mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
7d3fd85838
This couldn't actually be a buffer overrun unless AES somehow turned into memcpy, but still it's good to fix it.
1154 lines
39 KiB
C
1154 lines
39 KiB
C
/* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2013, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
#include "orconfig.h"
|
|
#define CRYPTO_PRIVATE
|
|
#define CRYPTO_CURVE25519_PRIVATE
|
|
#include "or.h"
|
|
#include "test.h"
|
|
#include "aes.h"
|
|
#include "util.h"
|
|
#ifdef CURVE25519_ENABLED
|
|
#include "crypto_curve25519.h"
|
|
#endif
|
|
|
|
/** Run unit tests for Diffie-Hellman functionality. */
|
|
static void
|
|
test_crypto_dh(void)
|
|
{
|
|
crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
|
|
crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
|
|
char p1[DH_BYTES];
|
|
char p2[DH_BYTES];
|
|
char s1[DH_BYTES];
|
|
char s2[DH_BYTES];
|
|
ssize_t s1len, s2len;
|
|
|
|
test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
|
|
test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
|
|
|
|
memset(p1, 0, DH_BYTES);
|
|
memset(p2, 0, DH_BYTES);
|
|
test_memeq(p1, p2, DH_BYTES);
|
|
test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
|
|
test_memneq(p1, p2, DH_BYTES);
|
|
test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
|
|
test_memneq(p1, p2, DH_BYTES);
|
|
|
|
memset(s1, 0, DH_BYTES);
|
|
memset(s2, 0xFF, DH_BYTES);
|
|
s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
|
|
s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
|
|
test_assert(s1len > 0);
|
|
test_eq(s1len, s2len);
|
|
test_memeq(s1, s2, s1len);
|
|
|
|
{
|
|
/* XXXX Now fabricate some bad values and make sure they get caught,
|
|
* Check 0, 1, N-1, >= N, etc.
|
|
*/
|
|
}
|
|
|
|
done:
|
|
crypto_dh_free(dh1);
|
|
crypto_dh_free(dh2);
|
|
}
|
|
|
|
/** Run unit tests for our random number generation function and its wrappers.
|
|
*/
|
|
static void
|
|
test_crypto_rng(void)
|
|
{
|
|
int i, j, allok;
|
|
char data1[100], data2[100];
|
|
double d;
|
|
|
|
/* Try out RNG. */
|
|
test_assert(! crypto_seed_rng(0));
|
|
crypto_rand(data1, 100);
|
|
crypto_rand(data2, 100);
|
|
test_memneq(data1,data2,100);
|
|
allok = 1;
|
|
for (i = 0; i < 100; ++i) {
|
|
uint64_t big;
|
|
char *host;
|
|
j = crypto_rand_int(100);
|
|
if (j < 0 || j >= 100)
|
|
allok = 0;
|
|
big = crypto_rand_uint64(U64_LITERAL(1)<<40);
|
|
if (big >= (U64_LITERAL(1)<<40))
|
|
allok = 0;
|
|
big = crypto_rand_uint64(U64_LITERAL(5));
|
|
if (big >= 5)
|
|
allok = 0;
|
|
d = crypto_rand_double();
|
|
test_assert(d >= 0);
|
|
test_assert(d < 1.0);
|
|
host = crypto_random_hostname(3,8,"www.",".onion");
|
|
if (strcmpstart(host,"www.") ||
|
|
strcmpend(host,".onion") ||
|
|
strlen(host) < 13 ||
|
|
strlen(host) > 18)
|
|
allok = 0;
|
|
tor_free(host);
|
|
}
|
|
test_assert(allok);
|
|
done:
|
|
;
|
|
}
|
|
|
|
/** Run unit tests for our AES functionality */
|
|
static void
|
|
test_crypto_aes(void *arg)
|
|
{
|
|
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
|
|
crypto_cipher_t *env1 = NULL, *env2 = NULL;
|
|
int i, j;
|
|
char *mem_op_hex_tmp=NULL;
|
|
|
|
int use_evp = !strcmp(arg,"evp");
|
|
evaluate_evp_for_aes(use_evp);
|
|
evaluate_ctr_for_aes();
|
|
|
|
data1 = tor_malloc(1024);
|
|
data2 = tor_malloc(1024);
|
|
data3 = tor_malloc(1024);
|
|
|
|
/* Now, test encryption and decryption with stream cipher. */
|
|
data1[0]='\0';
|
|
for (i = 1023; i>0; i -= 35)
|
|
strncat(data1, "Now is the time for all good onions", i);
|
|
|
|
memset(data2, 0, 1024);
|
|
memset(data3, 0, 1024);
|
|
env1 = crypto_cipher_new(NULL);
|
|
test_neq_ptr(env1, 0);
|
|
env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
|
|
test_neq_ptr(env2, 0);
|
|
|
|
/* Try encrypting 512 chars. */
|
|
crypto_cipher_encrypt(env1, data2, data1, 512);
|
|
crypto_cipher_decrypt(env2, data3, data2, 512);
|
|
test_memeq(data1, data3, 512);
|
|
test_memneq(data1, data2, 512);
|
|
|
|
/* Now encrypt 1 at a time, and get 1 at a time. */
|
|
for (j = 512; j < 560; ++j) {
|
|
crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
|
|
}
|
|
for (j = 512; j < 560; ++j) {
|
|
crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
|
|
}
|
|
test_memeq(data1, data3, 560);
|
|
/* Now encrypt 3 at a time, and get 5 at a time. */
|
|
for (j = 560; j < 1024-5; j += 3) {
|
|
crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
|
|
}
|
|
for (j = 560; j < 1024-5; j += 5) {
|
|
crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
|
|
}
|
|
test_memeq(data1, data3, 1024-5);
|
|
/* Now make sure that when we encrypt with different chunk sizes, we get
|
|
the same results. */
|
|
crypto_cipher_free(env2);
|
|
env2 = NULL;
|
|
|
|
memset(data3, 0, 1024);
|
|
env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
|
|
test_neq_ptr(env2, NULL);
|
|
for (j = 0; j < 1024-16; j += 17) {
|
|
crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
|
|
}
|
|
for (j= 0; j < 1024-16; ++j) {
|
|
if (data2[j] != data3[j]) {
|
|
printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
|
|
}
|
|
}
|
|
test_memeq(data2, data3, 1024-16);
|
|
crypto_cipher_free(env1);
|
|
env1 = NULL;
|
|
crypto_cipher_free(env2);
|
|
env2 = NULL;
|
|
|
|
/* NIST test vector for aes. */
|
|
/* IV starts at 0 */
|
|
env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00");
|
|
crypto_cipher_encrypt(env1, data1,
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00", 16);
|
|
test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
|
|
|
|
/* Now test rollover. All these values are originally from a python
|
|
* script. */
|
|
crypto_cipher_free(env1);
|
|
env1 = crypto_cipher_new_with_iv(
|
|
"\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00",
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff");
|
|
memset(data2, 0, 1024);
|
|
crypto_cipher_encrypt(env1, data1, data2, 32);
|
|
test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
|
|
"cdd0b917dbc7186908a6bfb5ffd574d3");
|
|
crypto_cipher_free(env1);
|
|
env1 = crypto_cipher_new_with_iv(
|
|
"\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00",
|
|
"\x00\x00\x00\x00\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff");
|
|
memset(data2, 0, 1024);
|
|
crypto_cipher_encrypt(env1, data1, data2, 32);
|
|
test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
|
|
"3e63c721df790d2c6469cc1953a3ffac");
|
|
crypto_cipher_free(env1);
|
|
env1 = crypto_cipher_new_with_iv(
|
|
"\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00",
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff");
|
|
memset(data2, 0, 1024);
|
|
crypto_cipher_encrypt(env1, data1, data2, 32);
|
|
test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
|
|
"0EDD33D3C621E546455BD8BA1418BEC8");
|
|
|
|
/* Now check rollover on inplace cipher. */
|
|
crypto_cipher_free(env1);
|
|
env1 = crypto_cipher_new_with_iv(
|
|
"\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00",
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff");
|
|
crypto_cipher_crypt_inplace(env1, data2, 64);
|
|
test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
|
|
"0EDD33D3C621E546455BD8BA1418BEC8"
|
|
"93e2c5243d6839eac58503919192f7ae"
|
|
"1908e67cafa08d508816659c2e693191");
|
|
crypto_cipher_free(env1);
|
|
env1 = crypto_cipher_new_with_iv(
|
|
"\x80\x00\x00\x00\x00\x00\x00\x00"
|
|
"\x00\x00\x00\x00\x00\x00\x00\x00",
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
"\xff\xff\xff\xff\xff\xff\xff\xff");
|
|
crypto_cipher_crypt_inplace(env1, data2, 64);
|
|
test_assert(tor_mem_is_zero(data2, 64));
|
|
|
|
done:
|
|
tor_free(mem_op_hex_tmp);
|
|
if (env1)
|
|
crypto_cipher_free(env1);
|
|
if (env2)
|
|
crypto_cipher_free(env2);
|
|
tor_free(data1);
|
|
tor_free(data2);
|
|
tor_free(data3);
|
|
}
|
|
|
|
/** Run unit tests for our SHA-1 functionality */
|
|
static void
|
|
test_crypto_sha(void)
|
|
{
|
|
crypto_digest_t *d1 = NULL, *d2 = NULL;
|
|
int i;
|
|
char key[160];
|
|
char digest[32];
|
|
char data[50];
|
|
char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
|
|
char *mem_op_hex_tmp=NULL;
|
|
|
|
/* Test SHA-1 with a test vector from the specification. */
|
|
i = crypto_digest(data, "abc", 3);
|
|
test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
|
|
tt_int_op(i, ==, 0);
|
|
|
|
/* Test SHA-256 with a test vector from the specification. */
|
|
i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
|
|
test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
|
|
"96177A9CB410FF61F20015AD");
|
|
tt_int_op(i, ==, 0);
|
|
|
|
/* Test HMAC-SHA-1 with test cases from RFC2202. */
|
|
|
|
/* Case 1. */
|
|
memset(key, 0x0b, 20);
|
|
crypto_hmac_sha1(digest, key, 20, "Hi There", 8);
|
|
test_streq(hex_str(digest, 20),
|
|
"B617318655057264E28BC0B6FB378C8EF146BE00");
|
|
/* Case 2. */
|
|
crypto_hmac_sha1(digest, "Jefe", 4, "what do ya want for nothing?", 28);
|
|
test_streq(hex_str(digest, 20),
|
|
"EFFCDF6AE5EB2FA2D27416D5F184DF9C259A7C79");
|
|
|
|
/* Case 4. */
|
|
base16_decode(key, 25,
|
|
"0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
|
|
memset(data, 0xcd, 50);
|
|
crypto_hmac_sha1(digest, key, 25, data, 50);
|
|
test_streq(hex_str(digest, 20),
|
|
"4C9007F4026250C6BC8414F9BF50C86C2D7235DA");
|
|
|
|
/* Case 5. */
|
|
memset(key, 0xaa, 80);
|
|
crypto_hmac_sha1(digest, key, 80,
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
54);
|
|
test_streq(hex_str(digest, 20),
|
|
"AA4AE5E15272D00E95705637CE8A3B55ED402112");
|
|
|
|
/* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
|
|
|
|
/* Case empty (wikipedia) */
|
|
crypto_hmac_sha256(digest, "", 0, "", 0);
|
|
test_streq(hex_str(digest, 32),
|
|
"B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
|
|
|
|
/* Case quick-brown (wikipedia) */
|
|
crypto_hmac_sha256(digest, "key", 3,
|
|
"The quick brown fox jumps over the lazy dog", 43);
|
|
test_streq(hex_str(digest, 32),
|
|
"F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
|
|
|
|
/* "Test Case 1" from RFC 4231 */
|
|
memset(key, 0x0b, 20);
|
|
crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
|
|
test_memeq_hex(digest,
|
|
"b0344c61d8db38535ca8afceaf0bf12b"
|
|
"881dc200c9833da726e9376c2e32cff7");
|
|
|
|
/* "Test Case 2" from RFC 4231 */
|
|
memset(key, 0x0b, 20);
|
|
crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
|
|
test_memeq_hex(digest,
|
|
"5bdcc146bf60754e6a042426089575c7"
|
|
"5a003f089d2739839dec58b964ec3843");
|
|
|
|
/* "Test case 3" from RFC 4231 */
|
|
memset(key, 0xaa, 20);
|
|
memset(data, 0xdd, 50);
|
|
crypto_hmac_sha256(digest, key, 20, data, 50);
|
|
test_memeq_hex(digest,
|
|
"773ea91e36800e46854db8ebd09181a7"
|
|
"2959098b3ef8c122d9635514ced565fe");
|
|
|
|
/* "Test case 4" from RFC 4231 */
|
|
base16_decode(key, 25,
|
|
"0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
|
|
memset(data, 0xcd, 50);
|
|
crypto_hmac_sha256(digest, key, 25, data, 50);
|
|
test_memeq_hex(digest,
|
|
"82558a389a443c0ea4cc819899f2083a"
|
|
"85f0faa3e578f8077a2e3ff46729665b");
|
|
|
|
/* "Test case 5" from RFC 4231 */
|
|
memset(key, 0x0c, 20);
|
|
crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
|
|
test_memeq_hex(digest,
|
|
"a3b6167473100ee06e0c796c2955552b");
|
|
|
|
/* "Test case 6" from RFC 4231 */
|
|
memset(key, 0xaa, 131);
|
|
crypto_hmac_sha256(digest, key, 131,
|
|
"Test Using Larger Than Block-Size Key - Hash Key First",
|
|
54);
|
|
test_memeq_hex(digest,
|
|
"60e431591ee0b67f0d8a26aacbf5b77f"
|
|
"8e0bc6213728c5140546040f0ee37f54");
|
|
|
|
/* "Test case 7" from RFC 4231 */
|
|
memset(key, 0xaa, 131);
|
|
crypto_hmac_sha256(digest, key, 131,
|
|
"This is a test using a larger than block-size key and a "
|
|
"larger than block-size data. The key needs to be hashed "
|
|
"before being used by the HMAC algorithm.", 152);
|
|
test_memeq_hex(digest,
|
|
"9b09ffa71b942fcb27635fbcd5b0e944"
|
|
"bfdc63644f0713938a7f51535c3a35e2");
|
|
|
|
/* Incremental digest code. */
|
|
d1 = crypto_digest_new();
|
|
test_assert(d1);
|
|
crypto_digest_add_bytes(d1, "abcdef", 6);
|
|
d2 = crypto_digest_dup(d1);
|
|
test_assert(d2);
|
|
crypto_digest_add_bytes(d2, "ghijkl", 6);
|
|
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
|
|
crypto_digest(d_out2, "abcdefghijkl", 12);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
crypto_digest_assign(d2, d1);
|
|
crypto_digest_add_bytes(d2, "mno", 3);
|
|
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
|
|
crypto_digest(d_out2, "abcdefmno", 9);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
|
|
crypto_digest(d_out2, "abcdef", 6);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
crypto_digest_free(d1);
|
|
crypto_digest_free(d2);
|
|
|
|
/* Incremental digest code with sha256 */
|
|
d1 = crypto_digest256_new(DIGEST_SHA256);
|
|
test_assert(d1);
|
|
crypto_digest_add_bytes(d1, "abcdef", 6);
|
|
d2 = crypto_digest_dup(d1);
|
|
test_assert(d2);
|
|
crypto_digest_add_bytes(d2, "ghijkl", 6);
|
|
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
|
|
crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
crypto_digest_assign(d2, d1);
|
|
crypto_digest_add_bytes(d2, "mno", 3);
|
|
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
|
|
crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
|
|
crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
|
|
test_memeq(d_out1, d_out2, DIGEST_LEN);
|
|
|
|
done:
|
|
if (d1)
|
|
crypto_digest_free(d1);
|
|
if (d2)
|
|
crypto_digest_free(d2);
|
|
tor_free(mem_op_hex_tmp);
|
|
}
|
|
|
|
/** Run unit tests for our public key crypto functions */
|
|
static void
|
|
test_crypto_pk(void)
|
|
{
|
|
crypto_pk_t *pk1 = NULL, *pk2 = NULL;
|
|
char *encoded = NULL;
|
|
char data1[1024], data2[1024], data3[1024];
|
|
size_t size;
|
|
int i, j, p, len;
|
|
|
|
/* Public-key ciphers */
|
|
pk1 = pk_generate(0);
|
|
pk2 = crypto_pk_new();
|
|
test_assert(pk1 && pk2);
|
|
test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
|
|
test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
|
|
test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
|
|
|
|
/* comparison between keys and NULL */
|
|
tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
|
|
tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
|
|
tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
|
|
|
|
test_eq(128, crypto_pk_keysize(pk1));
|
|
test_eq(1024, crypto_pk_num_bits(pk1));
|
|
test_eq(128, crypto_pk_keysize(pk2));
|
|
test_eq(1024, crypto_pk_num_bits(pk2));
|
|
|
|
test_eq(128, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
|
|
"Hello whirled.", 15,
|
|
PK_PKCS1_OAEP_PADDING));
|
|
test_eq(128, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
|
|
"Hello whirled.", 15,
|
|
PK_PKCS1_OAEP_PADDING));
|
|
/* oaep padding should make encryption not match */
|
|
test_memneq(data1, data2, 128);
|
|
test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
|
|
PK_PKCS1_OAEP_PADDING,1));
|
|
test_streq(data3, "Hello whirled.");
|
|
memset(data3, 0, 1024);
|
|
test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
|
|
PK_PKCS1_OAEP_PADDING,1));
|
|
test_streq(data3, "Hello whirled.");
|
|
/* Can't decrypt with public key. */
|
|
test_eq(-1, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
|
|
PK_PKCS1_OAEP_PADDING,1));
|
|
/* Try again with bad padding */
|
|
memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
|
|
test_eq(-1, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
|
|
PK_PKCS1_OAEP_PADDING,1));
|
|
|
|
/* File operations: save and load private key */
|
|
test_assert(! crypto_pk_write_private_key_to_filename(pk1,
|
|
get_fname("pkey1")));
|
|
/* failing case for read: can't read. */
|
|
test_assert(crypto_pk_read_private_key_from_filename(pk2,
|
|
get_fname("xyzzy")) < 0);
|
|
write_str_to_file(get_fname("xyzzy"), "foobar", 6);
|
|
/* Failing case for read: no key. */
|
|
test_assert(crypto_pk_read_private_key_from_filename(pk2,
|
|
get_fname("xyzzy")) < 0);
|
|
test_assert(! crypto_pk_read_private_key_from_filename(pk2,
|
|
get_fname("pkey1")));
|
|
test_eq(15, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
|
|
PK_PKCS1_OAEP_PADDING,1));
|
|
|
|
/* Now try signing. */
|
|
strlcpy(data1, "Ossifrage", 1024);
|
|
test_eq(128, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
|
|
test_eq(10,
|
|
crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
|
|
test_streq(data3, "Ossifrage");
|
|
/* Try signing digests. */
|
|
test_eq(128, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
|
|
data1, 10));
|
|
test_eq(20,
|
|
crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
|
|
test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
|
|
test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
|
|
|
|
/*XXXX test failed signing*/
|
|
|
|
/* Try encoding */
|
|
crypto_pk_free(pk2);
|
|
pk2 = NULL;
|
|
i = crypto_pk_asn1_encode(pk1, data1, 1024);
|
|
test_assert(i>0);
|
|
pk2 = crypto_pk_asn1_decode(data1, i);
|
|
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
|
|
|
|
/* Try with hybrid encryption wrappers. */
|
|
crypto_rand(data1, 1024);
|
|
for (i = 0; i < 2; ++i) {
|
|
for (j = 85; j < 140; ++j) {
|
|
memset(data2,0,1024);
|
|
memset(data3,0,1024);
|
|
p = (i==0)?PK_PKCS1_PADDING:PK_PKCS1_OAEP_PADDING;
|
|
len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
|
|
data1,j,p,0);
|
|
test_assert(len>=0);
|
|
len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
|
|
data2,len,p,1);
|
|
test_eq(len,j);
|
|
test_memeq(data1,data3,j);
|
|
}
|
|
}
|
|
|
|
/* Try copy_full */
|
|
crypto_pk_free(pk2);
|
|
pk2 = crypto_pk_copy_full(pk1);
|
|
test_assert(pk2 != NULL);
|
|
test_neq_ptr(pk1, pk2);
|
|
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
|
|
|
|
done:
|
|
if (pk1)
|
|
crypto_pk_free(pk1);
|
|
if (pk2)
|
|
crypto_pk_free(pk2);
|
|
tor_free(encoded);
|
|
}
|
|
|
|
/** Run unit tests for misc crypto formatting functionality (base64, base32,
|
|
* fingerprints, etc) */
|
|
static void
|
|
test_crypto_formats(void)
|
|
{
|
|
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
|
|
int i, j, idx;
|
|
|
|
data1 = tor_malloc(1024);
|
|
data2 = tor_malloc(1024);
|
|
data3 = tor_malloc(1024);
|
|
test_assert(data1 && data2 && data3);
|
|
|
|
/* Base64 tests */
|
|
memset(data1, 6, 1024);
|
|
for (idx = 0; idx < 10; ++idx) {
|
|
i = base64_encode(data2, 1024, data1, idx);
|
|
test_assert(i >= 0);
|
|
j = base64_decode(data3, 1024, data2, i);
|
|
test_eq(j,idx);
|
|
test_memeq(data3, data1, idx);
|
|
}
|
|
|
|
strlcpy(data1, "Test string that contains 35 chars.", 1024);
|
|
strlcat(data1, " 2nd string that contains 35 chars.", 1024);
|
|
|
|
i = base64_encode(data2, 1024, data1, 71);
|
|
test_assert(i >= 0);
|
|
j = base64_decode(data3, 1024, data2, i);
|
|
test_eq(j, 71);
|
|
test_streq(data3, data1);
|
|
test_assert(data2[i] == '\0');
|
|
|
|
crypto_rand(data1, DIGEST_LEN);
|
|
memset(data2, 100, 1024);
|
|
digest_to_base64(data2, data1);
|
|
test_eq(BASE64_DIGEST_LEN, strlen(data2));
|
|
test_eq(100, data2[BASE64_DIGEST_LEN+2]);
|
|
memset(data3, 99, 1024);
|
|
test_eq(digest_from_base64(data3, data2), 0);
|
|
test_memeq(data1, data3, DIGEST_LEN);
|
|
test_eq(99, data3[DIGEST_LEN+1]);
|
|
|
|
test_assert(digest_from_base64(data3, "###") < 0);
|
|
|
|
/* Encoding SHA256 */
|
|
crypto_rand(data2, DIGEST256_LEN);
|
|
memset(data2, 100, 1024);
|
|
digest256_to_base64(data2, data1);
|
|
test_eq(BASE64_DIGEST256_LEN, strlen(data2));
|
|
test_eq(100, data2[BASE64_DIGEST256_LEN+2]);
|
|
memset(data3, 99, 1024);
|
|
test_eq(digest256_from_base64(data3, data2), 0);
|
|
test_memeq(data1, data3, DIGEST256_LEN);
|
|
test_eq(99, data3[DIGEST256_LEN+1]);
|
|
|
|
/* Base32 tests */
|
|
strlcpy(data1, "5chrs", 1024);
|
|
/* bit pattern is: [35 63 68 72 73] ->
|
|
* [00110101 01100011 01101000 01110010 01110011]
|
|
* By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
|
|
*/
|
|
base32_encode(data2, 9, data1, 5);
|
|
test_streq(data2, "gvrwq4tt");
|
|
|
|
strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
|
|
base32_encode(data2, 30, data1, 10);
|
|
test_streq(data2, "772w2rfobvomsywe");
|
|
|
|
/* Base16 tests */
|
|
strlcpy(data1, "6chrs\xff", 1024);
|
|
base16_encode(data2, 13, data1, 6);
|
|
test_streq(data2, "3663687273FF");
|
|
|
|
strlcpy(data1, "f0d678affc000100", 1024);
|
|
i = base16_decode(data2, 8, data1, 16);
|
|
test_eq(i,0);
|
|
test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
|
|
|
|
/* now try some failing base16 decodes */
|
|
test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
|
|
test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
|
|
strlcpy(data1, "f0dz!8affc000100", 1024);
|
|
test_eq(-1, base16_decode(data2, 8, data1, 16));
|
|
|
|
tor_free(data1);
|
|
tor_free(data2);
|
|
tor_free(data3);
|
|
|
|
/* Add spaces to fingerprint */
|
|
{
|
|
data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
|
|
test_eq(strlen(data1), 40);
|
|
data2 = tor_malloc(FINGERPRINT_LEN+1);
|
|
add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
|
|
test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
|
|
tor_free(data1);
|
|
tor_free(data2);
|
|
}
|
|
|
|
done:
|
|
tor_free(data1);
|
|
tor_free(data2);
|
|
tor_free(data3);
|
|
}
|
|
|
|
/** Run unit tests for our secret-to-key passphrase hashing functionality. */
|
|
static void
|
|
test_crypto_s2k(void)
|
|
{
|
|
char buf[29];
|
|
char buf2[29];
|
|
char *buf3 = NULL;
|
|
int i;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
memset(buf2, 0, sizeof(buf2));
|
|
buf3 = tor_malloc(65536);
|
|
memset(buf3, 0, 65536);
|
|
|
|
secret_to_key(buf+9, 20, "", 0, buf);
|
|
crypto_digest(buf2+9, buf3, 1024);
|
|
test_memeq(buf, buf2, 29);
|
|
|
|
memcpy(buf,"vrbacrda",8);
|
|
memcpy(buf2,"vrbacrda",8);
|
|
buf[8] = 96;
|
|
buf2[8] = 96;
|
|
secret_to_key(buf+9, 20, "12345678", 8, buf);
|
|
for (i = 0; i < 65536; i += 16) {
|
|
memcpy(buf3+i, "vrbacrda12345678", 16);
|
|
}
|
|
crypto_digest(buf2+9, buf3, 65536);
|
|
test_memeq(buf, buf2, 29);
|
|
|
|
done:
|
|
tor_free(buf3);
|
|
}
|
|
|
|
/** Test AES-CTR encryption and decryption with IV. */
|
|
static void
|
|
test_crypto_aes_iv(void *arg)
|
|
{
|
|
char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
|
|
char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
|
|
char key1[16], key2[16];
|
|
ssize_t encrypted_size, decrypted_size;
|
|
|
|
int use_evp = !strcmp(arg,"evp");
|
|
evaluate_evp_for_aes(use_evp);
|
|
|
|
plain = tor_malloc(4095);
|
|
encrypted1 = tor_malloc(4095 + 1 + 16);
|
|
encrypted2 = tor_malloc(4095 + 1 + 16);
|
|
decrypted1 = tor_malloc(4095 + 1);
|
|
decrypted2 = tor_malloc(4095 + 1);
|
|
|
|
crypto_rand(plain, 4095);
|
|
crypto_rand(key1, 16);
|
|
crypto_rand(key2, 16);
|
|
crypto_rand(plain_1, 1);
|
|
crypto_rand(plain_15, 15);
|
|
crypto_rand(plain_16, 16);
|
|
crypto_rand(plain_17, 17);
|
|
key1[0] = key2[0] + 128; /* Make sure that contents are different. */
|
|
/* Encrypt and decrypt with the same key. */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
|
|
plain, 4095);
|
|
|
|
test_eq(encrypted_size, 16 + 4095);
|
|
tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
|
|
* greater than 0, but its truth is not
|
|
* obvious to all analysis tools. */
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
|
|
encrypted1, encrypted_size);
|
|
|
|
test_eq(decrypted_size, 4095);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain, decrypted1, 4095);
|
|
/* Encrypt a second time (with a new random initialization vector). */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
|
|
plain, 4095);
|
|
|
|
test_eq(encrypted_size, 16 + 4095);
|
|
tt_assert(encrypted_size > 0);
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
|
|
encrypted2, encrypted_size);
|
|
test_eq(decrypted_size, 4095);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain, decrypted2, 4095);
|
|
test_memneq(encrypted1, encrypted2, encrypted_size);
|
|
/* Decrypt with the wrong key. */
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
|
|
encrypted1, encrypted_size);
|
|
test_memneq(plain, decrypted2, decrypted_size);
|
|
/* Alter the initialization vector. */
|
|
encrypted1[0] += 42;
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
|
|
encrypted1, encrypted_size);
|
|
test_memneq(plain, decrypted2, 4095);
|
|
/* Special length case: 1. */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
|
|
plain_1, 1);
|
|
test_eq(encrypted_size, 16 + 1);
|
|
tt_assert(encrypted_size > 0);
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
|
|
encrypted1, encrypted_size);
|
|
test_eq(decrypted_size, 1);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain_1, decrypted1, 1);
|
|
/* Special length case: 15. */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
|
|
plain_15, 15);
|
|
test_eq(encrypted_size, 16 + 15);
|
|
tt_assert(encrypted_size > 0);
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
|
|
encrypted1, encrypted_size);
|
|
test_eq(decrypted_size, 15);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain_15, decrypted1, 15);
|
|
/* Special length case: 16. */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
|
|
plain_16, 16);
|
|
test_eq(encrypted_size, 16 + 16);
|
|
tt_assert(encrypted_size > 0);
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
|
|
encrypted1, encrypted_size);
|
|
test_eq(decrypted_size, 16);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain_16, decrypted1, 16);
|
|
/* Special length case: 17. */
|
|
encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
|
|
plain_17, 17);
|
|
test_eq(encrypted_size, 16 + 17);
|
|
tt_assert(encrypted_size > 0);
|
|
decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
|
|
encrypted1, encrypted_size);
|
|
test_eq(decrypted_size, 17);
|
|
tt_assert(decrypted_size > 0);
|
|
test_memeq(plain_17, decrypted1, 17);
|
|
|
|
done:
|
|
/* Free memory. */
|
|
tor_free(plain);
|
|
tor_free(encrypted1);
|
|
tor_free(encrypted2);
|
|
tor_free(decrypted1);
|
|
tor_free(decrypted2);
|
|
}
|
|
|
|
/** Test base32 decoding. */
|
|
static void
|
|
test_crypto_base32_decode(void)
|
|
{
|
|
char plain[60], encoded[96 + 1], decoded[60];
|
|
int res;
|
|
crypto_rand(plain, 60);
|
|
/* Encode and decode a random string. */
|
|
base32_encode(encoded, 96 + 1, plain, 60);
|
|
res = base32_decode(decoded, 60, encoded, 96);
|
|
test_eq(res, 0);
|
|
test_memeq(plain, decoded, 60);
|
|
/* Encode, uppercase, and decode a random string. */
|
|
base32_encode(encoded, 96 + 1, plain, 60);
|
|
tor_strupper(encoded);
|
|
res = base32_decode(decoded, 60, encoded, 96);
|
|
test_eq(res, 0);
|
|
test_memeq(plain, decoded, 60);
|
|
/* Change encoded string and decode. */
|
|
if (encoded[0] == 'A' || encoded[0] == 'a')
|
|
encoded[0] = 'B';
|
|
else
|
|
encoded[0] = 'A';
|
|
res = base32_decode(decoded, 60, encoded, 96);
|
|
test_eq(res, 0);
|
|
test_memneq(plain, decoded, 60);
|
|
/* Bad encodings. */
|
|
encoded[0] = '!';
|
|
res = base32_decode(decoded, 60, encoded, 96);
|
|
test_assert(res < 0);
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_crypto_kdf_TAP(void *arg)
|
|
{
|
|
uint8_t key_material[100];
|
|
int r;
|
|
char *mem_op_hex_tmp = NULL;
|
|
|
|
(void)arg;
|
|
#define EXPAND(s) \
|
|
r = crypto_expand_key_material_TAP( \
|
|
(const uint8_t*)(s), strlen(s), \
|
|
key_material, 100)
|
|
|
|
/* Test vectors generated with a little python script; feel free to write
|
|
* your own. */
|
|
memset(key_material, 0, sizeof(key_material));
|
|
EXPAND("");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
|
|
"d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
|
|
"c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
|
|
"f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
|
|
|
|
EXPAND("Tor");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
|
|
"7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
|
|
"870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
|
|
"3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
|
|
|
|
EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
|
|
"4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
|
|
"ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
|
|
"daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
|
|
|
|
done:
|
|
tor_free(mem_op_hex_tmp);
|
|
|
|
#undef EXPAND
|
|
}
|
|
|
|
static void
|
|
test_crypto_hkdf_sha256(void *arg)
|
|
{
|
|
uint8_t key_material[100];
|
|
const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
|
|
const size_t salt_len = strlen((char*)salt);
|
|
const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
|
|
const size_t m_expand_len = strlen((char*)m_expand);
|
|
int r;
|
|
char *mem_op_hex_tmp = NULL;
|
|
|
|
(void)arg;
|
|
|
|
#define EXPAND(s) \
|
|
r = crypto_expand_key_material_rfc5869_sha256( \
|
|
(const uint8_t*)(s), strlen(s), \
|
|
salt, salt_len, \
|
|
m_expand, m_expand_len, \
|
|
key_material, 100)
|
|
|
|
/* Test vectors generated with ntor_ref.py */
|
|
memset(key_material, 0, sizeof(key_material));
|
|
EXPAND("");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
|
|
"eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
|
|
"d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
|
|
"dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
|
|
|
|
EXPAND("Tor");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
|
|
"c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
|
|
"66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
|
|
"961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
|
|
|
|
EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
|
|
tt_int_op(r, ==, 0);
|
|
test_memeq_hex(key_material,
|
|
"a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
|
|
"b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
|
|
"5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
|
|
"94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
|
|
|
|
done:
|
|
tor_free(mem_op_hex_tmp);
|
|
#undef EXPAND
|
|
}
|
|
|
|
#ifdef CURVE25519_ENABLED
|
|
static void
|
|
test_crypto_curve25519_impl(void *arg)
|
|
{
|
|
/* adapted from curve25519_donna, which adapted it from test-curve25519
|
|
version 20050915, by D. J. Bernstein, Public domain. */
|
|
|
|
const int randomize_high_bit = (arg != NULL);
|
|
|
|
#ifdef SLOW_CURVE25519_TEST
|
|
const int loop_max=10000;
|
|
const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
|
|
"7e0329f4dd2819f5f32d130f1296b500";
|
|
const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
|
|
"e0544770bc7de853b38f9100489e3e79";
|
|
const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
|
|
"bd13861475516bc2cd2b6e005e805064";
|
|
#else
|
|
const int loop_max=200;
|
|
const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
|
|
"c6a1037d74cceb3712e9206871dcf654";
|
|
const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
|
|
"8e3ee1a63c7d14274ea5d4c67f065467";
|
|
const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
|
|
"c0ee98cb2257a4545c0cfb2ca3e1812b";
|
|
#endif
|
|
|
|
unsigned char e1k[32];
|
|
unsigned char e2k[32];
|
|
unsigned char e1e2k[32];
|
|
unsigned char e2e1k[32];
|
|
unsigned char e1[32] = {3};
|
|
unsigned char e2[32] = {5};
|
|
unsigned char k[32] = {9};
|
|
int loop, i;
|
|
|
|
char *mem_op_hex_tmp = NULL;
|
|
|
|
for (loop = 0; loop < loop_max; ++loop) {
|
|
curve25519_impl(e1k,e1,k);
|
|
curve25519_impl(e2e1k,e2,e1k);
|
|
curve25519_impl(e2k,e2,k);
|
|
if (randomize_high_bit) {
|
|
/* We require that the high bit of the public key be ignored. So if
|
|
* we're doing this variant test, we randomize the high bit of e2k, and
|
|
* make sure that the handshake still works out the same as it would
|
|
* otherwise. */
|
|
uint8_t byte;
|
|
crypto_rand((char*)&byte, 1);
|
|
e2k[31] |= (byte & 0x80);
|
|
}
|
|
curve25519_impl(e1e2k,e1,e2k);
|
|
test_memeq(e1e2k, e2e1k, 32);
|
|
if (loop == loop_max-1) {
|
|
break;
|
|
}
|
|
for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
|
|
for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
|
|
for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
|
|
}
|
|
|
|
test_memeq_hex(e1, e1_expected);
|
|
test_memeq_hex(e2k, e2k_expected);
|
|
test_memeq_hex(e1e2k, e1e2k_expected);
|
|
|
|
done:
|
|
tor_free(mem_op_hex_tmp);
|
|
}
|
|
|
|
static void
|
|
test_crypto_curve25519_wrappers(void *arg)
|
|
{
|
|
curve25519_public_key_t pubkey1, pubkey2;
|
|
curve25519_secret_key_t seckey1, seckey2;
|
|
|
|
uint8_t output1[CURVE25519_OUTPUT_LEN];
|
|
uint8_t output2[CURVE25519_OUTPUT_LEN];
|
|
(void)arg;
|
|
|
|
/* Test a simple handshake, serializing and deserializing some stuff. */
|
|
curve25519_secret_key_generate(&seckey1, 0);
|
|
curve25519_secret_key_generate(&seckey2, 1);
|
|
curve25519_public_key_generate(&pubkey1, &seckey1);
|
|
curve25519_public_key_generate(&pubkey2, &seckey2);
|
|
test_assert(curve25519_public_key_is_ok(&pubkey1));
|
|
test_assert(curve25519_public_key_is_ok(&pubkey2));
|
|
curve25519_handshake(output1, &seckey1, &pubkey2);
|
|
curve25519_handshake(output2, &seckey2, &pubkey1);
|
|
test_memeq(output1, output2, sizeof(output1));
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_crypto_curve25519_encode(void *arg)
|
|
{
|
|
curve25519_secret_key_t seckey;
|
|
curve25519_public_key_t key1, key2, key3;
|
|
char buf[64];
|
|
|
|
(void)arg;
|
|
|
|
curve25519_secret_key_generate(&seckey, 0);
|
|
curve25519_public_key_generate(&key1, &seckey);
|
|
tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
|
|
tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
|
|
|
|
tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
|
|
test_memeq(key1.public_key, key2.public_key, CURVE25519_PUBKEY_LEN);
|
|
|
|
buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
|
|
tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
|
|
tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
|
|
test_memeq(key1.public_key, key3.public_key, CURVE25519_PUBKEY_LEN);
|
|
|
|
/* Now try bogus parses. */
|
|
strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
|
|
tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
|
|
|
|
strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
|
|
tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
|
|
|
|
strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
|
|
tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_crypto_curve25519_persist(void *arg)
|
|
{
|
|
curve25519_keypair_t keypair, keypair2;
|
|
char *fname = tor_strdup(get_fname("curve25519_keypair"));
|
|
char *tag = NULL;
|
|
char *content = NULL;
|
|
const char *cp;
|
|
struct stat st;
|
|
size_t taglen;
|
|
|
|
(void)arg;
|
|
|
|
tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
|
|
|
|
tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
|
|
tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
|
|
tt_str_op(tag,==,"testing");
|
|
tor_free(tag);
|
|
|
|
test_memeq(keypair.pubkey.public_key,
|
|
keypair2.pubkey.public_key,
|
|
CURVE25519_PUBKEY_LEN);
|
|
test_memeq(keypair.seckey.secret_key,
|
|
keypair2.seckey.secret_key,
|
|
CURVE25519_SECKEY_LEN);
|
|
|
|
content = read_file_to_str(fname, RFTS_BIN, &st);
|
|
tt_assert(content);
|
|
taglen = strlen("== c25519v1: testing ==");
|
|
tt_int_op(st.st_size, ==, 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
|
|
tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
|
|
tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
|
|
cp = content + 32;
|
|
test_memeq(keypair.seckey.secret_key,
|
|
cp,
|
|
CURVE25519_SECKEY_LEN);
|
|
cp += CURVE25519_SECKEY_LEN;
|
|
test_memeq(keypair.pubkey.public_key,
|
|
cp,
|
|
CURVE25519_SECKEY_LEN);
|
|
|
|
tor_free(fname);
|
|
fname = tor_strdup(get_fname("bogus_keypair"));
|
|
|
|
tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
|
|
tor_free(tag);
|
|
|
|
content[69] ^= 0xff;
|
|
tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
|
|
tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
|
|
|
|
done:
|
|
tor_free(fname);
|
|
tor_free(content);
|
|
tor_free(tag);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void *
|
|
pass_data_setup_fn(const struct testcase_t *testcase)
|
|
{
|
|
return testcase->setup_data;
|
|
}
|
|
static int
|
|
pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
|
|
{
|
|
(void)ptr;
|
|
(void)testcase;
|
|
return 1;
|
|
}
|
|
static const struct testcase_setup_t pass_data = {
|
|
pass_data_setup_fn, pass_data_cleanup_fn
|
|
};
|
|
|
|
#define CRYPTO_LEGACY(name) \
|
|
{ #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }
|
|
|
|
struct testcase_t crypto_tests[] = {
|
|
CRYPTO_LEGACY(formats),
|
|
CRYPTO_LEGACY(rng),
|
|
{ "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
|
|
{ "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
|
|
CRYPTO_LEGACY(sha),
|
|
CRYPTO_LEGACY(pk),
|
|
CRYPTO_LEGACY(dh),
|
|
CRYPTO_LEGACY(s2k),
|
|
{ "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
|
|
{ "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
|
|
CRYPTO_LEGACY(base32_decode),
|
|
{ "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
|
|
{ "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
|
|
#ifdef CURVE25519_ENABLED
|
|
{ "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
|
|
{ "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
|
|
{ "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
|
|
{ "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
|
|
{ "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
|
|
#endif
|
|
END_OF_TESTCASES
|
|
};
|
|
|