mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 21:53:48 +01:00
257f50b22f
Our Windows compiler treats "time_t" as long long int but Linux likes it long int so cast those to make Windows happy. Signed-off-by: David Goulet <dgoulet@torproject.org>
585 lines
22 KiB
C
585 lines
22 KiB
C
/* Copyright (c) 2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file hs_cell.c
|
|
* \brief Hidden service API for cell creation and handling.
|
|
**/
|
|
|
|
#include "or.h"
|
|
#include "config.h"
|
|
#include "rendservice.h"
|
|
#include "replaycache.h"
|
|
|
|
#include "hs_cell.h"
|
|
#include "hs_ntor.h"
|
|
|
|
/* Trunnel. */
|
|
#include "ed25519_cert.h"
|
|
#include "hs/cell_common.h"
|
|
#include "hs/cell_establish_intro.h"
|
|
#include "hs/cell_introduce1.h"
|
|
#include "hs/cell_rendezvous.h"
|
|
|
|
/* Compute the MAC of an INTRODUCE cell in mac_out. The encoded_cell param is
|
|
* the cell content up to the ENCRYPTED section of length encoded_cell_len.
|
|
* The encrypted param is the start of the ENCRYPTED section of length
|
|
* encrypted_len. The mac_key is the key needed for the computation of the MAC
|
|
* derived from the ntor handshake of length mac_key_len.
|
|
*
|
|
* The length mac_out_len must be at least DIGEST256_LEN. */
|
|
static void
|
|
compute_introduce_mac(const uint8_t *encoded_cell, size_t encoded_cell_len,
|
|
const uint8_t *encrypted, size_t encrypted_len,
|
|
const uint8_t *mac_key, size_t mac_key_len,
|
|
uint8_t *mac_out, size_t mac_out_len)
|
|
{
|
|
size_t offset = 0;
|
|
size_t mac_msg_len;
|
|
uint8_t mac_msg[RELAY_PAYLOAD_SIZE] = {0};
|
|
|
|
tor_assert(encoded_cell);
|
|
tor_assert(encrypted);
|
|
tor_assert(mac_key);
|
|
tor_assert(mac_out);
|
|
tor_assert(mac_out_len >= DIGEST256_LEN);
|
|
|
|
/* Compute the size of the message which is basically the entire cell until
|
|
* the MAC field of course. */
|
|
mac_msg_len = encoded_cell_len + (encrypted_len - DIGEST256_LEN);
|
|
tor_assert(mac_msg_len <= sizeof(mac_msg));
|
|
|
|
/* First, put the encoded cell in the msg. */
|
|
memcpy(mac_msg, encoded_cell, encoded_cell_len);
|
|
offset += encoded_cell_len;
|
|
/* Second, put the CLIENT_PK + ENCRYPTED_DATA but ommit the MAC field (which
|
|
* is junk at this point). */
|
|
memcpy(mac_msg + offset, encrypted, (encrypted_len - DIGEST256_LEN));
|
|
offset += (encrypted_len - DIGEST256_LEN);
|
|
tor_assert(offset == mac_msg_len);
|
|
|
|
crypto_mac_sha3_256(mac_out, mac_out_len,
|
|
mac_key, mac_key_len,
|
|
mac_msg, mac_msg_len);
|
|
memwipe(mac_msg, 0, sizeof(mac_msg));
|
|
}
|
|
|
|
/* From a set of keys, subcredential and the ENCRYPTED section of an
|
|
* INTRODUCE2 cell, return a newly allocated intro cell keys structure.
|
|
* Finally, the client public key is copied in client_pk. On error, return
|
|
* NULL. */
|
|
static hs_ntor_intro_cell_keys_t *
|
|
get_introduce2_key_material(const ed25519_public_key_t *auth_key,
|
|
const curve25519_keypair_t *enc_key,
|
|
const uint8_t *subcredential,
|
|
const uint8_t *encrypted_section,
|
|
curve25519_public_key_t *client_pk)
|
|
{
|
|
hs_ntor_intro_cell_keys_t *keys;
|
|
|
|
tor_assert(auth_key);
|
|
tor_assert(enc_key);
|
|
tor_assert(subcredential);
|
|
tor_assert(encrypted_section);
|
|
tor_assert(client_pk);
|
|
|
|
keys = tor_malloc_zero(sizeof(*keys));
|
|
|
|
/* First bytes of the ENCRYPTED section are the client public key. */
|
|
memcpy(client_pk->public_key, encrypted_section, CURVE25519_PUBKEY_LEN);
|
|
|
|
if (hs_ntor_service_get_introduce1_keys(auth_key, enc_key, client_pk,
|
|
subcredential, keys) < 0) {
|
|
/* Don't rely on the caller to wipe this on error. */
|
|
memwipe(client_pk, 0, sizeof(curve25519_public_key_t));
|
|
tor_free(keys);
|
|
keys = NULL;
|
|
}
|
|
return keys;
|
|
}
|
|
|
|
/* Using the given encryption key, decrypt the encrypted_section of length
|
|
* encrypted_section_len of an INTRODUCE2 cell and return a newly allocated
|
|
* buffer containing the decrypted data. On decryption failure, NULL is
|
|
* returned. */
|
|
static uint8_t *
|
|
decrypt_introduce2(const uint8_t *enc_key, const uint8_t *encrypted_section,
|
|
size_t encrypted_section_len)
|
|
{
|
|
uint8_t *decrypted = NULL;
|
|
crypto_cipher_t *cipher = NULL;
|
|
|
|
tor_assert(enc_key);
|
|
tor_assert(encrypted_section);
|
|
|
|
/* Decrypt ENCRYPTED section. */
|
|
cipher = crypto_cipher_new_with_bits((char *) enc_key,
|
|
CURVE25519_PUBKEY_LEN * 8);
|
|
tor_assert(cipher);
|
|
|
|
/* This is symmetric encryption so can't be bigger than the encrypted
|
|
* section length. */
|
|
decrypted = tor_malloc_zero(encrypted_section_len);
|
|
if (crypto_cipher_decrypt(cipher, (char *) decrypted,
|
|
(const char *) encrypted_section,
|
|
encrypted_section_len) < 0) {
|
|
tor_free(decrypted);
|
|
decrypted = NULL;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
crypto_cipher_free(cipher);
|
|
return decrypted;
|
|
}
|
|
|
|
/* Given a pointer to the decrypted data of the ENCRYPTED section of an
|
|
* INTRODUCE2 cell of length decrypted_len, parse and validate the cell
|
|
* content. Return a newly allocated cell structure or NULL on error. The
|
|
* circuit and service object are only used for logging purposes. */
|
|
static trn_cell_introduce_encrypted_t *
|
|
parse_introduce2_encrypted(const uint8_t *decrypted_data,
|
|
size_t decrypted_len, const origin_circuit_t *circ,
|
|
const hs_service_t *service)
|
|
{
|
|
trn_cell_introduce_encrypted_t *enc_cell = NULL;
|
|
|
|
tor_assert(decrypted_data);
|
|
tor_assert(circ);
|
|
tor_assert(service);
|
|
|
|
if (trn_cell_introduce_encrypted_parse(&enc_cell, decrypted_data,
|
|
decrypted_len) < 0) {
|
|
log_info(LD_REND, "Unable to parse the decrypted ENCRYPTED section of "
|
|
"the INTRODUCE2 cell on circuit %u for service %s",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto err;
|
|
}
|
|
|
|
if (trn_cell_introduce_encrypted_get_onion_key_type(enc_cell) !=
|
|
HS_CELL_ONION_KEY_TYPE_NTOR) {
|
|
log_info(LD_REND, "INTRODUCE2 onion key type is invalid. Got %u but "
|
|
"expected %u on circuit %u for service %s",
|
|
trn_cell_introduce_encrypted_get_onion_key_type(enc_cell),
|
|
HS_CELL_ONION_KEY_TYPE_NTOR, TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto err;
|
|
}
|
|
|
|
if (trn_cell_introduce_encrypted_getlen_onion_key(enc_cell) !=
|
|
CURVE25519_PUBKEY_LEN) {
|
|
log_info(LD_REND, "INTRODUCE2 onion key length is invalid. Got %u but "
|
|
"expected %d on circuit %u for service %s",
|
|
(unsigned)trn_cell_introduce_encrypted_getlen_onion_key(enc_cell),
|
|
CURVE25519_PUBKEY_LEN, TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto err;
|
|
}
|
|
/* XXX: Validate NSPEC field as well. */
|
|
|
|
return enc_cell;
|
|
err:
|
|
trn_cell_introduce_encrypted_free(enc_cell);
|
|
return NULL;
|
|
}
|
|
|
|
/* Build a legacy ESTABLISH_INTRO cell with the given circuit nonce and RSA
|
|
* encryption key. The encoded cell is put in cell_out that MUST at least be
|
|
* of the size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on
|
|
* success else a negative value and cell_out is untouched. */
|
|
static ssize_t
|
|
build_legacy_establish_intro(const char *circ_nonce, crypto_pk_t *enc_key,
|
|
uint8_t *cell_out)
|
|
{
|
|
ssize_t cell_len;
|
|
|
|
tor_assert(circ_nonce);
|
|
tor_assert(enc_key);
|
|
tor_assert(cell_out);
|
|
|
|
memwipe(cell_out, 0, RELAY_PAYLOAD_SIZE);
|
|
|
|
cell_len = rend_service_encode_establish_intro_cell((char*)cell_out,
|
|
RELAY_PAYLOAD_SIZE,
|
|
enc_key, circ_nonce);
|
|
return cell_len;
|
|
}
|
|
|
|
/* Parse an INTRODUCE2 cell from payload of size payload_len for the given
|
|
* service and circuit which are used only for logging purposes. The resulting
|
|
* parsed cell is put in cell_ptr_out.
|
|
*
|
|
* This function only parses prop224 INTRODUCE2 cells even when the intro point
|
|
* is a legacy intro point. That's because intro points don't actually care
|
|
* about the contents of the introduce cell. Legacy INTRODUCE cells are only
|
|
* used by the legacy system now.
|
|
*
|
|
* Return 0 on success else a negative value and cell_ptr_out is untouched. */
|
|
static int
|
|
parse_introduce2_cell(const hs_service_t *service,
|
|
const origin_circuit_t *circ, const uint8_t *payload,
|
|
size_t payload_len,
|
|
trn_cell_introduce1_t **cell_ptr_out)
|
|
{
|
|
trn_cell_introduce1_t *cell = NULL;
|
|
|
|
tor_assert(service);
|
|
tor_assert(circ);
|
|
tor_assert(payload);
|
|
tor_assert(cell_ptr_out);
|
|
|
|
/* Parse the cell so we can start cell validation. */
|
|
if (trn_cell_introduce1_parse(&cell, payload, payload_len) < 0) {
|
|
log_info(LD_PROTOCOL, "Unable to parse INTRODUCE2 cell on circuit %u "
|
|
"for service %s",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto err;
|
|
}
|
|
|
|
/* Success. */
|
|
*cell_ptr_out = cell;
|
|
return 0;
|
|
err:
|
|
return -1;
|
|
}
|
|
|
|
/* ========== */
|
|
/* Public API */
|
|
/* ========== */
|
|
|
|
/* Build an ESTABLISH_INTRO cell with the given circuit nonce and intro point
|
|
* object. The encoded cell is put in cell_out that MUST at least be of the
|
|
* size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on success else
|
|
* a negative value and cell_out is untouched. This function also supports
|
|
* legacy cell creation. */
|
|
ssize_t
|
|
hs_cell_build_establish_intro(const char *circ_nonce,
|
|
const hs_service_intro_point_t *ip,
|
|
uint8_t *cell_out)
|
|
{
|
|
ssize_t cell_len = -1;
|
|
uint16_t sig_len = ED25519_SIG_LEN;
|
|
trn_cell_extension_t *ext;
|
|
trn_cell_establish_intro_t *cell = NULL;
|
|
|
|
tor_assert(circ_nonce);
|
|
tor_assert(ip);
|
|
|
|
/* Quickly handle the legacy IP. */
|
|
if (ip->base.is_only_legacy) {
|
|
tor_assert(ip->legacy_key);
|
|
cell_len = build_legacy_establish_intro(circ_nonce, ip->legacy_key,
|
|
cell_out);
|
|
tor_assert(cell_len <= RELAY_PAYLOAD_SIZE);
|
|
/* Success or not we are done here. */
|
|
goto done;
|
|
}
|
|
|
|
/* Set extension data. None used here. */
|
|
ext = trn_cell_extension_new();
|
|
trn_cell_extension_set_num(ext, 0);
|
|
cell = trn_cell_establish_intro_new();
|
|
trn_cell_establish_intro_set_extensions(cell, ext);
|
|
/* Set signature size. Array is then allocated in the cell. We need to do
|
|
* this early so we can use trunnel API to get the signature length. */
|
|
trn_cell_establish_intro_set_sig_len(cell, sig_len);
|
|
trn_cell_establish_intro_setlen_sig(cell, sig_len);
|
|
|
|
/* Set AUTH_KEY_TYPE: 2 means ed25519 */
|
|
trn_cell_establish_intro_set_auth_key_type(cell,
|
|
HS_INTRO_AUTH_KEY_TYPE_ED25519);
|
|
|
|
/* Set AUTH_KEY and AUTH_KEY_LEN field. Must also set byte-length of
|
|
* AUTH_KEY to match */
|
|
{
|
|
uint16_t auth_key_len = ED25519_PUBKEY_LEN;
|
|
trn_cell_establish_intro_set_auth_key_len(cell, auth_key_len);
|
|
trn_cell_establish_intro_setlen_auth_key(cell, auth_key_len);
|
|
/* We do this call _after_ setting the length because it's reallocated at
|
|
* that point only. */
|
|
uint8_t *auth_key_ptr = trn_cell_establish_intro_getarray_auth_key(cell);
|
|
memcpy(auth_key_ptr, ip->auth_key_kp.pubkey.pubkey, auth_key_len);
|
|
}
|
|
|
|
/* Calculate HANDSHAKE_AUTH field (MAC). */
|
|
{
|
|
ssize_t tmp_cell_enc_len = 0;
|
|
ssize_t tmp_cell_mac_offset =
|
|
sig_len + sizeof(cell->sig_len) +
|
|
trn_cell_establish_intro_getlen_handshake_mac(cell);
|
|
uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0};
|
|
uint8_t mac[TRUNNEL_SHA3_256_LEN], *handshake_ptr;
|
|
|
|
/* We first encode the current fields we have in the cell so we can
|
|
* compute the MAC using the raw bytes. */
|
|
tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
|
|
sizeof(tmp_cell_enc),
|
|
cell);
|
|
if (BUG(tmp_cell_enc_len < 0)) {
|
|
goto done;
|
|
}
|
|
/* Sanity check. */
|
|
tor_assert(tmp_cell_enc_len > tmp_cell_mac_offset);
|
|
|
|
/* Circuit nonce is always DIGEST_LEN according to tor-spec.txt. */
|
|
crypto_mac_sha3_256(mac, sizeof(mac),
|
|
(uint8_t *) circ_nonce, DIGEST_LEN,
|
|
tmp_cell_enc, tmp_cell_enc_len - tmp_cell_mac_offset);
|
|
handshake_ptr = trn_cell_establish_intro_getarray_handshake_mac(cell);
|
|
memcpy(handshake_ptr, mac, sizeof(mac));
|
|
|
|
memwipe(mac, 0, sizeof(mac));
|
|
memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
|
|
}
|
|
|
|
/* Calculate the cell signature SIG. */
|
|
{
|
|
ssize_t tmp_cell_enc_len = 0;
|
|
ssize_t tmp_cell_sig_offset = (sig_len + sizeof(cell->sig_len));
|
|
uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0}, *sig_ptr;
|
|
ed25519_signature_t sig;
|
|
|
|
/* We first encode the current fields we have in the cell so we can
|
|
* compute the signature from the raw bytes of the cell. */
|
|
tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
|
|
sizeof(tmp_cell_enc),
|
|
cell);
|
|
if (BUG(tmp_cell_enc_len < 0)) {
|
|
goto done;
|
|
}
|
|
|
|
if (ed25519_sign_prefixed(&sig, tmp_cell_enc,
|
|
tmp_cell_enc_len - tmp_cell_sig_offset,
|
|
ESTABLISH_INTRO_SIG_PREFIX, &ip->auth_key_kp)) {
|
|
log_warn(LD_BUG, "Unable to make signature for ESTABLISH_INTRO cell.");
|
|
goto done;
|
|
}
|
|
/* Copy the signature into the cell. */
|
|
sig_ptr = trn_cell_establish_intro_getarray_sig(cell);
|
|
memcpy(sig_ptr, sig.sig, sig_len);
|
|
|
|
memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
|
|
}
|
|
|
|
/* Encode the cell. Can't be bigger than a standard cell. */
|
|
cell_len = trn_cell_establish_intro_encode(cell_out, RELAY_PAYLOAD_SIZE,
|
|
cell);
|
|
|
|
done:
|
|
trn_cell_establish_intro_free(cell);
|
|
return cell_len;
|
|
}
|
|
|
|
/* Parse the INTRO_ESTABLISHED cell in the payload of size payload_len. If we
|
|
* are successful at parsing it, return the length of the parsed cell else a
|
|
* negative value on error. */
|
|
ssize_t
|
|
hs_cell_parse_intro_established(const uint8_t *payload, size_t payload_len)
|
|
{
|
|
ssize_t ret;
|
|
trn_cell_intro_established_t *cell = NULL;
|
|
|
|
tor_assert(payload);
|
|
|
|
/* Try to parse the payload into a cell making sure we do actually have a
|
|
* valid cell. */
|
|
ret = trn_cell_intro_established_parse(&cell, payload, payload_len);
|
|
if (ret >= 0) {
|
|
/* On success, we do not keep the cell, we just notify the caller that it
|
|
* was successfully parsed. */
|
|
trn_cell_intro_established_free(cell);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Parsse the INTRODUCE2 cell using data which contains everything we need to
|
|
* do so and contains the destination buffers of information we extract and
|
|
* compute from the cell. Return 0 on success else a negative value. The
|
|
* service and circ are only used for logging purposes. */
|
|
ssize_t
|
|
hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
|
|
const origin_circuit_t *circ,
|
|
const hs_service_t *service)
|
|
{
|
|
int ret = -1;
|
|
time_t elapsed;
|
|
uint8_t *decrypted = NULL;
|
|
size_t encrypted_section_len;
|
|
const uint8_t *encrypted_section;
|
|
trn_cell_introduce1_t *cell = NULL;
|
|
trn_cell_introduce_encrypted_t *enc_cell = NULL;
|
|
hs_ntor_intro_cell_keys_t *intro_keys = NULL;
|
|
|
|
tor_assert(data);
|
|
tor_assert(circ);
|
|
tor_assert(service);
|
|
|
|
/* Parse the cell into a decoded data structure pointed by cell_ptr. */
|
|
if (parse_introduce2_cell(service, circ, data->payload, data->payload_len,
|
|
&cell) < 0) {
|
|
goto done;
|
|
}
|
|
|
|
log_info(LD_REND, "Received a decodable INTRODUCE2 cell on circuit %u "
|
|
"for service %s. Decoding encrypted section...",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
|
|
encrypted_section = trn_cell_introduce1_getconstarray_encrypted(cell);
|
|
encrypted_section_len = trn_cell_introduce1_getlen_encrypted(cell);
|
|
|
|
/* Encrypted section must at least contain the CLIENT_PK and MAC which is
|
|
* defined in section 3.3.2 of the specification. */
|
|
if (encrypted_section_len < (CURVE25519_PUBKEY_LEN + DIGEST256_LEN)) {
|
|
log_info(LD_REND, "Invalid INTRODUCE2 encrypted section length "
|
|
"for service %s. Dropping cell.",
|
|
safe_str_client(service->onion_address));
|
|
goto done;
|
|
}
|
|
|
|
/* Check our replay cache for this introduction point. */
|
|
if (replaycache_add_test_and_elapsed(data->replay_cache, encrypted_section,
|
|
encrypted_section_len, &elapsed)) {
|
|
log_warn(LD_REND, "Possible replay detected! An INTRODUCE2 cell with the"
|
|
"same ENCRYPTED section was seen %ld seconds ago. "
|
|
"Dropping cell.", (long int) elapsed);
|
|
goto done;
|
|
}
|
|
|
|
/* Build the key material out of the key material found in the cell. */
|
|
intro_keys = get_introduce2_key_material(data->auth_pk, data->enc_kp,
|
|
data->subcredential,
|
|
encrypted_section,
|
|
&data->client_pk);
|
|
if (intro_keys == NULL) {
|
|
log_info(LD_REND, "Invalid INTRODUCE2 encrypted data. Unable to "
|
|
"compute key material on circuit %u for service %s",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto done;
|
|
}
|
|
|
|
/* Validate MAC from the cell and our computed key material. The MAC field
|
|
* in the cell is at the end of the encrypted section. */
|
|
{
|
|
uint8_t mac[DIGEST256_LEN];
|
|
/* The MAC field is at the very end of the ENCRYPTED section. */
|
|
size_t mac_offset = encrypted_section_len - sizeof(mac);
|
|
/* Compute the MAC. Use the entire encoded payload with a length up to the
|
|
* ENCRYPTED section. */
|
|
compute_introduce_mac(data->payload,
|
|
data->payload_len - encrypted_section_len,
|
|
encrypted_section, encrypted_section_len,
|
|
intro_keys->mac_key, sizeof(intro_keys->mac_key),
|
|
mac, sizeof(mac));
|
|
if (tor_memcmp(mac, encrypted_section + mac_offset, sizeof(mac))) {
|
|
log_info(LD_REND, "Invalid MAC validation for INTRODUCE2 cell on "
|
|
"circuit %u for service %s",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
{
|
|
/* The ENCRYPTED_DATA section starts just after the CLIENT_PK. */
|
|
const uint8_t *encrypted_data =
|
|
encrypted_section + sizeof(data->client_pk);
|
|
/* It's symmetric encryption so it's correct to use the ENCRYPTED length
|
|
* for decryption. Computes the length of ENCRYPTED_DATA meaning removing
|
|
* the CLIENT_PK and MAC length. */
|
|
size_t encrypted_data_len =
|
|
encrypted_section_len - (sizeof(data->client_pk) + DIGEST256_LEN);
|
|
|
|
/* This decrypts the ENCRYPTED_DATA section of the cell. */
|
|
decrypted = decrypt_introduce2(intro_keys->enc_key,
|
|
encrypted_data, encrypted_data_len);
|
|
if (decrypted == NULL) {
|
|
log_info(LD_REND, "Unable to decrypt the ENCRYPTED section of an "
|
|
"INTRODUCE2 cell on circuit %u for service %s",
|
|
TO_CIRCUIT(circ)->n_circ_id,
|
|
safe_str_client(service->onion_address));
|
|
goto done;
|
|
}
|
|
|
|
/* Parse this blob into an encrypted cell structure so we can then extract
|
|
* the data we need out of it. */
|
|
enc_cell = parse_introduce2_encrypted(decrypted, encrypted_data_len,
|
|
circ, service);
|
|
memwipe(decrypted, 0, encrypted_data_len);
|
|
if (enc_cell == NULL) {
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* XXX: Implement client authorization checks. */
|
|
|
|
/* Extract onion key and rendezvous cookie from the cell used for the
|
|
* rendezvous point circuit e2e encryption. */
|
|
memcpy(data->onion_pk.public_key,
|
|
trn_cell_introduce_encrypted_getconstarray_onion_key(enc_cell),
|
|
CURVE25519_PUBKEY_LEN);
|
|
memcpy(data->rendezvous_cookie,
|
|
trn_cell_introduce_encrypted_getconstarray_rend_cookie(enc_cell),
|
|
sizeof(data->rendezvous_cookie));
|
|
|
|
/* Extract rendezvous link specifiers. */
|
|
for (size_t idx = 0;
|
|
idx < trn_cell_introduce_encrypted_get_nspec(enc_cell); idx++) {
|
|
link_specifier_t *lspec =
|
|
trn_cell_introduce_encrypted_get_nspecs(enc_cell, idx);
|
|
smartlist_add(data->link_specifiers, hs_link_specifier_dup(lspec));
|
|
}
|
|
|
|
/* Success. */
|
|
ret = 0;
|
|
log_info(LD_REND, "Valid INTRODUCE2 cell. Launching rendezvous circuit.");
|
|
|
|
done:
|
|
if (intro_keys) {
|
|
memwipe(intro_keys, 0, sizeof(hs_ntor_intro_cell_keys_t));
|
|
tor_free(intro_keys);
|
|
}
|
|
tor_free(decrypted);
|
|
trn_cell_introduce_encrypted_free(enc_cell);
|
|
trn_cell_introduce1_free(cell);
|
|
return ret;
|
|
}
|
|
|
|
/* Build a RENDEZVOUS1 cell with the given rendezvous cookie and handshake
|
|
* info. The encoded cell is put in cell_out and the length of the data is
|
|
* returned. This can't fail. */
|
|
ssize_t
|
|
hs_cell_build_rendezvous1(const uint8_t *rendezvous_cookie,
|
|
size_t rendezvous_cookie_len,
|
|
const uint8_t *rendezvous_handshake_info,
|
|
size_t rendezvous_handshake_info_len,
|
|
uint8_t *cell_out)
|
|
{
|
|
ssize_t cell_len;
|
|
trn_cell_rendezvous1_t *cell;
|
|
|
|
tor_assert(rendezvous_cookie);
|
|
tor_assert(rendezvous_handshake_info);
|
|
tor_assert(cell_out);
|
|
|
|
cell = trn_cell_rendezvous1_new();
|
|
/* Set the RENDEZVOUS_COOKIE. */
|
|
memcpy(trn_cell_rendezvous1_getarray_rendezvous_cookie(cell),
|
|
rendezvous_cookie, rendezvous_cookie_len);
|
|
/* Set the HANDSHAKE_INFO. */
|
|
trn_cell_rendezvous1_setlen_handshake_info(cell,
|
|
rendezvous_handshake_info_len);
|
|
memcpy(trn_cell_rendezvous1_getarray_handshake_info(cell),
|
|
rendezvous_handshake_info, rendezvous_handshake_info_len);
|
|
/* Encoding. */
|
|
cell_len = trn_cell_rendezvous1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
|
|
tor_assert(cell_len > 0);
|
|
|
|
trn_cell_rendezvous1_free(cell);
|
|
return cell_len;
|
|
}
|
|
|