tor/src/lib/crypt_ops/crypto_ed25519.c
Nick Mathewson 6a88d8f6b4 When enabling NSS, disable OpenSSL.
We used to link both libraries at once, but now that I'm working on
TLS, there's nothing left to keep OpenSSL around for when NSS is
enabled.

Note that this patch causes a couple of places that still assumed
OpenSSL to be disabled when NSS is enabled
   - tor-gencert
   - pbkdf2
2018-08-21 12:25:33 -04:00

822 lines
25 KiB
C

/* Copyright (c) 2013-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file crypto_ed25519.c
*
* \brief Wrapper code for an ed25519 implementation.
*
* Ed25519 is a Schnorr signature on a Twisted Edwards curve, defined
* by Dan Bernstein. For more information, see https://ed25519.cr.yp.to/
*
* This module wraps our choice of Ed25519 backend, and provides a few
* convenience functions for checking and generating signatures. It also
* provides Tor-specific tools for key blinding and for converting Ed25519
* keys to and from the corresponding Curve25519 keys.
*/
#define CRYPTO_ED25519_PRIVATE
#include "orconfig.h"
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include "lib/ctime/di_ops.h"
#include "lib/crypt_ops/crypto_curve25519.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_ed25519.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/log/log.h"
#include "lib/log/util_bug.h"
#include "lib/encoding/binascii.h"
#include "lib/string/util_string.h"
#include "ed25519/ref10/ed25519_ref10.h"
#include "ed25519/donna/ed25519_donna_tor.h"
#include <string.h>
#include <errno.h>
static void pick_ed25519_impl(void);
/** An Ed25519 implementation, as a set of function pointers. */
typedef struct {
int (*selftest)(void);
int (*seckey)(unsigned char *);
int (*seckey_expand)(unsigned char *, const unsigned char *);
int (*pubkey)(unsigned char *, const unsigned char *);
int (*keygen)(unsigned char *, unsigned char *);
int (*open)(const unsigned char *, const unsigned char *, size_t, const
unsigned char *);
int (*sign)(unsigned char *, const unsigned char *, size_t,
const unsigned char *, const unsigned char *);
int (*open_batch)(const unsigned char **, size_t *, const unsigned char **,
const unsigned char **, size_t, int *);
int (*blind_secret_key)(unsigned char *, const unsigned char *,
const unsigned char *);
int (*blind_public_key)(unsigned char *, const unsigned char *,
const unsigned char *);
int (*pubkey_from_curve25519_pubkey)(unsigned char *, const unsigned char *,
int);
int (*ed25519_scalarmult_with_group_order)(unsigned char *,
const unsigned char *);
} ed25519_impl_t;
/** The Ref10 Ed25519 implementation. This one is pure C and lightly
* optimized. */
static const ed25519_impl_t impl_ref10 = {
NULL,
ed25519_ref10_seckey,
ed25519_ref10_seckey_expand,
ed25519_ref10_pubkey,
ed25519_ref10_keygen,
ed25519_ref10_open,
ed25519_ref10_sign,
NULL,
ed25519_ref10_blind_secret_key,
ed25519_ref10_blind_public_key,
ed25519_ref10_pubkey_from_curve25519_pubkey,
ed25519_ref10_scalarmult_with_group_order,
};
/** The Ref10 Ed25519 implementation. This one is heavily optimized, but still
* mostly C. The C still tends to be heavily platform-specific. */
static const ed25519_impl_t impl_donna = {
ed25519_donna_selftest,
ed25519_donna_seckey,
ed25519_donna_seckey_expand,
ed25519_donna_pubkey,
ed25519_donna_keygen,
ed25519_donna_open,
ed25519_donna_sign,
ed25519_sign_open_batch_donna,
ed25519_donna_blind_secret_key,
ed25519_donna_blind_public_key,
ed25519_donna_pubkey_from_curve25519_pubkey,
ed25519_donna_scalarmult_with_group_order,
};
/** Which Ed25519 implementation are we using? NULL if we haven't decided
* yet. */
static const ed25519_impl_t *ed25519_impl = NULL;
/** Helper: Return our chosen Ed25519 implementation.
*
* This should only be called after we've picked an implementation, but
* it _does_ recover if you forget this.
**/
static inline const ed25519_impl_t *
get_ed_impl(void)
{
if (BUG(ed25519_impl == NULL)) {
pick_ed25519_impl(); // LCOV_EXCL_LINE - We always call ed25519_init().
}
return ed25519_impl;
}
#ifdef TOR_UNIT_TESTS
/** For testing: used to remember our actual choice of Ed25519
* implementation */
static const ed25519_impl_t *saved_ed25519_impl = NULL;
/** For testing: Use the Ed25519 implementation called <b>name</b> until
* crypto_ed25519_testing_restore_impl is called. Recognized names are
* "donna" and "ref10". */
void
crypto_ed25519_testing_force_impl(const char *name)
{
tor_assert(saved_ed25519_impl == NULL);
saved_ed25519_impl = ed25519_impl;
if (! strcmp(name, "donna")) {
ed25519_impl = &impl_donna;
} else {
tor_assert(!strcmp(name, "ref10"));
ed25519_impl = &impl_ref10;
}
}
/** For testing: go back to whatever Ed25519 implementation we had picked
* before crypto_ed25519_testing_force_impl was called.
*/
void
crypto_ed25519_testing_restore_impl(void)
{
ed25519_impl = saved_ed25519_impl;
saved_ed25519_impl = NULL;
}
#endif /* defined(TOR_UNIT_TESTS) */
/**
* Initialize a new ed25519 secret key in <b>seckey_out</b>. If
* <b>extra_strong</b>, take the RNG inputs directly from the operating
* system. Return 0 on success, -1 on failure.
*/
int
ed25519_secret_key_generate(ed25519_secret_key_t *seckey_out,
int extra_strong)
{
int r;
uint8_t seed[32];
if (extra_strong)
crypto_strongest_rand(seed, sizeof(seed));
else
crypto_rand((char*)seed, sizeof(seed));
r = get_ed_impl()->seckey_expand(seckey_out->seckey, seed);
memwipe(seed, 0, sizeof(seed));
return r < 0 ? -1 : 0;
}
/**
* Given a 32-byte random seed in <b>seed</b>, expand it into an ed25519
* secret key in <b>seckey_out</b>. Return 0 on success, -1 on failure.
*/
int
ed25519_secret_key_from_seed(ed25519_secret_key_t *seckey_out,
const uint8_t *seed)
{
if (get_ed_impl()->seckey_expand(seckey_out->seckey, seed) < 0)
return -1;
return 0;
}
/**
* Given a secret key in <b>seckey</b>, expand it into an
* ed25519 public key. Return 0 on success, -1 on failure.
*/
int
ed25519_public_key_generate(ed25519_public_key_t *pubkey_out,
const ed25519_secret_key_t *seckey)
{
if (get_ed_impl()->pubkey(pubkey_out->pubkey, seckey->seckey) < 0)
return -1;
return 0;
}
/** Generate a new ed25519 keypair in <b>keypair_out</b>. If
* <b>extra_strong</b> is set, try to mix some system entropy into the key
* generation process. Return 0 on success, -1 on failure. */
int
ed25519_keypair_generate(ed25519_keypair_t *keypair_out, int extra_strong)
{
if (ed25519_secret_key_generate(&keypair_out->seckey, extra_strong) < 0)
return -1;
if (ed25519_public_key_generate(&keypair_out->pubkey,
&keypair_out->seckey)<0)
return -1;
return 0;
}
/** Return true iff 'pubkey' is set to zero (eg to indicate that it is not
* set). */
int
ed25519_public_key_is_zero(const ed25519_public_key_t *pubkey)
{
return tor_mem_is_zero((char*)pubkey->pubkey, ED25519_PUBKEY_LEN);
}
/* Return a heap-allocated array that contains <b>msg</b> prefixed by the
* string <b>prefix_str</b>. Set <b>final_msg_len_out</b> to the size of the
* final array. If an error occurred, return NULL. It's the responsibility of
* the caller to free the returned array. */
static uint8_t *
get_prefixed_msg(const uint8_t *msg, size_t msg_len,
const char *prefix_str,
size_t *final_msg_len_out)
{
size_t prefixed_msg_len, prefix_len;
uint8_t *prefixed_msg;
tor_assert(prefix_str);
tor_assert(final_msg_len_out);
prefix_len = strlen(prefix_str);
/* msg_len + strlen(prefix_str) must not overflow. */
if (msg_len > SIZE_T_CEILING - prefix_len) {
return NULL;
}
prefixed_msg_len = msg_len + prefix_len;
prefixed_msg = tor_malloc_zero(prefixed_msg_len);
memcpy(prefixed_msg, prefix_str, prefix_len);
memcpy(prefixed_msg + prefix_len, msg, msg_len);
*final_msg_len_out = prefixed_msg_len;
return prefixed_msg;
}
/**
* Set <b>signature_out</b> to a signature of the <b>len</b>-byte message
* <b>msg</b>, using the secret and public key in <b>keypair</b>.
*
* Return 0 if we successfully signed the message, otherwise return -1.
*/
int
ed25519_sign(ed25519_signature_t *signature_out,
const uint8_t *msg, size_t len,
const ed25519_keypair_t *keypair)
{
if (get_ed_impl()->sign(signature_out->sig, msg, len,
keypair->seckey.seckey,
keypair->pubkey.pubkey) < 0) {
return -1;
}
return 0;
}
/**
* Like ed25519_sign(), but also prefix <b>msg</b> with <b>prefix_str</b>
* before signing. <b>prefix_str</b> must be a NUL-terminated string.
*/
MOCK_IMPL(int,
ed25519_sign_prefixed,(ed25519_signature_t *signature_out,
const uint8_t *msg, size_t msg_len,
const char *prefix_str,
const ed25519_keypair_t *keypair))
{
int retval;
size_t prefixed_msg_len;
uint8_t *prefixed_msg;
tor_assert(prefix_str);
prefixed_msg = get_prefixed_msg(msg, msg_len, prefix_str,
&prefixed_msg_len);
if (BUG(!prefixed_msg)) {
/* LCOV_EXCL_START -- only possible when the message and prefix are
* ridiculously huge */
log_warn(LD_GENERAL, "Failed to get prefixed msg.");
return -1;
/* LCOV_EXCL_STOP */
}
retval = ed25519_sign(signature_out,
prefixed_msg, prefixed_msg_len,
keypair);
tor_free(prefixed_msg);
return retval;
}
/**
* Check whether if <b>signature</b> is a valid signature for the
* <b>len</b>-byte message in <b>msg</b> made with the key <b>pubkey</b>.
*
* Return 0 if the signature is valid; -1 if it isn't.
*/
MOCK_IMPL(int,
ed25519_checksig,(const ed25519_signature_t *signature,
const uint8_t *msg, size_t len,
const ed25519_public_key_t *pubkey))
{
return
get_ed_impl()->open(signature->sig, msg, len, pubkey->pubkey) < 0 ? -1 : 0;
}
/**
* Like ed2519_checksig(), but also prefix <b>msg</b> with <b>prefix_str</b>
* before verifying signature. <b>prefix_str</b> must be a NUL-terminated
* string.
*/
int
ed25519_checksig_prefixed(const ed25519_signature_t *signature,
const uint8_t *msg, size_t msg_len,
const char *prefix_str,
const ed25519_public_key_t *pubkey)
{
int retval;
size_t prefixed_msg_len;
uint8_t *prefixed_msg;
prefixed_msg = get_prefixed_msg(msg, msg_len, prefix_str,
&prefixed_msg_len);
if (BUG(!prefixed_msg)) {
/* LCOV_EXCL_START -- only possible when the message and prefix are
* ridiculously huge */
log_warn(LD_GENERAL, "Failed to get prefixed msg.");
return -1;
/* LCOV_EXCL_STOP */
}
retval = ed25519_checksig(signature,
prefixed_msg, prefixed_msg_len,
pubkey);
tor_free(prefixed_msg);
return retval;
}
/** Validate every signature among those in <b>checkable</b>, which contains
* exactly <b>n_checkable</b> elements. If <b>okay_out</b> is non-NULL, set
* the i'th element of <b>okay_out</b> to 1 if the i'th element of
* <b>checkable</b> is valid, and to 0 otherwise. Return 0 if every signature
* was valid. Otherwise return -N, where N is the number of invalid
* signatures.
*/
MOCK_IMPL(int,
ed25519_checksig_batch,(int *okay_out,
const ed25519_checkable_t *checkable,
int n_checkable))
{
int i, res;
const ed25519_impl_t *impl = get_ed_impl();
if (impl->open_batch == NULL) {
/* No batch verification implementation available, fake it by checking the
* each signature individually.
*/
res = 0;
for (i = 0; i < n_checkable; ++i) {
const ed25519_checkable_t *ch = &checkable[i];
int r = ed25519_checksig(&ch->signature, ch->msg, ch->len, ch->pubkey);
if (r < 0)
--res;
if (okay_out)
okay_out[i] = (r == 0);
}
} else {
/* ed25519-donna style batch verification available.
*
* Theoretically, this should only be called if n_checkable >= 3, since
* that's the threshold where the batch verification actually kicks in,
* but the only difference is a few mallocs/frees.
*/
const uint8_t **ms;
size_t *lens;
const uint8_t **pks;
const uint8_t **sigs;
int *oks;
int all_ok;
ms = tor_calloc(n_checkable, sizeof(uint8_t*));
lens = tor_calloc(n_checkable, sizeof(size_t));
pks = tor_calloc(n_checkable, sizeof(uint8_t*));
sigs = tor_calloc(n_checkable, sizeof(uint8_t*));
oks = okay_out ? okay_out : tor_calloc(n_checkable, sizeof(int));
for (i = 0; i < n_checkable; ++i) {
ms[i] = checkable[i].msg;
lens[i] = checkable[i].len;
pks[i] = checkable[i].pubkey->pubkey;
sigs[i] = checkable[i].signature.sig;
oks[i] = 0;
}
res = 0;
all_ok = impl->open_batch(ms, lens, pks, sigs, n_checkable, oks);
for (i = 0; i < n_checkable; ++i) {
if (!oks[i])
--res;
}
/* XXX: For now sanity check oks with the return value. Once we have
* more confidence in the code, if `all_ok == 0` we can skip iterating
* over oks since all the signatures were found to be valid.
*/
tor_assert(((res == 0) && !all_ok) || ((res < 0) && all_ok));
tor_free(ms);
tor_free(lens);
tor_free(pks);
tor_free(sigs);
if (! okay_out)
tor_free(oks);
}
return res;
}
/**
* Given a curve25519 keypair in <b>inp</b>, generate a corresponding
* ed25519 keypair in <b>out</b>, and set <b>signbit_out</b> to the
* sign bit of the X coordinate of the ed25519 key.
*
* NOTE THAT IT IS PROBABLY NOT SAFE TO USE THE GENERATED KEY FOR ANYTHING
* OUTSIDE OF WHAT'S PRESENTED IN PROPOSAL 228. In particular, it's probably
* not a great idea to use it to sign attacker-supplied anything.
*/
int
ed25519_keypair_from_curve25519_keypair(ed25519_keypair_t *out,
int *signbit_out,
const curve25519_keypair_t *inp)
{
const char string[] = "Derive high part of ed25519 key from curve25519 key";
ed25519_public_key_t pubkey_check;
crypto_digest_t *ctx;
uint8_t sha512_output[DIGEST512_LEN];
memcpy(out->seckey.seckey, inp->seckey.secret_key, 32);
ctx = crypto_digest512_new(DIGEST_SHA512);
crypto_digest_add_bytes(ctx, (const char*)out->seckey.seckey, 32);
crypto_digest_add_bytes(ctx, (const char*)string, sizeof(string));
crypto_digest_get_digest(ctx, (char *)sha512_output, sizeof(sha512_output));
crypto_digest_free(ctx);
memcpy(out->seckey.seckey + 32, sha512_output, 32);
ed25519_public_key_generate(&out->pubkey, &out->seckey);
*signbit_out = out->pubkey.pubkey[31] >> 7;
ed25519_public_key_from_curve25519_public_key(&pubkey_check, &inp->pubkey,
*signbit_out);
tor_assert(fast_memeq(pubkey_check.pubkey, out->pubkey.pubkey, 32));
memwipe(&pubkey_check, 0, sizeof(pubkey_check));
memwipe(sha512_output, 0, sizeof(sha512_output));
return 0;
}
/**
* Given a curve25519 public key and sign bit of X coordinate of the ed25519
* public key, generate the corresponding ed25519 public key.
*/
int
ed25519_public_key_from_curve25519_public_key(ed25519_public_key_t *pubkey,
const curve25519_public_key_t *pubkey_in,
int signbit)
{
return get_ed_impl()->pubkey_from_curve25519_pubkey(pubkey->pubkey,
pubkey_in->public_key,
signbit);
}
/**
* Given an ed25519 keypair in <b>inp</b>, generate a corresponding
* ed25519 keypair in <b>out</b>, blinded by the corresponding 32-byte input
* in 'param'.
*
* Tor uses key blinding for the "next-generation" hidden services design:
* service descriptors are encrypted with a key derived from the service's
* long-term public key, and then signed with (and stored at a position
* indexed by) a short-term key derived by blinding the long-term keys.
*
* Return 0 if blinding was successful, else return -1. */
int
ed25519_keypair_blind(ed25519_keypair_t *out,
const ed25519_keypair_t *inp,
const uint8_t *param)
{
ed25519_public_key_t pubkey_check;
get_ed_impl()->blind_secret_key(out->seckey.seckey,
inp->seckey.seckey, param);
if (ed25519_public_blind(&pubkey_check, &inp->pubkey, param) < 0) {
return -1;
}
ed25519_public_key_generate(&out->pubkey, &out->seckey);
tor_assert(fast_memeq(pubkey_check.pubkey, out->pubkey.pubkey, 32));
memwipe(&pubkey_check, 0, sizeof(pubkey_check));
return 0;
}
/**
* Given an ed25519 public key in <b>inp</b>, generate a corresponding blinded
* public key in <b>out</b>, blinded with the 32-byte parameter in
* <b>param</b>. Return 0 on success, -1 on railure.
*/
int
ed25519_public_blind(ed25519_public_key_t *out,
const ed25519_public_key_t *inp,
const uint8_t *param)
{
return get_ed_impl()->blind_public_key(out->pubkey, inp->pubkey, param);
}
/**
* Store seckey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_seckey_write_to_file(const ed25519_secret_key_t *seckey,
const char *filename,
const char *tag)
{
return crypto_write_tagged_contents_to_file(filename,
"ed25519v1-secret",
tag,
seckey->seckey,
sizeof(seckey->seckey));
}
/**
* Read seckey unencrypted from <b>filename</b>, storing it into
* <b>seckey_out</b>. Set *<b>tag_out</b> to the tag it was marked with.
* Return 0 on success, -1 on failure.
*/
int
ed25519_seckey_read_from_file(ed25519_secret_key_t *seckey_out,
char **tag_out,
const char *filename)
{
ssize_t len;
len = crypto_read_tagged_contents_from_file(filename, "ed25519v1-secret",
tag_out, seckey_out->seckey,
sizeof(seckey_out->seckey));
if (len == sizeof(seckey_out->seckey)) {
return 0;
} else if (len >= 0) {
errno = EINVAL;
}
tor_free(*tag_out);
return -1;
}
/**
* Store pubkey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_pubkey_write_to_file(const ed25519_public_key_t *pubkey,
const char *filename,
const char *tag)
{
return crypto_write_tagged_contents_to_file(filename,
"ed25519v1-public",
tag,
pubkey->pubkey,
sizeof(pubkey->pubkey));
}
/**
* Store pubkey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_pubkey_read_from_file(ed25519_public_key_t *pubkey_out,
char **tag_out,
const char *filename)
{
ssize_t len;
len = crypto_read_tagged_contents_from_file(filename, "ed25519v1-public",
tag_out, pubkey_out->pubkey,
sizeof(pubkey_out->pubkey));
if (len == sizeof(pubkey_out->pubkey)) {
return 0;
} else if (len >= 0) {
errno = EINVAL;
}
tor_free(*tag_out);
return -1;
}
/** Release all storage held for <b>kp</b>. */
void
ed25519_keypair_free_(ed25519_keypair_t *kp)
{
if (! kp)
return;
memwipe(kp, 0, sizeof(*kp));
tor_free(kp);
}
/** Return true iff <b>key1</b> and <b>key2</b> are the same public key. */
int
ed25519_pubkey_eq(const ed25519_public_key_t *key1,
const ed25519_public_key_t *key2)
{
tor_assert(key1);
tor_assert(key2);
return tor_memeq(key1->pubkey, key2->pubkey, ED25519_PUBKEY_LEN);
}
/**
* Set <b>dest</b> to contain the same key as <b>src</b>.
*/
void
ed25519_pubkey_copy(ed25519_public_key_t *dest,
const ed25519_public_key_t *src)
{
tor_assert(dest);
tor_assert(src);
memcpy(dest, src, sizeof(ed25519_public_key_t));
}
/** Check whether the given Ed25519 implementation seems to be working.
* If so, return 0; otherwise return -1. */
MOCK_IMPL(STATIC int,
ed25519_impl_spot_check,(void))
{
static const uint8_t alicesk[32] = {
0xc5,0xaa,0x8d,0xf4,0x3f,0x9f,0x83,0x7b,
0xed,0xb7,0x44,0x2f,0x31,0xdc,0xb7,0xb1,
0x66,0xd3,0x85,0x35,0x07,0x6f,0x09,0x4b,
0x85,0xce,0x3a,0x2e,0x0b,0x44,0x58,0xf7
};
static const uint8_t alicepk[32] = {
0xfc,0x51,0xcd,0x8e,0x62,0x18,0xa1,0xa3,
0x8d,0xa4,0x7e,0xd0,0x02,0x30,0xf0,0x58,
0x08,0x16,0xed,0x13,0xba,0x33,0x03,0xac,
0x5d,0xeb,0x91,0x15,0x48,0x90,0x80,0x25
};
static const uint8_t alicemsg[2] = { 0xaf, 0x82 };
static const uint8_t alicesig[64] = {
0x62,0x91,0xd6,0x57,0xde,0xec,0x24,0x02,
0x48,0x27,0xe6,0x9c,0x3a,0xbe,0x01,0xa3,
0x0c,0xe5,0x48,0xa2,0x84,0x74,0x3a,0x44,
0x5e,0x36,0x80,0xd7,0xdb,0x5a,0xc3,0xac,
0x18,0xff,0x9b,0x53,0x8d,0x16,0xf2,0x90,
0xae,0x67,0xf7,0x60,0x98,0x4d,0xc6,0x59,
0x4a,0x7c,0x15,0xe9,0x71,0x6e,0xd2,0x8d,
0xc0,0x27,0xbe,0xce,0xea,0x1e,0xc4,0x0a
};
const ed25519_impl_t *impl = get_ed_impl();
uint8_t sk[ED25519_SECKEY_LEN];
uint8_t pk[ED25519_PUBKEY_LEN];
uint8_t sig[ED25519_SIG_LEN];
int r = 0;
/* Some implementations (eg: The modified Ed25519-donna) have handy self-test
* code that sanity-checks the internals. If present, use that to screen out
* catastrophic errors like massive compiler failure.
*/
if (impl->selftest && impl->selftest() != 0)
goto fail;
/* Validate results versus known answer tests. People really should be
* running "make test" instead of relying on this, but it's better than
* nothing.
*
* Test vectors taken from "EdDSA & Ed25519 - 6. Test Vectors for Ed25519
* (TEST3)" (draft-josefsson-eddsa-ed25519-03).
*/
/* Key expansion, public key derivation. */
if (impl->seckey_expand(sk, alicesk) < 0)
goto fail;
if (impl->pubkey(pk, sk) < 0)
goto fail;
if (fast_memneq(pk, alicepk, ED25519_PUBKEY_LEN))
goto fail;
/* Signing, verification. */
if (impl->sign(sig, alicemsg, sizeof(alicemsg), sk, pk) < 0)
return -1;
if (fast_memneq(sig, alicesig, ED25519_SIG_LEN))
return -1;
if (impl->open(sig, alicemsg, sizeof(alicemsg), pk) < 0)
return -1;
/* XXX/yawning: Someone that's more paranoid than I am, can write "Assume
* ref0 is canonical, and fuzz impl against it" if they want, but I doubt
* that will catch anything that the known answer tests won't.
*/
goto end;
// LCOV_EXCL_START -- We can only reach this if our ed25519 implementation is
// broken.
fail:
r = -1;
// LCOV_EXCL_STOP
end:
return r;
}
/** Force the Ed25519 implementation to a given one, without sanity checking
* the output. Used for testing.
*/
void
ed25519_set_impl_params(int use_donna)
{
if (use_donna)
ed25519_impl = &impl_donna;
else
ed25519_impl = &impl_ref10;
}
/** Choose whether to use the Ed25519-donna implementation. */
static void
pick_ed25519_impl(void)
{
ed25519_impl = &impl_donna;
if (ed25519_impl_spot_check() == 0)
return;
/* LCOV_EXCL_START
* unreachable unless ed25519_donna is broken */
log_warn(LD_CRYPTO, "The Ed25519-donna implementation seems broken; using "
"the ref10 implementation.");
ed25519_impl = &impl_ref10;
/* LCOV_EXCL_STOP */
}
/* Initialize the Ed25519 implementation. This is necessary if you're
* going to use them in a multithreaded setting, and not otherwise. */
void
ed25519_init(void)
{
pick_ed25519_impl();
}
/* Return true if <b>point</b> is the identity element of the ed25519 group. */
static int
ed25519_point_is_identity_element(const uint8_t *point)
{
/* The identity element in ed25159 is the point with coordinates (0,1). */
static const uint8_t ed25519_identity[32] = {
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
tor_assert(sizeof(ed25519_identity) == ED25519_PUBKEY_LEN);
return tor_memeq(point, ed25519_identity, sizeof(ed25519_identity));
}
/** Validate <b>pubkey</b> to ensure that it has no torsion component.
* Return 0 if <b>pubkey</b> is valid, else return -1. */
int
ed25519_validate_pubkey(const ed25519_public_key_t *pubkey)
{
uint8_t result[32] = {9};
/* First check that we were not given the identity element */
if (ed25519_point_is_identity_element(pubkey->pubkey)) {
log_warn(LD_CRYPTO, "ed25519 pubkey is the identity");
return -1;
}
/* For any point on the curve, doing l*point should give the identity element
* (where l is the group order). Do the computation and check that the
* identity element is returned. */
if (get_ed_impl()->ed25519_scalarmult_with_group_order(result,
pubkey->pubkey) < 0) {
log_warn(LD_CRYPTO, "ed25519 group order scalarmult failed");
return -1;
}
if (!ed25519_point_is_identity_element(result)) {
log_warn(LD_CRYPTO, "ed25519 validation failed");
return -1;
}
return 0;
}