tor/scripts/codegen
George Kadianakis 7034c8449d Implement fuzzing for superencrypted HSv3 desc layer
Here is a corpus:

desc-auth-type x25519
desc-auth-ephemeral-key 68GrIdhTe01n7WfZroM+Uwqzd4N6GpFWgVfperanvDM=
auth-client viYu6HEs7bo ljriJfI9acOhbwhjksBvAg omzl9Hz/XK6fMdifuIAXiw
auth-client SNzxBNMmHiU Mh0Zv0GrGxjFaKr9OG1QNg 9xayJnQoEXsuakxolL54nQ
auth-client Ho28DFsBhTE tBB4ebOhBu95a+3dHEv+Fg XUkBvpJXerGUX/eS3uwXdQ
auth-client 7BHnYML5O20 eMm3Csm92XdR9Mt/Xzy/ug HrEx44IVpQlQBu7tcP4F2g
auth-client xsrAsjgWj/0 5QdhG282mmK35U5BCkqaMg Ops8Lgl+ASOXKnfii7egdA
auth-client 6FO1oPHXwmI mEl0Z5Pn8GLlCNH5xbUeWg 9610jM1OWyASws80exma6Q
auth-client MvOMOF2ynd0 t2TFwq3mj5ZKm8yH6wDEIg hM1wsvG4CTY8X1MLOInIIg
auth-client WJs5l92CN4Y vfmHF82nJ8qmGqJ/DLRTGg g9d51VyUEi9LOsmdQvaQJQ
auth-client 1TiTYG9rpDU xPJPjzHtQYmJTFm8zR1j9Q /Uv+1B5co/86sOKEGJzCqQ
auth-client ZBkeY2qXdTc ir85lASBZRF/pD4PQIK+EQ 2LxDABMvmv86KaNQqzNenQ
auth-client 1AOfLh0KtmI 2+yYUfy1BAKB+PKwMukTrA S1d6QTczWqADotn+yl+2aQ
auth-client xd2xsZiNr3A FWk/SsFrech49gODym+7gA 5ydb7Ji0e7yCNZFlVD4Q5Q
auth-client DQYYX5iSlGA VIV3wSGKIfK1GxF0xxm4dg wdH1bc2zm5dSvCVJX8ZzLg
auth-client 1rqVzmtYgGU aSQbgq+/sF93k5stnA+8KA aAWoQMV0VM262Znc7RCMxw
auth-client sx7Br+mYTp8 b/0rd+9e5Q1zGa79I1O41A jc1sm3lOfujPljWA09Q3ng
auth-client S4C/qS7s5N8 XtRzoNhqQGcrVaeTQqMk2A O4bBlq8d3gopBRMWkpuyeg
encrypted
-----BEGIN MESSAGE-----
BxzghAOjM4De6Z6eGTvBrTP2SJDdQOYV/u9qtvlFsa2FRQWk20Adv3zJ/AI10CQO
mUP4DNXM8FWQYGTvmD7wGz2/cXGjKwBXg1qO7zF5eP/D/My1sXsIfCcb41mkheNt
xn1I5eKXcnghtd4lw7OkPVjSb/Z+VARUMmf+0qSNgmHLgEVnAoGJsn8W8B4qtIay
4h4PuV0jPPlqJx6jMFOOEW72uqnfmqeNvClENXXW60xhnaxsf0up62fuW8ktu6Wf
lnX/lvTstBFZZQ8/XI1+G+BPf8TZf7mxu0WYVg1s/KWYasYMSw46as59nkqdq2Ii
qJnqHX/R20mWBhgpLse6wO0aNpky/rozEnikaPqyO1DShf6a6jXY8ADBg7spnK2/
h7sf1+F1xfi2dy2WGxc1EUMP1kTVUmbft7kOo2nA7+3YZwQuSJHaN/66HrzU2x5z
ayRUJ8+qDtfpEf17xthc/Uh253blFK96IoJJiqBfI6xt3IqOdHJq0OOC9zBbF6Rj
vKMsaxmc/nc6uOB2WePYSgkZ0qs/dRKBJs6+Ahn1KdGkadyd8mDKL86Oe8lncHdB
m/6sQjhKqFgngkCDOIlEJyWizqfN84AGqD5Zyxq0rbsN+9KLsHFfEbCRjgqjO5nS
FYSFtuKgCZl2gaYEslL1pIEYE6BD2Whjn/HWTRyWiULJr6SuavgcbxeNEQDuVCC+
fm0X7Z+qERaMAMR0vTMJK/NzT4GifrDpgmgbxc+34CtNBF5TriM8aXTNZZlsW00k
d0XRxFbbbtiT5VOaEHbny7R3MdTVutEc9E/BhLBvjSSrGX7vrryh6Oj++nthIIzm
F4M7I11S0TyA+UE06qF1C8rKmhcqU9MWy1SiccJ9KOWhJ5xwlsXBIID7wVygUhVl
ovzfKkDDPfRoBch6NdVkxNJx3gb63CUmC2TzfwOMh973nntMVzqqw9A7jYkro9ln
217kHUwMk3e83UgFL4nn7NCf3Kj0zhJ4jSfAsuQpV6e7dhzrlNya0lqrUsY2zFXP
xv8wUtg6Vo1KewgVQas4oElkgFjDN8RJ7uBAwfuE/b9NnYJoQd76G8DHei/1PHbu
tbtwN9I5RHaTvEOfetsJFnIAkCG6O4CQpzwHu1DdvEP4s6/el10b/4awBJ4VwOVZ
YHSe4X0DStTV4Cu6aLh5OvrOmGbieRj6HdGQ6syYCaEBTuxbBUUpjIAfVlReAIph
6aOrY6HNcCmeVmL5qm4dKr2XXOREsnUFuMqmfQuQd9pN3zlmS+RqCgSJuFrguFpd
mjo6UxZvbjE7yJjtCih38HRe5BaigP5RDRkXmiXjqJ4koLJpyjQh19k3BYGcdxUC
RCcYXydbGF7qHlnoaX9HnX7y6ZRsyKQpt91PMTGOUsB4fS8NhsqPpl2gdp4poLNs
+hqjWZJ3uuLotXBcgM39Dtq9tqqu9vM12T80UAfWnVEHrBphmukh49EhEr2sx/la
kAzRoTbLyTdlGVei8hI7/RtZIaIcOkzlhcFI5zmBlydyrv6/79vzt6WI/w9GVGpM
OuSM0NS2CDJ7Iw412nz3CV1pEXB551ZBmbme6NHUe4EtEsDbgkP1Z201H4j51yVz
wNoIksE5Bh5XRKuu4We5f9KZb+AEG9kxKJ5DbJk2YGJEQFTyfv0H68pl9urstPXD
aMQF806COe2uhGm5gV/skvPVTeEvStE3K8DxZgcWNcTMVk8ZjrUHNfguVVToP8hT
Fl4Iqo3r+JZEAGXnAbTpxUVC2Xxspf3jsT5xhUfB/NOexZxrXWnQZ+pscsbow0ba
GATtakD3TF2WBqq5WscmOex+lrJcBCWVIzVWdwi5ngAtm1S7efkJlFUvmi4OuYnN
RyZfxVIpoer8f2/xPXvxkOWFminDy5sFEvlh2/pnymfKOUV+CKih9ZApt+izlRJn
+sMIOW6Jhf/WYyjeN6KQpwi6CDpclQJXA1SVoOVVL5A3lotLjs0x7ThIcBoxCZBq
rFBhBu1gJgJ8guMySAHssIvhHHwXJsYEwzWCVAg/zIUXy4PLwIkgHApl+vGcldGv
Br5HNCuqQ2pD9z2RvzNneB/LrYB214i+BP2piO5HbmeJBhby93blGXVfQewQT6aF
dBlK8/jQM0rvb+LkmvQm2ypOttRpX2kyQXooJHYTTusaUr4jVmgngCvGtgqAQVqD
HULXfHWvugZbAh6dXF7gKnnsyDOWwAgy4OJRi8i0jCaZ8aWSFRUjeGKT26dg/ayB
U4QfMb8vL8tMdXVBfQLGcBgvrzQYrY69//pV6bX3SbLfUfWXV9eqUVWVPqVyPEwa
Tz/aGVnGv/dY8h2cVnrgSXJGlOO+mCwSl+k9nk7VcEaKYuNlaOP3ZlKJvVj1LefM
FODh4qTDBo5NkyfKu5fcZcOqDMBeGWXZzltE7CmvY7fOpDNMsuAoXYWI7q9gK82F
w+nS0tVFCIWYa9DgGMv9GKTOk4Ia9elkbWypdRE/4oz4QxmHsArEsK4gDI+wmcp7
/NsAZeuy96r2YDIUam4uASKOiAqrEfCv6B6cYctdYwZbAEXdo4fkGrCIjNRZmZGv
kcZzHzIymnAmKRTkPt/LQ7Rx27Qd/Vt++B3zt2ORFuopqowOP0ocGZtkm0daK3Fc
YDXMwIpf6Z8PwvvsG1bQHcSR+cUZi7vK7+hj/LGhMPafHM7HmFUbAxpJYr5CvR6y
V1pZQYltT8xWayCeMHlLAAg10RgDkqCnY4dHnrY4GdwI2O7Wpxomni7qVHMjn+cN
UTrd7EeVw+dxAIYosuqG7ua7ee3VGoOs+XMLrscAqHahfGbyYC+j+6Tow4qwWBdU
/W3NJXnRWaHTXFHllpClnxggPRQx4yPtgTOmBBVl/O0T6i4Bv0ygsJeZAqC3VmAJ
QodQTzGf2jwqsZf4uHKQa0EKGQvTGjFVgAFNpHmAuzyqh0b1pq5JeXiFERGsKC3j
xcJilq1XeIx4SL38YNuCxi4pnyJyLnGGHpNjdjeFO5lvgCaKPegsPo4hpNpTvBJ1
D7+o3E5CqxzjRt9kQmtwBbuH/SQX2T0x8aQ6vhwjj8ftDfw+FbjpMR9zfU0Lf8V7
UjVGIl2yiVBGScBZu1nSD83PxjFy3XdFtBYoU5OrlXwBEYQs91jwK7UCiGtjI2Ao
ZGkJaBd4AqP6voyJiGnC3LWFcmeMyzfExgiclQwfhFqqf762TX5JwG6xGqtdcNKS
k54LlcI/RfvJw3ncSs9YsodZr6Jz5irpRTHX5WwCrX9mLukP96SXo29bIXEZAqEr
ZxEcF0zlYE+km5bRfRCRcVVrScugCshSNLOdQp6fOAtHCl7rdQ/8Rz7oHuqieLVi
UldRsAmpk9fIfRLphXj4j24jRP0VtL/LoJwakWTa0xO8K7eBAMVITI+HgFfN4wSO
Yh1B+bGD5WKxFsWSgBMmW+YLF5ZtxVmmbg7wK2dIpJs4pjg2YO/MTO7SifJ9kjcb
bCc74Tjs5mLLGGjGCIoXfda6WXbt2it40XhFk2zUAcPPsgjbctftkaWph7JSZpmZ
fVcPqKdhmA1U0LA2XEOMTxGyCAeseH6pJXZm9LdBozc1CwyWP8XEDHHJf35vfPKY
JDe2PanFepIOHaoRTgE7ZkGWKzOIKlS0Ucr1ezVfcxiFgQUNM+MYXXbUz51BVVq1
Dulg4VvX104nt/ULijcfa/TsE+uklEnkyk1mhavH337NQg38XF4cAngNlUF4nSW/
j0jizbAtaSx1f7q6xqPm3zPRlHrGQizHXLyl+SLzDUVPOXbPwcoeev97YeeyB6h5
NBbIK9hmekNDmYIwI0bmlrg6IXhC5pyvRe8sQlV+9wBY2liF0M1mq5onW3a55afp
+ynxXfQucb1HxZLXvRIGMBgWSQ7HfIPASqSE90Vu6qQCfkOW5PDqONr4BM65V4+g
AYsVEgaosgHw9CF7yKgkvmZpToOtGpCHVcdUeeY2/rrQnAQeSy19gj/baJ+OKl6Q
i1EGU8Yqo2r0d4XDFp/eKgC4sv57qp1PwkYQ/HKqoelJ09IAZL2sQWc05BGwt1A0
11qDIEdkZBjzK3qUnY3QlOuoZtALZrnPg56SlF1RGDOPqbcF+3opqsvzBoiikh4V
WV5OUYjRDMUDLQqf/OkuktdYf5N3RcbYP0XsAvY0ZWG3Gp068b3p8peCpkDzrF9p
bQ2ZvS304tN7+p0hif3+JyZy5/sxl17RxTeg5I3mo2+J0ptQDYwF/WadONO8r7uU
YlRltFtQfyMzyVzHON4NHGjZh7dDGtWp0MGeHRBHQsC8bEChhvWme19VXhgZoWpl
dUIZkSuvRwiURXjhKbZrEdJbVmr9FX6zoyOahv3VnmcEARoR+umxzvo3hGQPbHyH
jTsQtSBjs75/9fCxcYmBWkh3JHVDVsCbV+z+5KZpk3m50J4Y1hC8hvepC9CaBqOM
DjfyXh58x1yKiueEbcjSWsRuF7CjcrYnFUBHOs9U1j9WytCI3fhOWPMgR4UZpGuU
WlcR1BXg1wYxX273xOS/jYn9MLAVlbRpPTUMIH9VRP+sc8+XaxKpJSCl4C+vcwNY
1YdKD2QiuoBJ3fXGtqMVRtn9eZvatSJuY9CnRKRbf0hWmFD4D5RkiwE0WkdtwoHR
uEXJ47RlF0/JDU1fY1mXBkq3usvB4Absy78qL06vh45xkk9bHbdf+7Ao1RQKmqiB
NL5XnjBu+YX535WG7t7Su3mTCJXYHvn72ATxry8yhSLgWqt81STkRwc14HmrOGG8
Gw7bz7y5vikj/rnPyr7ry+QRgNNDDayAqenAu2vEAzWir0RQC/iZ9rc/r7YQWGgL
Xrd4TQ6rTZePARhwB3VomnLDDvLvi2oq/jPzLKSYM2a7qj/vBSbJ/NnNaDW5Ccew
RjMI1lIHeedqYTVAW/CKoSEPcFSAzi/Ija0gcWLgX5xsFDGIYBepAX0KS9426kMu
0r/V66zmPMusMilqRTx7KW+jZMVxXVc2zClcdmohMmtjsbqLkczprfSbdGswMv9Q
I1ktHJHIRD0vPeZXnvKZsRKZw3sKb0ltZi33ZxCJFQPeGGtM5aAFthj6awcXy6Tt
DPUQdCU/vh1zmGRAX17/Xb0irfvN+GhQLEl42pzhigJXc/rCG3a4Na8wT+xAIZVf
WUI7hMslx5wA+iB4lrAjCq0YIrjINI/lHYpotXUZGmz5wz0jOciTmXMSx9du4cpk
fIQJfR+fr5tG3fjHMgSP+p+RewHkd/7RUAmHC2k3cuk5pCJvUVJrhUIqsi1fa0LG
GA0UU6Nr9tpYdNr1WkbKQjxTg0D//AXe61jmUS5XUU4AQf6zQVfN0TMtmuYeacbK
4r6Z1CSIRbsgcnL1BN8GSd4KddkCqSk941aJUCoX+77ou4t0btVSB9FnLKipigtE
E/Rpmv+81lA4fLiIag62/pcJ3uppsZ9aaHdR10SMmuCjAVLYHqhJfrHHn32dyqLK
UI8kEZJ6GQzHLUXcGbbdnk1Qm6JwO8TeF/oQvh9y9py+oAyFy0qzP2UeUMUI2yRQ
mlWSy+wX1DbVDQ3UHwJjWp65CgyYXuW8eCB0AbyF0kF4KGf7/7Ae7tEGbmYSm5MA
71z+Azxtv5gRyRb787V2dyo0wcmbRlL7iUBVXNM/czQo31tAZIwLc+lKNp0SPH6g
gJ2yX/GeDSFNAeEVUZ/f4KZIa7QQsnGWrUr+agSnQFkySmIjWYjwC/abJwah0v0d
ulwr3tECaaXtoWVdYXa3utEclBz9umBwMJ9MQCm4Kx7dTYUWFT3bMM/ESTkGPcfm
m+C4FsqFBs80WY0ududu50vTDSdJt1RqZ7Sg6DNH6acBvWyXOpT5mPJKUjnSFwyG
oVLgv0aDDx7lLZdCkhyz/Ff5LNmBgQsjGllPszJ2gTZxZ5LD68S4kUirQG/qtzlS
PGfDOC79SMZGgsoAnr4wV3RUTxsTVFlxVHsBMB+EXOFHAr3wHTVxUGBbGzxBlQ9w
I/jlu8LIIexXAU75HS5KCGGfg0Z7BLqEzqpMKqcBQC7BD7GnCXrDSQ2DCXnl7bLN
lIrQ/z2Y8AgSdED46R40MqyyN6CPPNiOCjONHZ30fLEXuEgCp4R/+x0WWsWpjGk2
Ydkc03cx/X6moUYxB5HTqTodBmAQuWMX0rxFDrnR0SWghWjdWth9gjd+dvZ82tt1
UMUywDPhcYchtUi2lnqnYJm5p00GN9Mk14MC5ZC5qP57IJVqxu0ktOMpks+CLPnz
qp9OBpI4sIzd0y0aUJC2Gd+E9aAhlREIiicyBDmxLdk1i37QeeCralI3eubLNmE+
CjDjD8t8FUGPpKglSD3lfLTqbp2TUvyWfvJC6ulFPNsAbeLHTnPnpyPQmWxhMNGt
h67B9tbYww2TvNwqIgmB4+YIR4/pSs15TpAqvuUvjpmRwGklqgiSmrQrlIxCxux/
mfsaL3KE97wm8BsaMpMkjUL7ByTIFhFZ/gHPTxaFpbqTZ4G+lABLgp3bIsB9Dl/P
ovoqX+qL2Mq9T0GrVJGfRBuA5hISw63hx5zdsj2Cj3A3khHPqR+GRN/rVYUuOpLm
z3v5pU/74vZRmNMAIhyhmweSEPNtyVkgSdgbFErqvhxN0om2Cd/7cWh2g5BXHyUL
PBr7ZkgfsE9TnuDH7Z0JoBqXJki+MO6nqz73oH2Mm86yxcXp6O/ieKTollrUJ3yQ
P6hLcEbYPzUV99del7Va5Wi0nn0wbRXCGVQdwY+iWc7pT+VVlncyg0TvLXi0OtOt
O8xbT2DAzVXxMwOsKV9ZgS/0dtwzwICpnTzBI/47V8GYhHbOUNTBPZ52GaXMeWlX
cuRGb0+7OkKWuriyOQ5z5xaASCVfqgnOwSZYiAk0gcDoK+JHdr64/sMoJhH87R4i
2TO90whkScgiGR7A06Ba42bT1nJtI6pxvzdB2b4BDAs2Lr2OdcB3BY1dtzKjFkw/
qfIw3F55UQwcs84ZEFQDAB/tmfNHajblDFpXR4N5QvU/PdWVWJUub7oNyhIX6ruu
ln4H7lpTUHJZ7jkr1qpnvkztZtHGlpJ0QdUHgyMYER1xU58Hg77yzIW3EdAa2PyK
1t4udKbQKChShlShIMzwzj57ss/69QobrpYAHYi6IRMaMUGBfipGBACK3yeXsXz0
c3Q2J5vI6QbxNsiJ5t7Ry1IqotbJcU7HND/yVUAUbEg5CpEDOSeSOW/ulyLuFxEV
lRTwIO/68BoIoR7umlP23/1N5OYzaBHhH2nThILBovHeJRXnGXSgeFfwSj7LIYEV
c1MdDSg/HzoADPXyEPLzqFzHRHeNiqEolmOPnFh0hRzbMZ0W5TQPDGWJdF21g816
vA0WW4UQjLM+vnX9kKKLA1ut+9JWk1dGKsmWtdWUDfJjUP/L6dS4OYEl6O6+SjM9
GcyGvHTiC5OpJllYpvELP/NjtTf9or8Bmruuga/axeOuS5ocYLK/sGRlmO6Z96da
QSlyGWEQAnM2D1cDmdd4CetPslOVIcQ41+coWCi2xg3UjO/bFK1CA4R1rb4ekXfs
s5U2XChyHhUPgl57y1r0ILXRXWJTJ0/F9hhu4aYQVFeIV/IuzJbmTKKkAcCOH6ys
qnu2BXz8Pm2tU10JFfRcuZ8rHuUyUErA40ESsLijON98GMwL4Rat9ZSCNS5hlK7y
yRJdr0ITp8oTbduAoulgWOvtcw1L87QBVojWz3cbhXra+WITirYuGNbzfmZn1WQM
kukEZUEHSypGOrHr1XiuY4Rw/DBaJSLyZ+VybEOfXqXkDBh5s1ayypBvzrzFZCIn
PJxIVsvrkhrpEbTJ9d7zLWjhOa9ZWw8lAubllbGm+7qCfdHmGsfBtvJdzx6zhB1Y
otL/PCis2XVTBEDJeB8pGqKFOZjNz8PC5qP+ymtAfy2ktl/u4HsFlxV7CsEKGYPm
p3LqnhPUy5M5gin4E4uPPyzzD2kcM3way49FKWUKlblQU0SyWtHRmMB3vcVmyT85
BRULXF7jgog7XR/EMltwQyJI6GcUCrnWZu+G0BEwXG+CsgCzE7assDavc1NSGLZM
rmzXiFFyfk7CE6lW2Lm+oWaFwKdvpmNZJFGGX8ZHRE9ZvkFMnfw9MYf2W7xa0jf7
k3c6X5wMuk9mznVtq5itNFVXh1mT1ujeWOiiqyH5UhQQjj6O+ZXt4gqt/jT6dd1i
jRuhhxaUGOlhpVBW/ySXhZ+HgOy9aCJ/bgjRGaqGixogk4f4rcgigHruwTpOQuDn
xDZ3Xns70S40WtHSYN+Gbl9nIh4yl78aNnA4FVtTAuLlVKEKlMJi9OBFuP5TEczG
+0HTwL/VPSCI+8FUZBhlz3YwecYq6dY5mS46+luPW+5Wl+5jtzb8V9oxVnRx2hQq
B5HJsM5FOOhHDHMXoCsevj7N/ufK7cU7Wbr0DkgYRwvb0ZJB5WYgcaQ0W7aduhGb
MQsandhP8Ajb2cmLobi3mHHPbcEkvjT8JP9Sim5xtfF+oCMMB5ByA5bI2aIFybZm
jX9e/V8wNgtpDKDVKPjB3+9dj5gU1N5JsrjQwQDB0kVRMWdpJCtD4hZ2+T/QE3SI
f8Rdk8pj8qBzRPbnhW6qsoWZdjMRC8qixZqHw4jol09UF7Ab9hjEF5ZDTfNGXwy8
/hz8su+mr8hhrlCrOF2vBYUayAA96zhbDWfg3Pdxo9bTn3/DmyAngL4J5Gu679xK
rWN4j7uQG4bzTa8WJb09/lW49UzWvmrz0c6/yexk3T//xDD067FafdnP5pYs4Cvp
rCoHpXbKjxx99DJmb5iXW0JRLSpFSCbf1HPHbmzST3minSXap5FCWDJcSgExKIJp
DXZ9rk0LMnQA74MWC5gjjM+5t0AHKuNRhJbQSwYWTKqeApXho53T/COlfDlSs2tb
Vz1Ia5z7IOfu1QheE93huNAHT3Ob+mSmUq782SqFPr6uwud/l5uP3HpcuwugdlFm
Jw8uBBOQ53W4lLbYfQYTVgieClVhmYMu7Ye0xYZ5B2jf714sjZRMa0LCbsyj58xH
uzs8ddNN1fLMzb0JRBE8JWj5PbxhA/sTwMkD7SnEMBUTtP0obmuQ982aTfyvQCH/
ve8OUPtYf5XWNv18mpR+h+riMt1Y8Eb6BJzTMFNWagMJAe3JV6A6upHroNFo2FxY
1XPRM1Rt0zKo7GD+oXnixfpl1aG8yqZhYo1ZC9buaHwH6zvM+xoiGD0iujeDtpVy
Vp6cAqqaGmrNwcPVBLc7hNKrJnbFKyhjL5/xp9j6jQov1aWQ8HsaNvh0p2ljmlwb
daTYZcwLgSgPna7HhiqnOSAmXZ7St/qe/b9TqBtIVzwzmtevgMyG98QV0syFP5X6
2Jc1g9733sTZp7njq4Cu07JhpICpinhLWR3nkODJbjk/mpLcQZgtV6W749AUo8oT
jRVEJ8MpCo1h0bVDxsRnA3DrMneD88L8/b10aHs+bPm1HKbCmT+kJAFaUQNa8JvJ
pReN37qTWvZCte7vaPAIP5cboATMu/J4t3izpm+YJoJlWcIegGx3kQ+17P4MbgDl
S93U4sOLvTk9+MoyPo9yGWU/zHgzcQ6wCFdzWMDRswuh+/4TJ2+yg6maq3iBtj39
gNLMR+sRgGGvYisqE9bfvNQy5IWrABBKcSBTXeTM1DmW6jv3TI8DoCzCbpjqcIwT
u2J+7k8wJEHPcAwnBjlyWphVvwNwM0cXqOnlJZ/4z7OGgjiNEem7TMuvxk+YkiXK
OzftdTjeIpzBwsGRP8/teMBpjS95M7GloKtxO+muBVxXbmsq8GBRC9vtNJ2Ma/xP
bXvd+7caytD3ob6ZfOzCpi4ZS8uByEfIMxlgZ5Sn3jhgEkcIU+YW9b3teMZOuWdA
QpDCoMpXaHVyRqwVV59JjmftiBnNBEo1/QzRj2UxRi7fHMfmNxL5LRM4CHSLUSCq
Y3A3pkxvBHUzemhynSFvtCPa8GHiUpe9so0V/2hlgaENAVELPjMlWytaYufRllgy
tUnCd32C5PrrmYzMKnxKRPXLcxLgziruJGSks9vIspoPk0pWgkZm+M9fRpJKlWHF
yT9OOGBW2yynw/yvXssxJmdUDxVcWL4uS2bZc4s0Zc6RSL9uQPjZVX0JLj+cXfx4
93Gn5bDhMgm+CGM6j3RiAAD7tT5V0sytNFjXd1A4U1u8yj3wzhKqOtZpDmuGUlMn
EODu7I5KtWxOTPThy7TecI5r+F/6KL+2MOtRhj2PmlT/Xed6PaAmDkQeiXGps08x
u0JIpuB61axvT4PAsKZNUd4ExbzNxRDAARUMgY8krpmyKZyHVFIQ19uHM2lGl9/i
h3PKlLHYI8RsHutHElzq+F5tWd5AA99LVRZX4axAVIQNiqRg8IMSoCwUaCCbjUMz
sJCo2t36GYk5S2BRnfrCqYoZRHw+ENYN0tDEMhXq1OqjvNHW3TzL3DsUhM6EZU5n
cRR4ynUvPqqWFphLefRW10vCtaW9roJQZyFYf9kd8xgW/BhcDNbTTaQ1U6xCHgX+
78DKee/NvY1WIEBR8X0iVk5XlSJb14eRtxNawXFyebVdmC/DiMNgnTBncMbePnZi
KCl1r5xqo7tSIoJ6Z0l6qINd89T9fcg9mujTVwsfQ+5/kdEy0Iw7CQcTOGvMaoPX
IAJlWSVeZ8eu8kmsD1Z8ewoPufMKiY4cPRAK5bCDgsrK6bAExOlCwPnNNM8Ym1Hz
aYFeGs5sW468Qww+Nbl5xcNFKtwUKZ6EebRHjwttiyTgCdAhv9wL1u2WFydWWgkG
rwUbNpSLKls+pijCeJAscvxzbZz96iOaYrY8IyzGBFwfgFAESfnzBc8SQjZzMzoO
vmYIRon2m/5w5AZA2IjQ4VxXJDK6XExD/ZLsxNXzMnROD++hE+s8DvPlRPmN4egF
gAzJs/9t7IyE/dDf7gSSBqzEBbwduD8ozzYHwELUc4ERdRzjEdBM0azT61g7Yilr
iT5Hy+2iw/pNwiqVOYiAbj2lwcoMlFZmdxviD4IMXdsNVWsCAVJL0PqIh1UDDb3z
Urv3idBJeSBuuFr6AFS6kAgvrwV/pEGoBoHuyii/rZxVugGKeuMynKEvSHuFNuQU
qIHcNgqQR34v2Ut5pQ1R8s7K3Rae/AhE5GncJa6FJmB9TF8MYMu9PlSZV/eGv8UL
IDWQ7sY3NdhZini//xtwPqIw29yOeZ0X6Aqsek9tfh21UwKSpHb7T+PwXYmoB+23
p3FXkP/rv4AGRq1xJqFYzKJvwsXqTFuNFWP74yhTg6rC90w2p5TeH1rJMAnv4u0L
hGtG/NL+D1Tzdf00TYAjno5Ia5dQJDd/eO+Ygqnhl6hAqGtS6r9JhIEXw1nQD7SC
lj96ZuKdUWO8rpIiAtvHAsn++xvMVPm/S1SwA8oE049iVwS8/eNNiMKoSlTlYc7o
pusBZQrVF4We4HHYFjysBbcXlvoXDd8LkZ8Nh63VQPnoIGNKH2U6aXCnQcJ8dZqO
DNxL4uyM4A578FUUR6vxqt2asnLHQ0Z7pPE4uqtz/WgbiHI/i2oHS8oe1clsifCw
3ZY33kflqLftkTNka1oiftDb0OqFLjkS7/AUorqHazw53gM3gqJY5EXA3Px9+nhu
NzxSK/t41JoCfgQJHMkIWb3yUcO4OFZeGCeAxIJY95hv/brt6/WNielXjNaohYvc
lsSUHEJRHwVxQmWK0LS+g13HAgOI7cNt3MA8sSkzTneHGFgEvmrSyb0wCEmushC9
mjQThvaxfQk9douA/cR2bHr7axXqv9vjztmxUr0a30a7lvLMBQbJmFtJJylW+tJe
v/vKNOB+9mK793cttr2JFnMhwUKFKWiFDQJtxw/eLQWY4BJ19Rs2x4BJgmV+u1jB
zR8uvxuArG/cqVEJsoC6uuSzhAWSwdvumijO6yuyWF6nHY6aAcy8dyFQlDFHAd+/
J05Lrbzj4N9lcI7hPalh0uMdERGvtUdT8QRm5ebP1zogYEkZk/1GOU29dMawkAt/
SWhp2yWdjLt8f5HQKu72vUF/yyTfzfdqQqJwfthP7+vp+sHDO85AMF45uU9g3pxW
IbXSbZ4fFGC1/41db/2GOHFgaheMXj0SIWHqQE1jtihr3BBBO4b3Ccz5QCnrn48J
8L+QRdh4a/cAx4ty/oHEiXwpSBBSFRl5+y2NijC8GITA5dRjCRWP+Y0zuTrJ7j1a
h+3kGs1kxqskhaEuhXnXyknGLjXrU+ewRGhHzP23o5betVhX+c1XjVqmJNZ5OPn/
wrqx/XwoIl/3F5lMmGDG9mPtyg0E227nKl9Sy0Vbwx2tu1unjOlzSCa7lpoD4TIX
PBJ5+Zb0CE6HEt3V0ec1m4uUe/xObAnzyr4UbzdqLaMy8vTcF/qsncXyPBjwqdjR
ReDAtt99bAPY4roPKGt8dgKUPE0t/XoY+SlmUp75TkZDXrOIJXpEW0GpLPf53T+W
Ex3KtfLAnZzrw8+dIageY7IgoQ85h3sYE7uEI8QlcO/o4udqUzTp4Sn4sWvdTLrx
W7ImvK2rsU5ubVdsEaFKM7+7nxGn2JyMpIWFz0SbP34CkXHhrXxyRD+GhMIDHFxV
uBnZnjJsw+ooIm1rL4I7/VMWEwmVegreT6w9Gsmb5igw+zu9v2YBgTOhysA9XZd4
7O3VjqKkhTXcBqdpRWuz8gPQ+4rfwij28Gg2alG04Eh3G3868NOCFJhhaHVmwYR2
ygRm6N9eDW1bHhYSN75HSEb6aIebk+1AT4S1QtJaPSH0EduIXO++JYAs+jIFKy2c
jCVFlO/LbXl7iCdXurJHpSbMNmZFNUri6zEolENODLwke836jBOKiVrWzLnEMxHI
WDDTpLTYhR3C7sEprpEQm9SX2Eik3WxVb4ZTb7SZFU1y1d4tWnjGu3U1D+vO9wVq
Sss9lDipbkhQ9k4j1/Pqozaxvi8lYLbh3WEjK3Iwpr66Bk6Ai2oRg4b+7vzV4o+6
L47JPJhajdHac0CIlmupyA4eejECS6OpoLDf5Wr/616k3dxM//3kAWGUnXVw9GSo
UF5W8AaKlaGZ6EZk09NyGSFRjEs18z+g5ckviGF0EhZI7ZPWQQmlqWUsL9O0S4GO
ZZ9f0UhNmHEspcugbs7e1yfjwGVyxIBkrmxpkmfHE4Gb47UGlJevg2OvZOPT3wMH
vOds2BtqdT3tuss9k+7hsISGse7isEOb7TN5MHb6yyzqnCUZhp5m3Iag7TUkiyfU
jKH5R13tHqKUoJ2rofWoLO2H5xSfp/lqF9sLd4rJ+Pbjhiuvfwz5copYsuTNL4kB
SPUikHlTxSOgTBYNV77qxpsqOI3+iziCrSqHsxNdlaA1T3fiq6SeZBNdD822AYm9
L5hbcgpDPEEwT/n5kWNbRNueerJkJwboaOnT1ZX1601Pwj5QDi+YM1NYy5PsdWxb
bPGpQyZ+uf917q9gV7Ykr5cic10YD11khAghr0n6fYfb8Ijc22uP6m47KItDqQc1
eFym149F56B0yg5FR85Arg==
-----END MESSAGE-----
2021-06-11 02:00:52 +03:00
..
fuzzing_include_am.py Implement fuzzing for superencrypted HSv3 desc layer 2021-06-11 02:00:52 +03:00
gen_linux_syscalls.pl Move code-generation scripts to scripts/codegen 2014-05-07 01:17:41 -04:00
gen_server_ciphers.py Stop assuming that /usr/bin/python exists 2020-02-16 21:58:01 +02:00
get_mozilla_ciphers.py Stop assuming that /usr/bin/python exists 2020-02-16 21:58:01 +02:00
makedesc.py Regenerate extample_extrainfo.inc and adjust tests. 2020-10-16 16:07:46 -04:00
run_trunnel.sh run_trunnel.sh: Use 'find -exec' instead of a 'for' loop 2018-10-29 10:54:31 +02:00