso_time(tbuf, now);
|
|
tor_asprintf(&content,
|
|
"# Tor shared random state file last generated on %s "
|
|
"local time\n"
|
|
"# Other times below are in UTC\n"
|
|
"# Please *do not* edit this file.\n\n%s",
|
|
tbuf, state);
|
|
tor_free(state);
|
|
fname = get_datadir_fname(default_fname);
|
|
if (write_str_to_file(fname, content, 0) < 0) {
|
|
log_warn(LD_FS, "SR: Unable to write SR state to file %s", fname);
|
|
ret = -1;
|
|
goto done;
|
|
}
|
|
ret = 0;
|
|
log_debug(LD_DIR, "SR: Saved state to file %s", fname);
|
|
|
|
done:
|
|
tor_free(fname);
|
|
tor_free(content);
|
|
return ret;
|
|
}
|
|
|
|
/* Reset our state to prepare for a new protocol run. Once this returns, all
|
|
* commits in the state will be removed and freed. */
|
|
STATIC void
|
|
reset_state_for_new_protocol_run(time_t valid_after)
|
|
{
|
|
tor_assert(sr_state);
|
|
|
|
/* Keep counters in track */
|
|
sr_state->n_reveal_rounds = 0;
|
|
sr_state->n_commit_rounds = 0;
|
|
sr_state->n_protocol_runs++;
|
|
|
|
/* Reset valid-until */
|
|
sr_state->valid_until = get_state_valid_until_time(valid_after);
|
|
sr_state->valid_after = valid_after;
|
|
|
|
/* We are in a new protocol run so cleanup commits. */
|
|
sr_state_delete_commits();
|
|
}
|
|
|
|
/* This is the first round of the new protocol run starting at
|
|
* <b>valid_after</b>. Do the necessary housekeeping. */
|
|
STATIC void
|
|
new_protocol_run(time_t valid_after)
|
|
{
|
|
sr_commit_t *our_commitment = NULL;
|
|
|
|
/* Only compute the srv at the end of the reveal phase. */
|
|
if (sr_state->phase == SR_PHASE_REVEAL) {
|
|
/* We are about to compute a new shared random value that will be set in
|
|
* our state as the current value so rotate values. */
|
|
state_rotate_srv();
|
|
/* Compute the shared randomness value of the day. */
|
|
sr_compute_srv();
|
|
}
|
|
|
|
/* Prepare for the new protocol run by reseting the state */
|
|
reset_state_for_new_protocol_run(valid_after);
|
|
|
|
/* Do some logging */
|
|
log_info(LD_DIR, "SR: Protocol run #%" PRIu64 " starting!",
|
|
sr_state->n_protocol_runs);
|
|
|
|
/* Generate fresh commitments for this protocol run */
|
|
our_commitment = sr_generate_our_commit(valid_after,
|
|
get_my_v3_authority_cert());
|
|
if (our_commitment) {
|
|
/* Add our commitment to our state. In case we are unable to create one
|
|
* (highly unlikely), we won't vote for this protocol run since our
|
|
* commitment won't be in our state. */
|
|
sr_state_add_commit(our_commitment);
|
|
}
|
|
}
|
|
|
|
/* Return 1 iff the <b>next_phase</b> is a phase transition from the current
|
|
* phase that is it's different. */
|
|
STATIC int
|
|
is_phase_transition(sr_phase_t next_phase)
|
|
{
|
|
return sr_state->phase != next_phase;
|
|
}
|
|
|
|
/* Helper function: return a commit using the RSA fingerprint of the
|
|
* authority or NULL if no such commit is known. */
|
|
static sr_commit_t *
|
|
state_query_get_commit(const char *rsa_fpr)
|
|
{
|
|
tor_assert(rsa_fpr);
|
|
return digestmap_get(sr_state->commits, rsa_fpr);
|
|
}
|
|
|
|
/* Helper function: This handles the GET state action using an
|
|
* <b>obj_type</b> and <b>data</b> needed for the action. */
|
|
static void *
|
|
state_query_get_(sr_state_object_t obj_type, const void *data)
|
|
{
|
|
void *obj = NULL;
|
|
|
|
switch (obj_type) {
|
|
case SR_STATE_OBJ_COMMIT:
|
|
{
|
|
obj = state_query_get_commit(data);
|
|
break;
|
|
}
|
|
case SR_STATE_OBJ_COMMITS:
|
|
obj = sr_state->commits;
|
|
break;
|
|
case SR_STATE_OBJ_CURSRV:
|
|
obj = sr_state->current_srv;
|
|
break;
|
|
case SR_STATE_OBJ_PREVSRV:
|
|
obj = sr_state->previous_srv;
|
|
break;
|
|
case SR_STATE_OBJ_PHASE:
|
|
obj = &sr_state->phase;
|
|
break;
|
|
case SR_STATE_OBJ_VALID_AFTER:
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
/* Helper function: This handles the PUT state action using an
|
|
* <b>obj_type</b> and <b>data</b> needed for the action. */
|
|
static void
|
|
state_query_put_(sr_state_object_t obj_type, void *data)
|
|
{
|
|
switch (obj_type) {
|
|
case SR_STATE_OBJ_COMMIT:
|
|
{
|
|
sr_commit_t *commit = data;
|
|
tor_assert(commit);
|
|
commit_add_to_state(commit, sr_state);
|
|
break;
|
|
}
|
|
case SR_STATE_OBJ_CURSRV:
|
|
sr_state->current_srv = (sr_srv_t *) data;
|
|
break;
|
|
case SR_STATE_OBJ_PREVSRV:
|
|
sr_state->previous_srv = (sr_srv_t *) data;
|
|
break;
|
|
case SR_STATE_OBJ_VALID_AFTER:
|
|
sr_state->valid_after = *((time_t *) data);
|
|
break;
|
|
/* It's not allowed to change the phase nor the full commitments map from
|
|
* the state. The phase is decided during a strict process post voting and
|
|
* the commits should be put individually. */
|
|
case SR_STATE_OBJ_PHASE:
|
|
case SR_STATE_OBJ_COMMITS:
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
}
|
|
|
|
/* Helper function: This handles the DEL_ALL state action using an
|
|
* <b>obj_type</b> and <b>data</b> needed for the action. */
|
|
static void
|
|
state_query_del_all_(sr_state_object_t obj_type)
|
|
{
|
|
switch (obj_type) {
|
|
case SR_STATE_OBJ_COMMIT:
|
|
{
|
|
/* We are in a new protocol run so cleanup commitments. */
|
|
DIGESTMAP_FOREACH_MODIFY(sr_state->commits, key, sr_commit_t *, c) {
|
|
sr_commit_free(c);
|
|
MAP_DEL_CURRENT(key);
|
|
} DIGESTMAP_FOREACH_END;
|
|
break;
|
|
}
|
|
/* The following object are _NOT_ suppose to be removed. */
|
|
case SR_STATE_OBJ_CURSRV:
|
|
case SR_STATE_OBJ_PREVSRV:
|
|
case SR_STATE_OBJ_PHASE:
|
|
case SR_STATE_OBJ_COMMITS:
|
|
case SR_STATE_OBJ_VALID_AFTER:
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
}
|
|
|
|
/* Helper function: This handles the DEL state action using an
|
|
* <b>obj_type</b> and <b>data</b> needed for the action. */
|
|
static void
|
|
state_query_del_(sr_state_object_t obj_type, void *data)
|
|
{
|
|
(void) data;
|
|
|
|
switch (obj_type) {
|
|
case SR_STATE_OBJ_PREVSRV:
|
|
tor_free(sr_state->previous_srv);
|
|
break;
|
|
case SR_STATE_OBJ_CURSRV:
|
|
tor_free(sr_state->current_srv);
|
|
break;
|
|
case SR_STATE_OBJ_COMMIT:
|
|
case SR_STATE_OBJ_COMMITS:
|
|
case SR_STATE_OBJ_PHASE:
|
|
case SR_STATE_OBJ_VALID_AFTER:
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
}
|
|
|
|
/* Query state using an <b>action</b> for an object type <b>obj_type</b>.
|
|
* The <b>data</b> pointer needs to point to an object that the action needs
|
|
* to use and if anything is required to be returned, it is stored in
|
|
* <b>out</b>.
|
|
*
|
|
* This mechanism exists so we have one single point where we synchronized
|
|
* our memory state with our disk state for every actions that changes it.
|
|
* We then trigger a write on disk immediately.
|
|
*
|
|
* This should be the only entry point to our memory state. It's used by all
|
|
* our state accessors and should be in the future. */
|
|
static void
|
|
state_query(sr_state_action_t action, sr_state_object_t obj_type,
|
|
void *data, void **out)
|
|
{
|
|
switch (action) {
|
|
case SR_STATE_ACTION_GET:
|
|
*out = state_query_get_(obj_type, data);
|
|
break;
|
|
case SR_STATE_ACTION_PUT:
|
|
state_query_put_(obj_type, data);
|
|
break;
|
|
case SR_STATE_ACTION_DEL:
|
|
state_query_del_(obj_type, data);
|
|
break;
|
|
case SR_STATE_ACTION_DEL_ALL:
|
|
state_query_del_all_(obj_type);
|
|
break;
|
|
case SR_STATE_ACTION_SAVE:
|
|
/* Only trigger a disk state save. */
|
|
break;
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
|
|
/* If the action actually changes the state, immediately save it to disk.
|
|
* The following will sync the state -> disk state and then save it. */
|
|
if (action != SR_STATE_ACTION_GET) {
|
|
disk_state_save_to_disk();
|
|
}
|
|
}
|
|
|
|
/* Delete the current SRV value from the state freeing it and the value is set
|
|
* to NULL meaning empty. */
|
|
static void
|
|
state_del_current_srv(void)
|
|
{
|
|
state_query(SR_STATE_ACTION_DEL, SR_STATE_OBJ_CURSRV, NULL, NULL);
|
|
}
|
|
|
|
/* Delete the previous SRV value from the state freeing it and the value is
|
|
* set to NULL meaning empty. */
|
|
static void
|
|
state_del_previous_srv(void)
|
|
{
|
|
state_query(SR_STATE_ACTION_DEL, SR_STATE_OBJ_PREVSRV, NULL, NULL);
|
|
}
|
|
|
|
/* Rotate SRV value by freeing the previous value, assigning the current
|
|
* value to the previous one and nullifying the current one. */
|
|
STATIC void
|
|
state_rotate_srv(void)
|
|
{
|
|
/* First delete previous SRV from the state. Object will be freed. */
|
|
state_del_previous_srv();
|
|
/* Set previous SRV with the current one. */
|
|
sr_state_set_previous_srv(sr_state_get_current_srv());
|
|
/* Nullify the current srv. */
|
|
sr_state_set_current_srv(NULL);
|
|
}
|
|
|
|
/* Set valid after time in the our state. */
|
|
void
|
|
sr_state_set_valid_after(time_t valid_after)
|
|
{
|
|
state_query(SR_STATE_ACTION_PUT, SR_STATE_OBJ_VALID_AFTER,
|
|
(void *) &valid_after, NULL);
|
|
}
|
|
|
|
/* Return the phase we are currently in according to our state. */
|
|
sr_phase_t
|
|
sr_state_get_phase(void)
|
|
{
|
|
void *ptr;
|
|
state_query(SR_STATE_ACTION_GET, SR_STATE_OBJ_PHASE, NULL, &ptr);
|
|
return *(sr_phase_t *) ptr;
|
|
}
|
|
|
|
/* Return the previous SRV value from our state. Value CAN be NULL. */
|
|
const sr_srv_t *
|
|
sr_state_get_previous_srv(void)
|
|
{
|
|
const sr_srv_t *srv;
|
|
state_query(SR_STATE_ACTION_GET, SR_STATE_OBJ_PREVSRV, NULL,
|
|
(void *) &srv);
|
|
return srv;
|
|
}
|
|
|
|
/* Set the current SRV value from our state. Value CAN be NULL. The srv
|
|
* object ownership is transfered to the state object. */
|
|
void
|
|
sr_state_set_previous_srv(const sr_srv_t *srv)
|
|
{
|
|
state_query(SR_STATE_ACTION_PUT, SR_STATE_OBJ_PREVSRV, (void *) srv,
|
|
NULL);
|
|
}
|
|
|
|
/* Return the current SRV value from our state. Value CAN be NULL. */
|
|
const sr_srv_t *
|
|
sr_state_get_current_srv(void)
|
|
{
|
|
const sr_srv_t *srv;
|
|
state_query(SR_STATE_ACTION_GET, SR_STATE_OBJ_CURSRV, NULL,
|
|
(void *) &srv);
|
|
return srv;
|
|
}
|
|
|
|
/* Set the current SRV value from our state. Value CAN be NULL. The srv
|
|
* object ownership is transfered to the state object. */
|
|
void
|
|
sr_state_set_current_srv(const sr_srv_t *srv)
|
|
{
|
|
state_query(SR_STATE_ACTION_PUT, SR_STATE_OBJ_CURSRV, (void *) srv,
|
|
NULL);
|
|
}
|
|
|
|
/* Clean all the SRVs in our state. */
|
|
void
|
|
sr_state_clean_srvs(void)
|
|
{
|
|
/* Remove SRVs from state. They will be set to NULL as "empty". */
|
|
state_del_previous_srv();
|
|
state_del_current_srv();
|
|
}
|
|
|
|
/* Return a pointer to the commits map from our state. CANNOT be NULL. */
|
|
digestmap_t *
|
|
sr_state_get_commits(void)
|
|
{
|
|
digestmap_t *commits;
|
|
state_query(SR_STATE_ACTION_GET, SR_STATE_OBJ_COMMITS,
|
|
NULL, (void *) &commits);
|
|
tor_assert(commits);
|
|
return commits;
|
|
}
|
|
|
|
/* Update the current SR state as needed for the upcoming voting round at
|
|
* <b>valid_after</b>. */
|
|
void
|
|
sr_state_update(time_t valid_after)
|
|
{
|
|
sr_phase_t next_phase;
|
|
|
|
tor_assert(sr_state);
|
|
|
|
/* Don't call this function twice in the same voting period. */
|
|
if (valid_after <= sr_state->valid_after) {
|
|
log_info(LD_DIR, "SR: Asked to update state twice. Ignoring.");
|
|
return;
|
|
}
|
|
|
|
/* Get phase of upcoming round. */
|
|
next_phase = get_sr_protocol_phase(valid_after);
|
|
|
|
/* If we are transitioning to a new protocol phase, prepare the stage. */
|
|
if (is_phase_transition(next_phase)) {
|
|
if (next_phase == SR_PHASE_COMMIT) {
|
|
/* Going into commit phase means we are starting a new protocol run. */
|
|
new_protocol_run(valid_after);
|
|
}
|
|
/* Set the new phase for this round */
|
|
sr_state->phase = next_phase;
|
|
} else if (sr_state->phase == SR_PHASE_COMMIT &&
|
|
digestmap_size(sr_state->commits) == 0) {
|
|
/* We are _NOT_ in a transition phase so if we are in the commit phase
|
|
* and have no commit, generate one. Chances are that we are booting up
|
|
* so let's have a commit in our state for the next voting period. */
|
|
sr_commit_t *our_commit =
|
|
sr_generate_our_commit(valid_after, get_my_v3_authority_cert());
|
|
if (our_commit) {
|
|
/* Add our commitment to our state. In case we are unable to create one
|
|
* (highly unlikely), we won't vote for this protocol run since our
|
|
* commitment won't be in our state. */
|
|
sr_state_add_commit(our_commit);
|
|
}
|
|
}
|
|
|
|
sr_state_set_valid_after(valid_after);
|
|
|
|
/* Count the current round */
|
|
if (sr_state->phase == SR_PHASE_COMMIT) {
|
|
/* invariant check: we've not entered reveal phase yet */
|
|
tor_assert(sr_state->n_reveal_rounds == 0);
|
|
sr_state->n_commit_rounds++;
|
|
} else {
|
|
sr_state->n_reveal_rounds++;
|
|
}
|
|
|
|
{ /* Debugging. */
|
|
char tbuf[ISO_TIME_LEN + 1];
|
|
format_iso_time(tbuf, valid_after);
|
|
log_info(LD_DIR, "SR: State prepared for upcoming voting period (%s). "
|
|
"Upcoming phase is %s (counters: %d commit & %d reveal rounds).",
|
|
tbuf, get_phase_str(sr_state->phase),
|
|
sr_state->n_commit_rounds, sr_state->n_reveal_rounds);
|
|
}
|
|
}
|
|
|
|
/* Return commit object from the given authority digest <b>rsa_identity</b>.
|
|
* Return NULL if not found. */
|
|
sr_commit_t *
|
|
sr_state_get_commit(const char *rsa_identity)
|
|
{
|
|
sr_commit_t *commit;
|
|
|
|
tor_assert(rsa_identity);
|
|
|
|
state_query(SR_STATE_ACTION_GET, SR_STATE_OBJ_COMMIT,
|
|
(void *) rsa_identity, (void *) &commit);
|
|
return commit;
|
|
}
|
|
|
|
/* Add <b>commit</b> to the permanent state. The commit object ownership is
|
|
* transfered to the state so the caller MUST not free it. */
|
|
void
|
|
sr_state_add_commit(sr_commit_t *commit)
|
|
{
|
|
tor_assert(commit);
|
|
|
|
/* Put the commit to the global state. */
|
|
state_query(SR_STATE_ACTION_PUT, SR_STATE_OBJ_COMMIT,
|
|
(void *) commit, NULL);
|
|
|
|
log_debug(LD_DIR, "SR: Commit from %s has been added to our state.",
|
|
sr_commit_get_rsa_fpr(commit));
|
|
}
|
|
|
|
/* Remove all commits from our state. */
|
|
void
|
|
sr_state_delete_commits(void)
|
|
{
|
|
state_query(SR_STATE_ACTION_DEL_ALL, SR_STATE_OBJ_COMMIT, NULL, NULL);
|
|
}
|
|
|
|
/* Copy the reveal information from <b>commit</b> into <b>saved_commit</b>.
|
|
* This <b>saved_commit</b> MUST come from our current SR state. Once modified,
|
|
* the disk state is updated. */
|
|
void
|
|
sr_state_copy_reveal_info(sr_commit_t *saved_commit, const sr_commit_t *commit)
|
|
{
|
|
tor_assert(saved_commit);
|
|
tor_assert(commit);
|
|
|
|
saved_commit->reveal_ts = commit->reveal_ts;
|
|
memcpy(saved_commit->random_number, commit->random_number,
|
|
sizeof(saved_commit->random_number));
|
|
|
|
strlcpy(saved_commit->encoded_reveal, commit->encoded_reveal,
|
|
sizeof(saved_commit->encoded_reveal));
|
|
state_query(SR_STATE_ACTION_SAVE, 0, NULL, NULL);
|
|
log_debug(LD_DIR, "SR: Reveal value learned %s (for commit %s) from %s",
|
|
saved_commit->encoded_reveal, saved_commit->encoded_commit,
|
|
sr_commit_get_rsa_fpr(saved_commit));
|
|
}
|
|
|
|
/* Set the fresh SRV flag from our state. This doesn't need to trigger a
|
|
* disk state synchronization so we directly change the state. */
|
|
void
|
|
sr_state_set_fresh_srv(void)
|
|
{
|
|
sr_state->is_srv_fresh = 1;
|
|
}
|
|
|
|
/* Unset the fresh SRV flag from our state. This doesn't need to trigger a
|
|
* disk state synchronization so we directly change the state. */
|
|
void
|
|
sr_state_unset_fresh_srv(void)
|
|
{
|
|
sr_state->is_srv_fresh = 0;
|
|
}
|
|
|
|
/* Return the value of the fresh SRV flag. */
|
|
unsigned int
|
|
sr_state_srv_is_fresh(void)
|
|
{
|
|
return sr_state->is_srv_fresh;
|
|
}
|
|
|
|
/* Cleanup and free our disk and memory state. */
|
|
void
|
|
sr_state_free(void)
|
|
{
|
|
state_free(sr_state);
|
|
disk_state_free(sr_disk_state);
|
|
/* Nullify our global state. */
|
|
sr_state = NULL;
|
|
sr_disk_state = NULL;
|
|
}
|
|
|
|
/* Save our current state in memory to disk. */
|
|
void
|
|
sr_state_save(void)
|
|
{
|
|
/* Query a SAVE action on our current state so it's synced and saved. */
|
|
state_query(SR_STATE_ACTION_SAVE, 0, NULL, NULL);
|
|
}
|
|
|
|
/* Return 1 iff the state has been initialized that is it exists in memory.
|
|
* Return 0 otherwise. */
|
|
int
|
|
sr_state_is_initialized(void)
|
|
{
|
|
return sr_state == NULL ? 0 : 1;
|
|
}
|
|
|
|
/* Initialize the disk and memory state.
|
|
*
|
|
* If save_to_disk is set to 1, the state is immediately saved to disk after
|
|
* creation else it's not thus only kept in memory.
|
|
* If read_from_disk is set to 1, we try to load the state from the disk and
|
|
* if not found, a new state is created.
|
|
*
|
|
* Return 0 on success else a negative value on error. */
|
|
int
|
|
sr_state_init(int save_to_disk, int read_from_disk)
|
|
{
|
|
int ret = -ENOENT;
|
|
time_t now = time(NULL);
|
|
|
|
/* We shouldn't have those assigned. */
|
|
tor_assert(sr_disk_state == NULL);
|
|
tor_assert(sr_state == NULL);
|
|
|
|
/* First, try to load the state from disk. */
|
|
if (read_from_disk) {
|
|
ret = disk_state_load_from_disk();
|
|
}
|
|
|
|
if (ret < 0) {
|
|
switch (-ret) {
|
|
case EINVAL:
|
|
/* We have a state on disk but it contains something we couldn't parse
|
|
* or an invalid entry in the state file. Let's remove it since it's
|
|
* obviously unusable and replace it by an new fresh state below. */
|
|
case ENOENT:
|
|
{
|
|
/* No state on disk so allocate our states for the first time. */
|
|
sr_state_t *new_state = state_new(default_fname, now);
|
|
sr_disk_state_t *new_disk_state = disk_state_new(now);
|
|
state_set(new_state);
|
|
/* It's important to set our disk state pointer since the save call
|
|
* below uses it to synchronized it with our memory state. */
|
|
disk_state_set(new_disk_state);
|
|
/* No entry, let's save our new state to disk. */
|
|
if (save_to_disk && disk_state_save_to_disk() < 0) {
|
|
goto error;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
/* Big problem. Not possible. */
|
|
tor_assert(0);
|
|
}
|
|
}
|
|
/* We have a state in memory, let's make sure it's updated for the current
|
|
* and next voting round. */
|
|
{
|
|
time_t valid_after = dirvote_get_next_valid_after_time();
|
|
sr_state_update(valid_after);
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
|
|
/* Set the current phase of the protocol. Used only by unit tests. */
|
|
void
|
|
set_sr_phase(sr_phase_t phase)
|
|
{
|
|
tor_assert(sr_state);
|
|
sr_state->phase = phase;
|
|
}
|
|
|
|
/* Get the SR state. Used only by unit tests */
|
|
sr_state_t *
|
|
get_sr_state(void)
|
|
{
|
|
return sr_state;
|
|
}
|
|
|
|
#endif /* defined(TOR_UNIT_TESTS) */
|
|
|