mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-14 07:03:44 +01:00
3121 lines
105 KiB
C
3121 lines
105 KiB
C
/* Copyright (c) 2014-2019, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
#include "orconfig.h"
|
|
|
|
#define CIRCUITLIST_PRIVATE
|
|
#define CIRCUITBUILD_PRIVATE
|
|
#define STATEFILE_PRIVATE
|
|
#define ENTRYNODES_PRIVATE
|
|
#define ROUTERLIST_PRIVATE
|
|
#define DIRCLIENT_PRIVATE
|
|
|
|
#include "core/or/or.h"
|
|
#include "test/test.h"
|
|
|
|
#include "feature/client/bridges.h"
|
|
#include "core/or/circuitlist.h"
|
|
#include "core/or/circuitbuild.h"
|
|
#include "app/config/config.h"
|
|
#include "app/config/confparse.h"
|
|
#include "lib/crypt_ops/crypto_rand.h"
|
|
#include "feature/dircommon/directory.h"
|
|
#include "feature/dirclient/dirclient.h"
|
|
#include "feature/client/entrynodes.h"
|
|
#include "feature/nodelist/nodelist.h"
|
|
#include "feature/nodelist/networkstatus.h"
|
|
#include "core/or/policies.h"
|
|
#include "feature/nodelist/routerlist.h"
|
|
#include "feature/nodelist/routerset.h"
|
|
#include "app/config/statefile.h"
|
|
|
|
#include "core/or/cpath_build_state_st.h"
|
|
#include "core/or/crypt_path_st.h"
|
|
#include "feature/dircommon/dir_connection_st.h"
|
|
#include "feature/nodelist/microdesc_st.h"
|
|
#include "feature/nodelist/networkstatus_st.h"
|
|
#include "feature/nodelist/node_st.h"
|
|
#include "core/or/origin_circuit_st.h"
|
|
#include "app/config/or_state_st.h"
|
|
#include "feature/nodelist/routerinfo_st.h"
|
|
#include "feature/nodelist/routerstatus_st.h"
|
|
|
|
#include "test/test_helpers.h"
|
|
#include "test/log_test_helpers.h"
|
|
|
|
#include "lib/container/bloomfilt.h"
|
|
#include "lib/encoding/confline.h"
|
|
|
|
/* TODO:
|
|
* choose_random_entry() test with state set.
|
|
*
|
|
* parse_state() tests with more than one guards.
|
|
*
|
|
* More tests for set_from_config(): Multiple nodes, use fingerprints,
|
|
* use country codes.
|
|
*/
|
|
|
|
/** Dummy Tor state used in unittests. */
|
|
static or_state_t *dummy_state = NULL;
|
|
static or_state_t *
|
|
get_or_state_replacement(void)
|
|
{
|
|
return dummy_state;
|
|
}
|
|
|
|
static networkstatus_t *dummy_consensus = NULL;
|
|
|
|
static smartlist_t *big_fake_net_nodes = NULL;
|
|
|
|
static smartlist_t *
|
|
bfn_mock_nodelist_get_list(void)
|
|
{
|
|
return big_fake_net_nodes;
|
|
}
|
|
|
|
static networkstatus_t *
|
|
bfn_mock_networkstatus_get_reasonably_live_consensus(time_t now, int flavor)
|
|
{
|
|
(void)now;
|
|
(void)flavor;
|
|
return dummy_consensus;
|
|
}
|
|
|
|
static const node_t *
|
|
bfn_mock_node_get_by_id(const char *id)
|
|
{
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n,
|
|
if (fast_memeq(n->identity, id, 20))
|
|
return n);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Helper function to free a test node. */
|
|
static void
|
|
test_node_free(node_t *n)
|
|
{
|
|
tor_free(n->rs);
|
|
tor_free(n->md->onion_curve25519_pkey);
|
|
short_policy_free(n->md->exit_policy);
|
|
tor_free(n->md);
|
|
tor_free(n);
|
|
}
|
|
|
|
/* Unittest cleanup function: Cleanup the fake network. */
|
|
static int
|
|
big_fake_network_cleanup(const struct testcase_t *testcase, void *ptr)
|
|
{
|
|
(void) testcase;
|
|
(void) ptr;
|
|
|
|
if (big_fake_net_nodes) {
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
|
|
test_node_free(n);
|
|
});
|
|
smartlist_free(big_fake_net_nodes);
|
|
}
|
|
|
|
UNMOCK(nodelist_get_list);
|
|
UNMOCK(node_get_by_id);
|
|
UNMOCK(get_or_state);
|
|
UNMOCK(networkstatus_get_reasonably_live_consensus);
|
|
or_state_free(dummy_state);
|
|
dummy_state = NULL;
|
|
tor_free(dummy_consensus);
|
|
|
|
return 1; /* NOP */
|
|
}
|
|
|
|
#define REASONABLY_FUTURE " reasonably-future"
|
|
#define REASONABLY_PAST " reasonably-past"
|
|
|
|
/* Unittest setup function: Setup a fake network. */
|
|
static void *
|
|
big_fake_network_setup(const struct testcase_t *testcase)
|
|
{
|
|
int i;
|
|
|
|
/* These are minimal node_t objects that only contain the aspects of node_t
|
|
* that we need for entrynodes.c. */
|
|
const int N_NODES = 271;
|
|
|
|
const char *argument = testcase->setup_data;
|
|
int reasonably_future_consensus = 0, reasonably_past_consensus = 0;
|
|
if (argument) {
|
|
reasonably_future_consensus = strstr(argument, REASONABLY_FUTURE) != NULL;
|
|
reasonably_past_consensus = strstr(argument, REASONABLY_PAST) != NULL;
|
|
}
|
|
|
|
big_fake_net_nodes = smartlist_new();
|
|
for (i = 0; i < N_NODES; ++i) {
|
|
curve25519_secret_key_t curve25519_secret_key;
|
|
|
|
node_t *n = tor_malloc_zero(sizeof(node_t));
|
|
n->md = tor_malloc_zero(sizeof(microdesc_t));
|
|
|
|
/* Generate curve25519 key for this node */
|
|
n->md->onion_curve25519_pkey =
|
|
tor_malloc_zero(sizeof(curve25519_public_key_t));
|
|
curve25519_secret_key_generate(&curve25519_secret_key, 0);
|
|
curve25519_public_key_generate(n->md->onion_curve25519_pkey,
|
|
&curve25519_secret_key);
|
|
|
|
crypto_rand(n->identity, sizeof(n->identity));
|
|
n->rs = tor_malloc_zero(sizeof(routerstatus_t));
|
|
|
|
memcpy(n->rs->identity_digest, n->identity, DIGEST_LEN);
|
|
|
|
n->is_running = n->is_valid = n->is_fast = n->is_stable = 1;
|
|
|
|
/* Note: all these guards have the same address, so you'll need to
|
|
* disable EnforceDistinctSubnets when a restriction is applied. */
|
|
n->rs->addr = 0x04020202;
|
|
n->rs->or_port = 1234;
|
|
n->rs->is_v2_dir = 1;
|
|
n->rs->has_bandwidth = 1;
|
|
n->rs->bandwidth_kb = 30;
|
|
|
|
/* Make a random nickname for each node */
|
|
{
|
|
char nickname_binary[8];
|
|
crypto_rand(nickname_binary, sizeof(nickname_binary));
|
|
base32_encode(n->rs->nickname, sizeof(n->rs->nickname),
|
|
nickname_binary, sizeof(nickname_binary));
|
|
}
|
|
|
|
/* Call half of the nodes a possible guard. */
|
|
if (i % 2 == 0) {
|
|
n->is_possible_guard = 1;
|
|
n->rs->guardfraction_percentage = 100;
|
|
n->rs->has_guardfraction = 1;
|
|
n->rs->is_possible_guard = 1;
|
|
}
|
|
|
|
/* Make some of these nodes a possible exit */
|
|
if (i % 7 == 0) {
|
|
n->md->exit_policy = parse_short_policy("accept 443");
|
|
}
|
|
|
|
smartlist_add(big_fake_net_nodes, n);
|
|
}
|
|
|
|
dummy_state = tor_malloc_zero(sizeof(or_state_t));
|
|
dummy_consensus = tor_malloc_zero(sizeof(networkstatus_t));
|
|
if (reasonably_future_consensus) {
|
|
/* Make the dummy consensus valid in 6 hours, and expiring in 7 hours. */
|
|
dummy_consensus->valid_after = approx_time() + 6*3600;
|
|
dummy_consensus->valid_until = approx_time() + 7*3600;
|
|
} else if (reasonably_past_consensus) {
|
|
/* Make the dummy consensus valid from 16 hours ago, but expired 12 hours
|
|
* ago. */
|
|
dummy_consensus->valid_after = approx_time() - 16*3600;
|
|
dummy_consensus->valid_until = approx_time() - 12*3600;
|
|
} else {
|
|
/* Make the dummy consensus valid for an hour either side of now. */
|
|
dummy_consensus->valid_after = approx_time() - 3600;
|
|
dummy_consensus->valid_until = approx_time() + 3600;
|
|
}
|
|
|
|
MOCK(nodelist_get_list, bfn_mock_nodelist_get_list);
|
|
MOCK(node_get_by_id, bfn_mock_node_get_by_id);
|
|
MOCK(get_or_state,
|
|
get_or_state_replacement);
|
|
MOCK(networkstatus_get_reasonably_live_consensus,
|
|
bfn_mock_networkstatus_get_reasonably_live_consensus);
|
|
/* Return anything but NULL (it's interpreted as test fail) */
|
|
return (void*)testcase;
|
|
}
|
|
|
|
static time_t
|
|
mock_randomize_time_no_randomization(time_t a, time_t b)
|
|
{
|
|
(void) b;
|
|
return a;
|
|
}
|
|
|
|
static or_options_t mocked_options;
|
|
|
|
static const or_options_t *
|
|
mock_get_options(void)
|
|
{
|
|
return &mocked_options;
|
|
}
|
|
|
|
#define TEST_IPV4_ADDR "123.45.67.89"
|
|
#define TEST_IPV6_ADDR "[1234:5678:90ab:cdef::]"
|
|
|
|
static void
|
|
test_node_preferred_orport(void *arg)
|
|
{
|
|
(void)arg;
|
|
tor_addr_t ipv4_addr;
|
|
const uint16_t ipv4_port = 4444;
|
|
tor_addr_t ipv6_addr;
|
|
const uint16_t ipv6_port = 6666;
|
|
routerinfo_t node_ri;
|
|
node_t node;
|
|
tor_addr_port_t ap;
|
|
|
|
/* Setup options */
|
|
memset(&mocked_options, 0, sizeof(mocked_options));
|
|
/* We don't test ClientPreferIPv6ORPort here, because it's used in
|
|
* nodelist_set_consensus to setup node.ipv6_preferred, which we set
|
|
* directly. */
|
|
MOCK(get_options, mock_get_options);
|
|
|
|
/* Setup IP addresses */
|
|
tor_addr_parse(&ipv4_addr, TEST_IPV4_ADDR);
|
|
tor_addr_parse(&ipv6_addr, TEST_IPV6_ADDR);
|
|
|
|
/* Setup node_ri */
|
|
memset(&node_ri, 0, sizeof(node_ri));
|
|
node_ri.addr = tor_addr_to_ipv4h(&ipv4_addr);
|
|
node_ri.or_port = ipv4_port;
|
|
tor_addr_copy(&node_ri.ipv6_addr, &ipv6_addr);
|
|
node_ri.ipv6_orport = ipv6_port;
|
|
|
|
/* Setup node */
|
|
memset(&node, 0, sizeof(node));
|
|
node.ri = &node_ri;
|
|
|
|
/* Check the preferred address is IPv4 if we're only using IPv4, regardless
|
|
* of whether we prefer it or not */
|
|
mocked_options.ClientUseIPv4 = 1;
|
|
mocked_options.ClientUseIPv6 = 0;
|
|
node.ipv6_preferred = 0;
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
|
|
tt_assert(ap.port == ipv4_port);
|
|
|
|
node.ipv6_preferred = 1;
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
|
|
tt_assert(ap.port == ipv4_port);
|
|
|
|
/* Check the preferred address is IPv4 if we're using IPv4 and IPv6, but
|
|
* don't prefer the IPv6 address */
|
|
mocked_options.ClientUseIPv4 = 1;
|
|
mocked_options.ClientUseIPv6 = 1;
|
|
node.ipv6_preferred = 0;
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
|
|
tt_assert(ap.port == ipv4_port);
|
|
|
|
/* Check the preferred address is IPv6 if we prefer it and
|
|
* ClientUseIPv6 is 1, regardless of ClientUseIPv4 */
|
|
mocked_options.ClientUseIPv4 = 1;
|
|
mocked_options.ClientUseIPv6 = 1;
|
|
node.ipv6_preferred = 1;
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
|
|
tt_assert(ap.port == ipv6_port);
|
|
|
|
mocked_options.ClientUseIPv4 = 0;
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
|
|
tt_assert(ap.port == ipv6_port);
|
|
|
|
/* Check the preferred address is IPv6 if we don't prefer it, but
|
|
* ClientUseIPv4 is 0 */
|
|
mocked_options.ClientUseIPv4 = 0;
|
|
mocked_options.ClientUseIPv6 = 1;
|
|
node.ipv6_preferred = fascist_firewall_prefer_ipv6_orport(&mocked_options);
|
|
node_get_pref_orport(&node, &ap);
|
|
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
|
|
tt_assert(ap.port == ipv6_port);
|
|
|
|
done:
|
|
UNMOCK(get_options);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_describe(void *arg)
|
|
{
|
|
(void)arg;
|
|
entry_guard_t g;
|
|
memset(&g, 0, sizeof(g));
|
|
strlcpy(g.nickname, "okefenokee", sizeof(g.nickname));
|
|
memcpy(g.identity, "theforestprimeval---", DIGEST_LEN);
|
|
|
|
tt_str_op(entry_guard_describe(&g), OP_EQ,
|
|
"okefenokee ($746865666F726573747072696D6576616C2D2D2D)");
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_randomize_time(void *arg)
|
|
{
|
|
const time_t now = 1479153573;
|
|
const int delay = 86400;
|
|
const int N = 1000;
|
|
(void)arg;
|
|
|
|
time_t t;
|
|
int i;
|
|
for (i = 0; i < N; ++i) {
|
|
t = randomize_time(now, delay);
|
|
tt_int_op(t, OP_LE, now);
|
|
tt_int_op(t, OP_GE, now-delay);
|
|
}
|
|
|
|
/* now try the corner cases */
|
|
for (i = 0; i < N; ++i) {
|
|
t = randomize_time(100, delay);
|
|
tt_int_op(t, OP_GE, 1);
|
|
tt_int_op(t, OP_LE, 100);
|
|
|
|
t = randomize_time(0, delay);
|
|
tt_int_op(t, OP_EQ, 1);
|
|
}
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_encode_for_state_minimal(void *arg)
|
|
{
|
|
(void) arg;
|
|
entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t));
|
|
|
|
eg->selection_name = tor_strdup("wubwub");
|
|
memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN);
|
|
eg->sampled_on_date = 1479081600;
|
|
eg->confirmed_idx = -1;
|
|
|
|
char *s = NULL;
|
|
s = entry_guard_encode_for_state(eg);
|
|
|
|
tt_str_op(s, OP_EQ,
|
|
"in=wubwub "
|
|
"rsa_id=706C75727079666C75727079736C75727079646F "
|
|
"sampled_on=2016-11-14T00:00:00 "
|
|
"listed=0");
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
tor_free(s);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_encode_for_state_maximal(void *arg)
|
|
{
|
|
(void) arg;
|
|
entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t));
|
|
|
|
strlcpy(eg->nickname, "Fred", sizeof(eg->nickname));
|
|
eg->selection_name = tor_strdup("default");
|
|
memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN);
|
|
eg->bridge_addr = tor_malloc_zero(sizeof(tor_addr_port_t));
|
|
tor_addr_from_ipv4h(&eg->bridge_addr->addr, 0x08080404);
|
|
eg->bridge_addr->port = 9999;
|
|
eg->sampled_on_date = 1479081600;
|
|
eg->sampled_by_version = tor_strdup("1.2.3");
|
|
eg->unlisted_since_date = 1479081645;
|
|
eg->currently_listed = 1;
|
|
eg->confirmed_on_date = 1479081690;
|
|
eg->confirmed_idx = 333;
|
|
eg->extra_state_fields = tor_strdup("and the green grass grew all around");
|
|
|
|
char *s = NULL;
|
|
s = entry_guard_encode_for_state(eg);
|
|
|
|
tt_str_op(s, OP_EQ,
|
|
"in=default "
|
|
"rsa_id=706C75727079666C75727079736C75727079646F "
|
|
"bridge_addr=8.8.4.4:9999 "
|
|
"nickname=Fred "
|
|
"sampled_on=2016-11-14T00:00:00 "
|
|
"sampled_by=1.2.3 "
|
|
"unlisted_since=2016-11-14T00:00:45 "
|
|
"listed=1 "
|
|
"confirmed_on=2016-11-14T00:01:30 "
|
|
"confirmed_idx=333 "
|
|
"and the green grass grew all around");
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
tor_free(s);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_minimal(void *arg)
|
|
{
|
|
(void)arg;
|
|
char *mem_op_hex_tmp = NULL;
|
|
entry_guard_t *eg = NULL;
|
|
time_t t = approx_time();
|
|
|
|
eg = entry_guard_parse_from_state(
|
|
"in=default_plus "
|
|
"rsa_id=596f75206d6179206e656564206120686f626279");
|
|
tt_assert(eg);
|
|
|
|
tt_str_op(eg->selection_name, OP_EQ, "default_plus");
|
|
test_mem_op_hex(eg->identity, OP_EQ,
|
|
"596f75206d6179206e656564206120686f626279");
|
|
tt_str_op(eg->nickname, OP_EQ, "$596F75206D6179206E656564206120686F626279");
|
|
tt_ptr_op(eg->bridge_addr, OP_EQ, NULL);
|
|
tt_i64_op(eg->sampled_on_date, OP_GE, t);
|
|
tt_i64_op(eg->sampled_on_date, OP_LE, t+86400);
|
|
tt_i64_op(eg->unlisted_since_date, OP_EQ, 0);
|
|
tt_ptr_op(eg->sampled_by_version, OP_EQ, NULL);
|
|
tt_int_op(eg->currently_listed, OP_EQ, 0);
|
|
tt_i64_op(eg->confirmed_on_date, OP_EQ, 0);
|
|
tt_int_op(eg->confirmed_idx, OP_EQ, -1);
|
|
|
|
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
|
|
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
tor_free(mem_op_hex_tmp);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_maximal(void *arg)
|
|
{
|
|
(void)arg;
|
|
char *mem_op_hex_tmp = NULL;
|
|
entry_guard_t *eg = NULL;
|
|
|
|
eg = entry_guard_parse_from_state(
|
|
"in=fred "
|
|
"rsa_id=706C75727079666C75727079736C75727079646F "
|
|
"bridge_addr=[1::3]:9999 "
|
|
"nickname=Fred "
|
|
"sampled_on=2016-11-14T00:00:00 "
|
|
"sampled_by=1.2.3 "
|
|
"unlisted_since=2016-11-14T00:00:45 "
|
|
"listed=1 "
|
|
"confirmed_on=2016-11-14T00:01:30 "
|
|
"confirmed_idx=333 "
|
|
"and the green grass grew all around "
|
|
"rsa_id=all,around");
|
|
tt_assert(eg);
|
|
|
|
test_mem_op_hex(eg->identity, OP_EQ,
|
|
"706C75727079666C75727079736C75727079646F");
|
|
tt_str_op(fmt_addr(&eg->bridge_addr->addr), OP_EQ, "1::3");
|
|
tt_int_op(eg->bridge_addr->port, OP_EQ, 9999);
|
|
tt_str_op(eg->nickname, OP_EQ, "Fred");
|
|
tt_i64_op(eg->sampled_on_date, OP_EQ, 1479081600);
|
|
tt_i64_op(eg->unlisted_since_date, OP_EQ, 1479081645);
|
|
tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3");
|
|
tt_int_op(eg->currently_listed, OP_EQ, 1);
|
|
tt_i64_op(eg->confirmed_on_date, OP_EQ, 1479081690);
|
|
tt_int_op(eg->confirmed_idx, OP_EQ, 333);
|
|
tt_str_op(eg->extra_state_fields, OP_EQ,
|
|
"and the green grass grew all around rsa_id=all,around");
|
|
|
|
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
|
|
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
tor_free(mem_op_hex_tmp);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_failure(void *arg)
|
|
{
|
|
(void)arg;
|
|
entry_guard_t *eg = NULL;
|
|
|
|
/* no selection */
|
|
eg = entry_guard_parse_from_state(
|
|
"rsa_id=596f75206d6179206e656564206120686f626270");
|
|
tt_ptr_op(eg, OP_EQ, NULL);
|
|
|
|
/* no RSA ID. */
|
|
eg = entry_guard_parse_from_state("in=default nickname=Fred");
|
|
tt_ptr_op(eg, OP_EQ, NULL);
|
|
|
|
/* Bad RSA ID: bad character. */
|
|
eg = entry_guard_parse_from_state(
|
|
"in=default "
|
|
"rsa_id=596f75206d6179206e656564206120686f62627q");
|
|
tt_ptr_op(eg, OP_EQ, NULL);
|
|
|
|
/* Bad RSA ID: too long.*/
|
|
eg = entry_guard_parse_from_state(
|
|
"in=default "
|
|
"rsa_id=596f75206d6179206e656564206120686f6262703");
|
|
tt_ptr_op(eg, OP_EQ, NULL);
|
|
|
|
/* Bad RSA ID: too short.*/
|
|
eg = entry_guard_parse_from_state(
|
|
"in=default "
|
|
"rsa_id=596f75206d6179206e65656420612");
|
|
tt_ptr_op(eg, OP_EQ, NULL);
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_partial_failure(void *arg)
|
|
{
|
|
(void)arg;
|
|
char *mem_op_hex_tmp = NULL;
|
|
entry_guard_t *eg = NULL;
|
|
time_t t = approx_time();
|
|
|
|
eg = entry_guard_parse_from_state(
|
|
"in=default "
|
|
"rsa_id=706C75727079666C75727079736C75727079646F "
|
|
"bridge_addr=1.2.3.3.4:5 "
|
|
"nickname=FredIsANodeWithAStrangeNicknameThatIsTooLong "
|
|
"sampled_on=2016-11-14T00:00:99 "
|
|
"sampled_by=1.2.3 stuff in the middle "
|
|
"unlisted_since=2016-xx-14T00:00:45 "
|
|
"listed=0 "
|
|
"confirmed_on=2016-11-14T00:01:30zz "
|
|
"confirmed_idx=idx "
|
|
"and the green grass grew all around "
|
|
"rsa_id=all,around");
|
|
tt_assert(eg);
|
|
|
|
test_mem_op_hex(eg->identity, OP_EQ,
|
|
"706C75727079666C75727079736C75727079646F");
|
|
tt_str_op(eg->nickname, OP_EQ, "FredIsANodeWithAStrangeNicknameThatIsTooL");
|
|
tt_ptr_op(eg->bridge_addr, OP_EQ, NULL);
|
|
tt_i64_op(eg->sampled_on_date, OP_EQ, t);
|
|
tt_i64_op(eg->unlisted_since_date, OP_EQ, 0);
|
|
tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3");
|
|
tt_int_op(eg->currently_listed, OP_EQ, 0);
|
|
tt_i64_op(eg->confirmed_on_date, OP_EQ, 0);
|
|
tt_int_op(eg->confirmed_idx, OP_EQ, -1);
|
|
tt_str_op(eg->extra_state_fields, OP_EQ,
|
|
"stuff in the middle and the green grass grew all around "
|
|
"rsa_id=all,around");
|
|
|
|
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
|
|
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
done:
|
|
entry_guard_free(eg);
|
|
tor_free(mem_op_hex_tmp);
|
|
}
|
|
|
|
static int
|
|
mock_entry_guard_is_listed(guard_selection_t *gs, const entry_guard_t *guard)
|
|
{
|
|
(void)gs;
|
|
(void)guard;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_full(void *arg)
|
|
{
|
|
(void)arg;
|
|
/* Here's a state I made while testing. The identities and locations for
|
|
* the bridges are redacted. */
|
|
const char STATE[] =
|
|
"Guard in=default rsa_id=214F44BD5B638E8C817D47FF7C97397790BF0345 "
|
|
"nickname=TotallyNinja sampled_on=2016-11-12T19:32:49 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1\n"
|
|
"Guard in=default rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 "
|
|
"nickname=5OfNovember sampled_on=2016-11-20T04:32:05 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 "
|
|
"pb_circ_attempts=4.000000 pb_circ_successes=2.000000 "
|
|
"pb_successful_circuits_closed=2.000000\n"
|
|
"Guard in=default rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A "
|
|
"nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=4 "
|
|
"pb_circ_attempts=5.000000 pb_circ_successes=5.000000 "
|
|
"pb_successful_circuits_closed=5.000000\n"
|
|
"Guard in=wobblesome rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A "
|
|
"nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1\n"
|
|
"Guard in=default rsa_id=E9025AD60D86875D5F11548D536CC6AF60F0EF5E "
|
|
"nickname=maibrunn sampled_on=2016-11-25T22:36:38 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1\n"
|
|
"Guard in=default rsa_id=DCD30B90BA3A792DA75DC54A327EF353FB84C38E "
|
|
"nickname=Unnamed sampled_on=2016-11-25T14:34:00 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1\n"
|
|
"Guard in=bridges rsa_id=8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E "
|
|
"bridge_addr=24.1.1.1:443 sampled_on=2016-11-25T06:44:14 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1 "
|
|
"confirmed_on=2016-11-29T10:36:06 confirmed_idx=0 "
|
|
"pb_circ_attempts=8.000000 pb_circ_successes=8.000000 "
|
|
"pb_successful_circuits_closed=13.000000\n"
|
|
"Guard in=bridges rsa_id=5800000000000000000000000000000000000000 "
|
|
"bridge_addr=37.218.246.143:28366 "
|
|
"sampled_on=2016-11-18T15:07:34 sampled_by=0.3.0.0-alpha-dev listed=1\n";
|
|
|
|
config_line_t *lines = NULL;
|
|
or_state_t *state = tor_malloc_zero(sizeof(or_state_t));
|
|
int r = config_get_lines(STATE, &lines, 0);
|
|
char *msg = NULL;
|
|
smartlist_t *text = smartlist_new();
|
|
char *joined = NULL;
|
|
|
|
// So nodes aren't expired. This is Tue, 13 Dec 2016 09:37:14 GMT
|
|
update_approx_time(1481621834);
|
|
|
|
MOCK(entry_guard_is_listed, mock_entry_guard_is_listed);
|
|
|
|
dummy_state = state;
|
|
MOCK(get_or_state,
|
|
get_or_state_replacement);
|
|
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_assert(lines);
|
|
|
|
state->Guard = lines;
|
|
|
|
/* Try it first without setting the result. */
|
|
r = entry_guards_parse_state(state, 0, &msg);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
guard_selection_t *gs_br =
|
|
get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0);
|
|
tt_ptr_op(gs_br, OP_EQ, NULL);
|
|
|
|
r = entry_guards_parse_state(state, 1, &msg);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
gs_br = get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0);
|
|
guard_selection_t *gs_df =
|
|
get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
|
|
guard_selection_t *gs_wb =
|
|
get_guard_selection_by_name("wobblesome", GS_TYPE_NORMAL, 0);
|
|
|
|
tt_assert(gs_br);
|
|
tt_assert(gs_df);
|
|
tt_assert(gs_wb);
|
|
|
|
tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 5);
|
|
tt_int_op(smartlist_len(gs_br->sampled_entry_guards), OP_EQ, 2);
|
|
tt_int_op(smartlist_len(gs_wb->sampled_entry_guards), OP_EQ, 1);
|
|
|
|
/* Try again; make sure it doesn't double-add the guards. */
|
|
r = entry_guards_parse_state(state, 1, &msg);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
gs_br = get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0);
|
|
gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
|
|
tt_assert(gs_br);
|
|
tt_assert(gs_df);
|
|
tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 5);
|
|
tt_int_op(smartlist_len(gs_br->sampled_entry_guards), OP_EQ, 2);
|
|
|
|
/* Re-encode; it should be the same... almost. */
|
|
{
|
|
/* (Make a guard nonpersistent first) */
|
|
entry_guard_t *g = smartlist_get(gs_df->sampled_entry_guards, 0);
|
|
g->is_persistent = 0;
|
|
}
|
|
config_free_lines(lines);
|
|
lines = state->Guard = NULL; // to prevent double-free.
|
|
entry_guards_update_state(state);
|
|
tt_assert(state->Guard);
|
|
lines = state->Guard;
|
|
|
|
config_line_t *ln;
|
|
for (ln = lines; ln; ln = ln->next) {
|
|
smartlist_add_asprintf(text, "%s %s\n",ln->key, ln->value);
|
|
}
|
|
joined = smartlist_join_strings(text, "", 0, NULL);
|
|
tt_str_op(joined, OP_EQ,
|
|
"Guard in=default rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 "
|
|
"nickname=5OfNovember sampled_on=2016-11-20T04:32:05 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 "
|
|
"pb_circ_attempts=4.000000 pb_circ_successes=2.000000 "
|
|
"pb_successful_circuits_closed=2.000000\n"
|
|
"Guard in=default rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A "
|
|
"nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=1 "
|
|
"pb_circ_attempts=5.000000 pb_circ_successes=5.000000 "
|
|
"pb_successful_circuits_closed=5.000000\n"
|
|
"Guard in=default rsa_id=E9025AD60D86875D5F11548D536CC6AF60F0EF5E "
|
|
"nickname=maibrunn sampled_on=2016-11-25T22:36:38 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1\n"
|
|
"Guard in=default rsa_id=DCD30B90BA3A792DA75DC54A327EF353FB84C38E "
|
|
"nickname=Unnamed sampled_on=2016-11-25T14:34:00 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1\n"
|
|
"Guard in=wobblesome rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A "
|
|
"nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1\n"
|
|
"Guard in=bridges rsa_id=8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E "
|
|
"bridge_addr=24.1.1.1:443 sampled_on=2016-11-25T06:44:14 "
|
|
"sampled_by=0.3.0.0-alpha-dev listed=1 "
|
|
"confirmed_on=2016-11-29T10:36:06 confirmed_idx=0 "
|
|
"pb_circ_attempts=8.000000 pb_circ_successes=8.000000 "
|
|
"pb_successful_circuits_closed=13.000000\n"
|
|
"Guard in=bridges rsa_id=5800000000000000000000000000000000000000 "
|
|
"bridge_addr=37.218.246.143:28366 "
|
|
"sampled_on=2016-11-18T15:07:34 sampled_by=0.3.0.0-alpha-dev listed=1\n");
|
|
|
|
done:
|
|
config_free_lines(lines);
|
|
tor_free(state);
|
|
tor_free(msg);
|
|
UNMOCK(get_or_state);
|
|
UNMOCK(entry_guard_is_listed);
|
|
SMARTLIST_FOREACH(text, char *, cp, tor_free(cp));
|
|
smartlist_free(text);
|
|
tor_free(joined);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_parse_from_state_broken(void *arg)
|
|
{
|
|
(void)arg;
|
|
/* Here's a variation on the previous state. Every line but the first is
|
|
* busted somehow. */
|
|
const char STATE[] =
|
|
/* Okay. */
|
|
"Guard in=default rsa_id=214F44BD5B638E8C817D47FF7C97397790BF0345 "
|
|
"nickname=TotallyNinja sampled_on=2016-11-12T19:32:49 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1\n"
|
|
/* No selection listed. */
|
|
"Guard rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 "
|
|
"nickname=5OfNovember sampled_on=2016-11-20T04:32:05 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 "
|
|
"pb_circ_attempts=4.000000 pb_circ_successes=2.000000 "
|
|
"pb_successful_circuits_closed=2.000000\n"
|
|
/* Selection is "legacy"!! */
|
|
"Guard in=legacy rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A "
|
|
"nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 "
|
|
"sampled_by=0.3.0.0-alpha-dev "
|
|
"listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=4 "
|
|
"pb_circ_attempts=5.000000 pb_circ_successes=5.000000 "
|
|
"pb_successful_circuits_closed=5.000000\n";
|
|
|
|
config_line_t *lines = NULL;
|
|
or_state_t *state = tor_malloc_zero(sizeof(or_state_t));
|
|
int r = config_get_lines(STATE, &lines, 0);
|
|
char *msg = NULL;
|
|
|
|
dummy_state = state;
|
|
MOCK(get_or_state,
|
|
get_or_state_replacement);
|
|
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_assert(lines);
|
|
|
|
state->Guard = lines;
|
|
|
|
/* First, no-set case. we should get an error. */
|
|
r = entry_guards_parse_state(state, 0, &msg);
|
|
tt_int_op(r, OP_LT, 0);
|
|
tt_ptr_op(msg, OP_NE, NULL);
|
|
/* And we shouldn't have made anything. */
|
|
guard_selection_t *gs_df =
|
|
get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
|
|
tt_ptr_op(gs_df, OP_EQ, NULL);
|
|
tor_free(msg);
|
|
|
|
/* Now see about the set case (which shouldn't happen IRL) */
|
|
r = entry_guards_parse_state(state, 1, &msg);
|
|
tt_int_op(r, OP_LT, 0);
|
|
tt_ptr_op(msg, OP_NE, NULL);
|
|
gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
|
|
tt_ptr_op(gs_df, OP_NE, NULL);
|
|
tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 1);
|
|
|
|
done:
|
|
config_free_lines(lines);
|
|
tor_free(state);
|
|
tor_free(msg);
|
|
UNMOCK(get_or_state);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_get_guard_selection_by_name(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs1, *gs2, *gs3;
|
|
|
|
gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0);
|
|
tt_ptr_op(gs1, OP_EQ, NULL);
|
|
gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1);
|
|
tt_ptr_op(gs1, OP_NE, NULL);
|
|
gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1);
|
|
tt_assert(gs2 == gs1);
|
|
gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0);
|
|
tt_assert(gs2 == gs1);
|
|
|
|
gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0);
|
|
tt_ptr_op(gs2, OP_EQ, NULL);
|
|
gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 1);
|
|
tt_ptr_op(gs2, OP_NE, NULL);
|
|
tt_assert(gs2 != gs1);
|
|
gs3 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0);
|
|
tt_assert(gs3 == gs2);
|
|
|
|
gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
|
|
tt_ptr_op(gs3, OP_EQ, NULL);
|
|
gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 1);
|
|
tt_ptr_op(gs3, OP_NE, NULL);
|
|
tt_assert(gs3 != gs2);
|
|
tt_assert(gs3 != gs1);
|
|
tt_assert(gs3 == get_guard_selection_info());
|
|
|
|
done:
|
|
entry_guards_free_all();
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_choose_selection_initial(void *arg)
|
|
{
|
|
/* Tests for picking our initial guard selection (based on having had
|
|
* no previous selection */
|
|
(void)arg;
|
|
guard_selection_type_t type = GS_TYPE_INFER;
|
|
const char *name = choose_guard_selection(get_options(),
|
|
dummy_consensus, NULL, &type);
|
|
tt_str_op(name, OP_EQ, "default");
|
|
tt_int_op(type, OP_EQ, GS_TYPE_NORMAL);
|
|
|
|
/* If we're using bridges, we get the bridge selection. */
|
|
get_options_mutable()->UseBridges = 1;
|
|
name = choose_guard_selection(get_options(),
|
|
dummy_consensus, NULL, &type);
|
|
tt_str_op(name, OP_EQ, "bridges");
|
|
tt_int_op(type, OP_EQ, GS_TYPE_BRIDGE);
|
|
get_options_mutable()->UseBridges = 0;
|
|
|
|
/* If we discard >99% of our guards, though, we should be in the restricted
|
|
* set. */
|
|
tt_assert(get_options_mutable()->EntryNodes == NULL);
|
|
get_options_mutable()->EntryNodes = routerset_new();
|
|
routerset_parse(get_options_mutable()->EntryNodes, "1.0.0.0/8", "foo");
|
|
name = choose_guard_selection(get_options(),
|
|
dummy_consensus, NULL, &type);
|
|
tt_str_op(name, OP_EQ, "restricted");
|
|
tt_int_op(type, OP_EQ, GS_TYPE_RESTRICTED);
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_add_single_guard(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
|
|
/* 1: Add a single guard to the sample. */
|
|
node_t *n1 = smartlist_get(big_fake_net_nodes, 0);
|
|
time_t now = approx_time();
|
|
tt_assert(n1->is_possible_guard == 1);
|
|
entry_guard_t *g1 = entry_guard_add_to_sample(gs, n1);
|
|
tt_assert(g1);
|
|
|
|
/* Make sure its fields look right. */
|
|
tt_mem_op(n1->identity, OP_EQ, g1->identity, DIGEST_LEN);
|
|
tt_i64_op(g1->sampled_on_date, OP_GE, now - 12*86400);
|
|
tt_i64_op(g1->sampled_on_date, OP_LE, now);
|
|
tt_str_op(g1->sampled_by_version, OP_EQ, VERSION);
|
|
tt_uint_op(g1->currently_listed, OP_EQ, 1);
|
|
tt_i64_op(g1->confirmed_on_date, OP_EQ, 0);
|
|
tt_int_op(g1->confirmed_idx, OP_EQ, -1);
|
|
tt_int_op(g1->last_tried_to_connect, OP_EQ, 0);
|
|
tt_uint_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
tt_i64_op(g1->failing_since, OP_EQ, 0);
|
|
tt_uint_op(g1->is_filtered_guard, OP_EQ, 1);
|
|
tt_uint_op(g1->is_usable_filtered_guard, OP_EQ, 1);
|
|
tt_uint_op(g1->is_primary, OP_EQ, 0);
|
|
tt_ptr_op(g1->extra_state_fields, OP_EQ, NULL);
|
|
|
|
/* Make sure it got added. */
|
|
tt_int_op(1, OP_EQ, smartlist_len(gs->sampled_entry_guards));
|
|
tt_ptr_op(g1, OP_EQ, smartlist_get(gs->sampled_entry_guards, 0));
|
|
tt_ptr_op(g1, OP_EQ, get_sampled_guard_with_id(gs, (uint8_t*)n1->identity));
|
|
const uint8_t bad_id[20] = {0};
|
|
tt_ptr_op(NULL, OP_EQ, get_sampled_guard_with_id(gs, bad_id));
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_node_filter(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
bridge_line_t *bl = NULL;
|
|
|
|
/* Initialize a bunch of node objects that are all guards. */
|
|
#define NUM 7
|
|
node_t *n[NUM];
|
|
entry_guard_t *g[NUM];
|
|
int i;
|
|
for (i=0; i < NUM; ++i) {
|
|
n[i] = smartlist_get(big_fake_net_nodes, i*2); // even ones are guards.
|
|
g[i] = entry_guard_add_to_sample(gs, n[i]);
|
|
|
|
// everything starts out filtered-in
|
|
tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 1);
|
|
tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 1);
|
|
}
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, NUM);
|
|
|
|
/* Make sure refiltering doesn't hurt */
|
|
entry_guards_update_filtered_sets(gs);
|
|
for (i = 0; i < NUM; ++i) {
|
|
tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 1);
|
|
tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 1);
|
|
}
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, NUM);
|
|
|
|
/* Now start doing things to make the guards get filtered out, 1 by 1. */
|
|
|
|
/* 0: Not listed. */
|
|
g[0]->currently_listed = 0;
|
|
|
|
/* 1: path bias says this guard is maybe eeeevil. */
|
|
g[1]->pb.path_bias_disabled = 1;
|
|
|
|
/* 2: Unreachable address. */
|
|
n[2]->rs->addr = 0;
|
|
|
|
/* 3: ExcludeNodes */
|
|
n[3]->rs->addr = 0x90902020;
|
|
routerset_free(get_options_mutable()->ExcludeNodes);
|
|
get_options_mutable()->ExcludeNodes = routerset_new();
|
|
routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", "");
|
|
|
|
/* 4: Bridge. */
|
|
get_options_mutable()->UseBridges = 1;
|
|
sweep_bridge_list();
|
|
bl = tor_malloc_zero(sizeof(bridge_line_t));
|
|
tor_addr_from_ipv4h(&bl->addr, n[4]->rs->addr);
|
|
bl->port = n[4]->rs->or_port;
|
|
memcpy(bl->digest, n[4]->identity, 20);
|
|
bridge_add_from_config(bl);
|
|
bl = NULL; // prevent free.
|
|
get_options_mutable()->UseBridges = 0;
|
|
|
|
/* 5: Unreachable. This stays in the filter, but isn't in usable-filtered */
|
|
g[5]->last_tried_to_connect = approx_time(); // prevent retry.
|
|
g[5]->is_reachable = GUARD_REACHABLE_NO;
|
|
|
|
/* 6: no change. */
|
|
|
|
/* Now refilter and inspect. */
|
|
entry_guards_update_filtered_sets(gs);
|
|
for (i = 0; i < NUM; ++i) {
|
|
tt_assert(g[i]->is_filtered_guard == (i == 5 || i == 6));
|
|
tt_assert(g[i]->is_usable_filtered_guard == (i == 6));
|
|
}
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 1);
|
|
|
|
/* Now make sure we have no live consensus, and no nodes. Nothing should
|
|
* pass the filter any more. */
|
|
tor_free(dummy_consensus);
|
|
dummy_consensus = NULL;
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, node, {
|
|
memset(node->identity, 0xff, 20);
|
|
});
|
|
entry_guards_update_filtered_sets(gs);
|
|
for (i = 0; i < NUM; ++i) {
|
|
tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 0);
|
|
tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 0);
|
|
}
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 0);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
tor_free(bl);
|
|
#undef NUM
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_expand_sample(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
digestmap_t *node_by_id = digestmap_new();
|
|
|
|
entry_guard_t *guard = entry_guards_expand_sample(gs);
|
|
tt_assert(guard); // the last guard returned.
|
|
|
|
// Every sampled guard here should be filtered and reachable for now.
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
|
|
/* Make sure we got the right number. */
|
|
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
|
|
// Make sure everything we got was from our fake node list, and everything
|
|
// was unique.
|
|
SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, g) {
|
|
const node_t *n = bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
tt_ptr_op(NULL, OP_EQ, digestmap_get(node_by_id, g->identity));
|
|
digestmap_set(node_by_id, g->identity, (void*) n);
|
|
int idx = smartlist_pos(big_fake_net_nodes, n);
|
|
// The even ones are the guards; make sure we got guards.
|
|
tt_int_op(idx & 1, OP_EQ, 0);
|
|
} SMARTLIST_FOREACH_END(g);
|
|
|
|
// Nothing became unusable/unfiltered, so a subsequent expand should
|
|
// make no changes.
|
|
guard = entry_guards_expand_sample(gs);
|
|
tt_ptr_op(guard, OP_EQ, NULL); // no guard was added.
|
|
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
|
|
// Make a few guards unreachable.
|
|
guard = smartlist_get(gs->sampled_entry_guards, 0);
|
|
guard->is_usable_filtered_guard = 0;
|
|
guard = smartlist_get(gs->sampled_entry_guards, 1);
|
|
guard->is_usable_filtered_guard = 0;
|
|
guard = smartlist_get(gs->sampled_entry_guards, 2);
|
|
guard->is_usable_filtered_guard = 0;
|
|
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE - 3, OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
|
|
// This time, expanding the sample will add some more guards.
|
|
guard = entry_guards_expand_sample(gs);
|
|
tt_assert(guard); // no guard was added.
|
|
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL)+3);
|
|
|
|
// Still idempotent.
|
|
guard = entry_guards_expand_sample(gs);
|
|
tt_ptr_op(guard, OP_EQ, NULL); // no guard was added.
|
|
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
|
|
num_reachable_filtered_guards(gs, NULL));
|
|
|
|
// Now, do a nasty trick: tell the filter to exclude 31/32 of the guards.
|
|
// This will cause the sample size to get reeeeally huge, while the
|
|
// filtered sample size grows only slowly.
|
|
routerset_free(get_options_mutable()->ExcludeNodes);
|
|
get_options_mutable()->ExcludeNodes = routerset_new();
|
|
routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", "");
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
|
|
if (n_sl_idx % 64 != 0) {
|
|
n->rs->addr = 0x90903030;
|
|
}
|
|
});
|
|
entry_guards_update_filtered_sets(gs);
|
|
|
|
// Surely (p ~ 1-2**-60), one of our guards has been excluded.
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_LT,
|
|
DFLT_MIN_FILTERED_SAMPLE_SIZE);
|
|
|
|
// Try to regenerate the guards.
|
|
guard = entry_guards_expand_sample(gs);
|
|
tt_assert(guard); // no guard was added.
|
|
|
|
/* this time, it's possible that we didn't add enough sampled guards. */
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_LE,
|
|
DFLT_MIN_FILTERED_SAMPLE_SIZE);
|
|
/* but we definitely didn't exceed the sample maximum. */
|
|
const int n_guards = 271 / 2;
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_LE,
|
|
(int)(n_guards * .3));
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
digestmap_free(node_by_id, NULL);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_expand_sample_small_net(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
|
|
/* Fun corner case: not enough guards to make up our whole sample size. */
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
|
|
if (n_sl_idx >= 15) {
|
|
test_node_free(n);
|
|
SMARTLIST_DEL_CURRENT(big_fake_net_nodes, n);
|
|
} else {
|
|
n->rs->addr = 0; // make the filter reject this.
|
|
}
|
|
});
|
|
|
|
entry_guard_t *guard = entry_guards_expand_sample(gs);
|
|
tt_assert(guard); // the last guard returned -- some guard was added.
|
|
// half the nodes are guards, so we have 8 guards left. The set
|
|
// is small, so we sampled everything.
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, 8);
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 0);
|
|
done:
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_update_from_consensus_status(void *arg)
|
|
{
|
|
/* Here we're going to have some nodes become un-guardy, and say we got a
|
|
* new consensus. This should cause those nodes to get detected as
|
|
* unreachable. */
|
|
|
|
(void)arg;
|
|
int i;
|
|
time_t start = approx_time();
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
networkstatus_t *ns_tmp = NULL;
|
|
|
|
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
|
|
MOCK(randomize_time, mock_randomize_time_no_randomization);
|
|
|
|
/* First, sample some guards. */
|
|
entry_guards_expand_sample(gs);
|
|
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
|
|
int n_filtered_pre = num_reachable_filtered_guards(gs, NULL);
|
|
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
|
|
tt_i64_op(n_sampled_pre, OP_GT, 10);
|
|
|
|
/* At this point, it should be a no-op to do this: */
|
|
sampled_guards_update_from_consensus(gs);
|
|
|
|
/* Now let's make some of our guards become unlisted. The easiest way to
|
|
* do that would be to take away their guard flag. */
|
|
for (i = 0; i < 5; ++i) {
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
n->is_possible_guard = 0;
|
|
}
|
|
|
|
update_approx_time(start + 30);
|
|
{
|
|
/* try this with no live networkstatus. Nothing should happen! */
|
|
ns_tmp = dummy_consensus;
|
|
dummy_consensus = NULL;
|
|
sampled_guards_update_from_consensus(gs);
|
|
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
|
|
tt_i64_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre);
|
|
/* put the networkstatus back. */
|
|
dummy_consensus = ns_tmp;
|
|
ns_tmp = NULL;
|
|
}
|
|
|
|
/* Now those guards should become unlisted, and drop off the filter, but
|
|
* stay in the sample. */
|
|
update_approx_time(start + 60);
|
|
sampled_guards_update_from_consensus(gs);
|
|
|
|
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
|
|
tt_i64_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre-5);
|
|
for (i = 0; i < 5; ++i) {
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
tt_assert(! g->currently_listed);
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, start+60);
|
|
}
|
|
for (i = 5; i < n_sampled_pre; ++i) {
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
tt_assert(g->currently_listed);
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
|
|
}
|
|
|
|
/* Now re-list one, and remove one completely. */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
n->is_possible_guard = 1;
|
|
}
|
|
{
|
|
/* try removing the node, to make sure we don't crash on an absent node
|
|
*/
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
smartlist_remove(big_fake_net_nodes, n);
|
|
test_node_free(n);
|
|
}
|
|
update_approx_time(start + 300);
|
|
sampled_guards_update_from_consensus(gs);
|
|
|
|
/* guards 1..5 are now unlisted; 0,6,7.. are listed. */
|
|
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
|
|
for (i = 1; i < 6; ++i) {
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
tt_assert(! g->currently_listed);
|
|
if (i == 5)
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, start+300);
|
|
else
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, start+60);
|
|
}
|
|
for (i = 0; i < n_sampled_pre; i = (!i) ? 6 : i+1) { /* 0,6,7,8, ... */
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
tt_assert(g->currently_listed);
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
|
|
}
|
|
|
|
done:
|
|
tor_free(ns_tmp); /* in case we couldn't put it back */
|
|
guard_selection_free(gs);
|
|
UNMOCK(randomize_time);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_update_from_consensus_repair(void *arg)
|
|
{
|
|
/* Here we'll make sure that our code to repair the unlisted-since
|
|
* times is correct. */
|
|
|
|
(void)arg;
|
|
int i;
|
|
time_t start = approx_time();
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
|
|
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
|
|
MOCK(randomize_time, mock_randomize_time_no_randomization);
|
|
|
|
/* First, sample some guards. */
|
|
entry_guards_expand_sample(gs);
|
|
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
|
|
int n_filtered_pre = num_reachable_filtered_guards(gs, NULL);
|
|
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
|
|
tt_i64_op(n_sampled_pre, OP_GT, 10);
|
|
|
|
/* Now corrupt the list a bit. Call some unlisted-since-never, and some
|
|
* listed-and-unlisted-since-a-time. */
|
|
update_approx_time(start + 300);
|
|
for (i = 0; i < 3; ++i) {
|
|
/* these will get a date. */
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
n->is_possible_guard = 0;
|
|
g->currently_listed = 0;
|
|
}
|
|
for (i = 3; i < 6; ++i) {
|
|
/* these will become listed. */
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
g->unlisted_since_date = start+100;
|
|
}
|
|
setup_full_capture_of_logs(LOG_WARN);
|
|
sampled_guards_update_from_consensus(gs);
|
|
expect_log_msg_containing(
|
|
"was listed, but with unlisted_since_date set");
|
|
expect_log_msg_containing(
|
|
"was unlisted, but with unlisted_since_date unset");
|
|
teardown_capture_of_logs();
|
|
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre-3);
|
|
for (i = 3; i < n_sampled_pre; ++i) {
|
|
/* these will become listed. */
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
|
|
if (i < 3) {
|
|
tt_assert(! g->currently_listed);
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, start+300);
|
|
} else {
|
|
tt_assert(g->currently_listed);
|
|
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
|
|
}
|
|
}
|
|
|
|
done:
|
|
teardown_capture_of_logs();
|
|
guard_selection_free(gs);
|
|
UNMOCK(randomize_time);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_update_from_consensus_remove(void *arg)
|
|
{
|
|
/* Now let's check the logic responsible for removing guards from the
|
|
* sample entirely. */
|
|
|
|
(void)arg;
|
|
//int i;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
smartlist_t *keep_ids = smartlist_new();
|
|
smartlist_t *remove_ids = smartlist_new();
|
|
|
|
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
|
|
MOCK(randomize_time, mock_randomize_time_no_randomization);
|
|
|
|
/* First, sample some guards. */
|
|
entry_guards_expand_sample(gs);
|
|
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
|
|
int n_filtered_pre = num_reachable_filtered_guards(gs, NULL);
|
|
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
|
|
tt_i64_op(n_sampled_pre, OP_GT, 10);
|
|
|
|
const time_t one_day_ago = approx_time() - 1*24*60*60;
|
|
const time_t one_year_ago = approx_time() - 365*24*60*60;
|
|
const time_t two_years_ago = approx_time() - 2*365*24*60*60;
|
|
/* 0: unlisted for a day. (keep this) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
n->is_possible_guard = 0;
|
|
g->currently_listed = 0;
|
|
g->unlisted_since_date = one_day_ago;
|
|
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
/* 1: unlisted for a year. (remove this) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 1);
|
|
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
|
|
tt_assert(n);
|
|
n->is_possible_guard = 0;
|
|
g->currently_listed = 0;
|
|
g->unlisted_since_date = one_year_ago;
|
|
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
/* 2: added a day ago, never confirmed. (keep this) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 2);
|
|
g->sampled_on_date = one_day_ago;
|
|
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
/* 3: added a year ago, never confirmed. (remove this) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 3);
|
|
g->sampled_on_date = one_year_ago;
|
|
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
/* 4: added two year ago, confirmed yesterday, primary. (keep this.) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 4);
|
|
g->sampled_on_date = one_year_ago;
|
|
g->confirmed_on_date = one_day_ago;
|
|
g->confirmed_idx = 0;
|
|
g->is_primary = 1;
|
|
smartlist_add(gs->confirmed_entry_guards, g);
|
|
smartlist_add(gs->primary_entry_guards, g);
|
|
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
/* 5: added two years ago, confirmed a year ago, primary. (remove this) */
|
|
{
|
|
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5);
|
|
g->sampled_on_date = two_years_ago;
|
|
g->confirmed_on_date = one_year_ago;
|
|
g->confirmed_idx = 1;
|
|
g->is_primary = 1;
|
|
smartlist_add(gs->confirmed_entry_guards, g);
|
|
smartlist_add(gs->primary_entry_guards, g);
|
|
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
|
|
}
|
|
|
|
sampled_guards_update_from_consensus(gs);
|
|
|
|
/* Did we remove the right ones? */
|
|
SMARTLIST_FOREACH(keep_ids, uint8_t *, id, {
|
|
tt_assert(get_sampled_guard_with_id(gs, id) != NULL);
|
|
});
|
|
SMARTLIST_FOREACH(remove_ids, uint8_t *, id, {
|
|
tt_want(get_sampled_guard_with_id(gs, id) == NULL);
|
|
});
|
|
|
|
/* Did we remove the right number? */
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre - 3);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
UNMOCK(randomize_time);
|
|
SMARTLIST_FOREACH(keep_ids, char *, cp, tor_free(cp));
|
|
SMARTLIST_FOREACH(remove_ids, char *, cp, tor_free(cp));
|
|
smartlist_free(keep_ids);
|
|
smartlist_free(remove_ids);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_confirming_guards(void *arg)
|
|
{
|
|
(void)arg;
|
|
/* Now let's check the logic responsible for manipulating the list
|
|
* of confirmed guards */
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
MOCK(randomize_time, mock_randomize_time_no_randomization);
|
|
|
|
/* Create the sample. */
|
|
entry_guards_expand_sample(gs);
|
|
|
|
/* Confirm a few guards. */
|
|
time_t start = approx_time();
|
|
entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0);
|
|
entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1);
|
|
entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 8);
|
|
make_guard_confirmed(gs, g2);
|
|
update_approx_time(start + 10);
|
|
make_guard_confirmed(gs, g1);
|
|
make_guard_confirmed(gs, g3);
|
|
|
|
/* Were the correct dates and indices fed in? */
|
|
tt_int_op(g1->confirmed_idx, OP_EQ, 1);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ, 0);
|
|
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
|
|
tt_i64_op(g1->confirmed_on_date, OP_EQ, start+10);
|
|
tt_i64_op(g2->confirmed_on_date, OP_EQ, start);
|
|
tt_i64_op(g3->confirmed_on_date, OP_EQ, start+10);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3);
|
|
|
|
/* Now make sure we can regenerate the confirmed_entry_guards list. */
|
|
smartlist_clear(gs->confirmed_entry_guards);
|
|
g2->confirmed_idx = 0;
|
|
g1->confirmed_idx = 10;
|
|
g3->confirmed_idx = 100;
|
|
entry_guards_update_confirmed(gs);
|
|
tt_int_op(g1->confirmed_idx, OP_EQ, 1);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ, 0);
|
|
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1);
|
|
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3);
|
|
|
|
/* Now make sure we can regenerate the confirmed_entry_guards list if
|
|
* the indices are messed up. */
|
|
g1->confirmed_idx = g2->confirmed_idx = g3->confirmed_idx = 999;
|
|
smartlist_clear(gs->confirmed_entry_guards);
|
|
entry_guards_update_confirmed(gs);
|
|
tt_int_op(g1->confirmed_idx, OP_GE, 0);
|
|
tt_int_op(g2->confirmed_idx, OP_GE, 0);
|
|
tt_int_op(g3->confirmed_idx, OP_GE, 0);
|
|
tt_int_op(g1->confirmed_idx, OP_LE, 2);
|
|
tt_int_op(g2->confirmed_idx, OP_LE, 2);
|
|
tt_int_op(g3->confirmed_idx, OP_LE, 2);
|
|
g1 = smartlist_get(gs->confirmed_entry_guards, 0);
|
|
g2 = smartlist_get(gs->confirmed_entry_guards, 1);
|
|
g3 = smartlist_get(gs->confirmed_entry_guards, 2);
|
|
tt_int_op(g1->confirmed_idx, OP_EQ, 0);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ, 1);
|
|
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
|
|
tt_assert(g1 != g2);
|
|
tt_assert(g1 != g3);
|
|
tt_assert(g2 != g3);
|
|
|
|
done:
|
|
UNMOCK(randomize_time);
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_sample_reachable_filtered(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
entry_guards_expand_sample(gs);
|
|
const int N = 10000;
|
|
bitarray_t *selected = NULL;
|
|
int i, j;
|
|
|
|
/* We've got a sampled list now; let's make one non-usable-filtered; some
|
|
* confirmed, some primary, some pending.
|
|
*/
|
|
int n_guards = smartlist_len(gs->sampled_entry_guards);
|
|
tt_int_op(n_guards, OP_GT, 10);
|
|
entry_guard_t *g;
|
|
g = smartlist_get(gs->sampled_entry_guards, 0);
|
|
g->is_pending = 1;
|
|
g = smartlist_get(gs->sampled_entry_guards, 1);
|
|
make_guard_confirmed(gs, g);
|
|
g = smartlist_get(gs->sampled_entry_guards, 2);
|
|
g->is_primary = 1;
|
|
g = smartlist_get(gs->sampled_entry_guards, 3);
|
|
g->pb.path_bias_disabled = 1;
|
|
|
|
entry_guards_update_filtered_sets(gs);
|
|
gs->primary_guards_up_to_date = 1;
|
|
tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_guards - 1);
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards);
|
|
|
|
// +1 since the one we made disabled will make another one get added.
|
|
++n_guards;
|
|
|
|
/* Try a bunch of selections. */
|
|
const struct {
|
|
int flag; int idx;
|
|
} tests[] = {
|
|
{ 0, -1 },
|
|
{ SAMPLE_EXCLUDE_CONFIRMED, 1 },
|
|
{ SAMPLE_EXCLUDE_PRIMARY|SAMPLE_NO_UPDATE_PRIMARY, 2 },
|
|
{ SAMPLE_EXCLUDE_PENDING, 0 },
|
|
{ -1, -1},
|
|
};
|
|
|
|
for (j = 0; tests[j].flag >= 0; ++j) {
|
|
selected = bitarray_init_zero(n_guards);
|
|
const int excluded_flags = tests[j].flag;
|
|
const int excluded_idx = tests[j].idx;
|
|
for (i = 0; i < N; ++i) {
|
|
g = sample_reachable_filtered_entry_guards(gs, NULL, excluded_flags);
|
|
tor_assert(g);
|
|
int pos = smartlist_pos(gs->sampled_entry_guards, g);
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards);
|
|
tt_int_op(pos, OP_GE, 0);
|
|
tt_int_op(pos, OP_LT, n_guards);
|
|
bitarray_set(selected, pos);
|
|
}
|
|
for (i = 0; i < n_guards; ++i) {
|
|
const int should_be_set = (i != excluded_idx &&
|
|
i != 3); // filtered out.
|
|
tt_int_op(!!bitarray_is_set(selected, i), OP_EQ, should_be_set);
|
|
}
|
|
bitarray_free(selected);
|
|
selected = NULL;
|
|
}
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
bitarray_free(selected);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_sample_reachable_filtered_empty(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
/* What if we try to sample from a set of 0? */
|
|
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n,
|
|
n->is_possible_guard = 0);
|
|
|
|
entry_guard_t *g = sample_reachable_filtered_entry_guards(gs, NULL, 0);
|
|
tt_ptr_op(g, OP_EQ, NULL);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_retry_unreachable(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
|
|
entry_guards_expand_sample(gs);
|
|
/* Let's say that we have two guards, and they're down.
|
|
*/
|
|
time_t start = approx_time();
|
|
entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0);
|
|
entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1);
|
|
entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 2);
|
|
g1->is_reachable = GUARD_REACHABLE_NO;
|
|
g2->is_reachable = GUARD_REACHABLE_NO;
|
|
g1->is_primary = 1;
|
|
g1->failing_since = g2->failing_since = start;
|
|
g1->last_tried_to_connect = g2->last_tried_to_connect = start;
|
|
|
|
/* Wait 5 minutes. Nothing will get retried. */
|
|
update_approx_time(start + 5 * 60);
|
|
entry_guard_consider_retry(g1);
|
|
entry_guard_consider_retry(g2);
|
|
entry_guard_consider_retry(g3); // just to make sure this doesn't crash.
|
|
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
tt_int_op(g3->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
/* After 30 min, the primary one gets retried */
|
|
update_approx_time(start + 35 * 60);
|
|
entry_guard_consider_retry(g1);
|
|
entry_guard_consider_retry(g2);
|
|
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
|
|
g1->is_reachable = GUARD_REACHABLE_NO;
|
|
g1->last_tried_to_connect = start + 55*60;
|
|
|
|
/* After 1 hour, we'll retry the nonprimary one. */
|
|
update_approx_time(start + 61 * 60);
|
|
entry_guard_consider_retry(g1);
|
|
entry_guard_consider_retry(g2);
|
|
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
g2->is_reachable = GUARD_REACHABLE_NO;
|
|
g2->last_tried_to_connect = start + 61*60;
|
|
|
|
/* And then the primary one again. */
|
|
update_approx_time(start + 66 * 60);
|
|
entry_guard_consider_retry(g1);
|
|
entry_guard_consider_retry(g2);
|
|
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_manage_primary(void *arg)
|
|
{
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
smartlist_t *prev_guards = smartlist_new();
|
|
|
|
/* If no guards are confirmed, we should pick a few reachable guards and
|
|
* call them all primary. But not confirmed.*/
|
|
entry_guards_update_primary(gs);
|
|
int n_primary = smartlist_len(gs->primary_entry_guards);
|
|
tt_int_op(n_primary, OP_GE, 1);
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
|
|
tt_assert(g->is_primary);
|
|
tt_assert(g->confirmed_idx == -1);
|
|
});
|
|
|
|
/* Calling it a second time should leave the guards unchanged. */
|
|
smartlist_add_all(prev_guards, gs->primary_entry_guards);
|
|
entry_guards_update_primary(gs);
|
|
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
|
|
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx));
|
|
});
|
|
|
|
/* If we have one confirmed guard, that guards becomes the first primary
|
|
* guard, and the other primary guards get kept. */
|
|
|
|
/* find a non-primary guard... */
|
|
entry_guard_t *confirmed = NULL;
|
|
SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, g, {
|
|
if (! g->is_primary) {
|
|
confirmed = g;
|
|
break;
|
|
}
|
|
});
|
|
tt_assert(confirmed);
|
|
/* make it confirmed. */
|
|
make_guard_confirmed(gs, confirmed);
|
|
/* update the list... */
|
|
smartlist_clear(prev_guards);
|
|
smartlist_add_all(prev_guards, gs->primary_entry_guards);
|
|
entry_guards_update_primary(gs);
|
|
|
|
/* and see what's primary now! */
|
|
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
|
|
tt_ptr_op(smartlist_get(gs->primary_entry_guards, 0), OP_EQ, confirmed);
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
|
|
tt_assert(g->is_primary);
|
|
if (g_sl_idx == 0)
|
|
continue;
|
|
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx - 1));
|
|
});
|
|
{
|
|
entry_guard_t *prev_last_guard = smartlist_get(prev_guards, n_primary-1);
|
|
tt_assert(! prev_last_guard->is_primary);
|
|
}
|
|
|
|
/* Calling it a fourth time should leave the guards unchanged. */
|
|
smartlist_clear(prev_guards);
|
|
smartlist_add_all(prev_guards, gs->primary_entry_guards);
|
|
entry_guards_update_primary(gs);
|
|
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
|
|
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx));
|
|
});
|
|
|
|
/* Do some dirinfo checks */
|
|
{
|
|
/* Check that we have all required dirinfo for the primaries (that's done
|
|
* in big_fake_network_setup()) */
|
|
char *dir_info_str =
|
|
guard_selection_get_err_str_if_dir_info_missing(gs, 0, 0, 0);
|
|
tt_assert(!dir_info_str);
|
|
|
|
/* Now artificially remove the first primary's descriptor and re-check */
|
|
entry_guard_t *first_primary;
|
|
first_primary = smartlist_get(gs->primary_entry_guards, 0);
|
|
/* Change the first primary's identity digest so that the mocked functions
|
|
* can't find its descriptor */
|
|
memset(first_primary->identity, 9, sizeof(first_primary->identity));
|
|
dir_info_str =guard_selection_get_err_str_if_dir_info_missing(gs, 1, 2, 3);
|
|
tt_str_op(dir_info_str, OP_EQ,
|
|
"We're missing descriptors for 1/2 of our primary entry guards "
|
|
"(total microdescriptors: 2/3).");
|
|
tor_free(dir_info_str);
|
|
}
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
smartlist_free(prev_guards);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_guard_preferred(void *arg)
|
|
{
|
|
(void) arg;
|
|
entry_guard_t *g1 = tor_malloc_zero(sizeof(entry_guard_t));
|
|
entry_guard_t *g2 = tor_malloc_zero(sizeof(entry_guard_t));
|
|
|
|
g1->confirmed_idx = g2->confirmed_idx = -1;
|
|
g1->last_tried_to_connect = approx_time();
|
|
g2->last_tried_to_connect = approx_time();
|
|
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g1));
|
|
|
|
/* Neither is pending; priorities equal. */
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
|
|
/* If one is pending, the pending one has higher priority */
|
|
g1->is_pending = 1;
|
|
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
|
|
/* If both are pending, and last_tried_to_connect is equal:
|
|
priorities equal */
|
|
g2->is_pending = 1;
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
|
|
/* One had a connection that startied earlier: it has higher priority. */
|
|
g2->last_tried_to_connect -= 10;
|
|
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
|
|
/* Now, say that g1 is confirmed. It will get higher priority. */
|
|
g1->confirmed_idx = 5;
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
|
|
/* But if g2 was confirmed first, it will get priority */
|
|
g2->confirmed_idx = 2;
|
|
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1));
|
|
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
|
|
|
|
done:
|
|
tor_free(g1);
|
|
tor_free(g2);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_for_circuit_no_confirmed(void *arg)
|
|
{
|
|
/* Simpler cases: no gaurds are confirmed yet. */
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
entry_guard_restriction_t *rst = NULL;
|
|
|
|
/* simple starting configuration */
|
|
entry_guards_update_primary(gs);
|
|
unsigned state = 9999;
|
|
|
|
entry_guard_t *g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC,
|
|
NULL, &state);
|
|
|
|
tt_assert(g);
|
|
tt_assert(g->is_primary);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, -1);
|
|
tt_uint_op(g->is_pending, OP_EQ, 0); // primary implies non-pending.
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
|
|
|
|
// If we do that again, we should get the same guard.
|
|
entry_guard_t *g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC,
|
|
NULL, &state);
|
|
tt_ptr_op(g2, OP_EQ, g);
|
|
|
|
// if we mark that guard down, we should get a different primary guard.
|
|
// auto-retry it.
|
|
g->is_reachable = GUARD_REACHABLE_NO;
|
|
g->failing_since = approx_time() - 10;
|
|
g->last_tried_to_connect = approx_time() - 10;
|
|
state = 9999;
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_ptr_op(g2, OP_NE, g);
|
|
tt_assert(g2);
|
|
tt_assert(g2->is_primary);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ, -1);
|
|
tt_uint_op(g2->is_pending, OP_EQ, 0); // primary implies non-pending.
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
|
|
|
|
// If we say that the first primary guard was last tried a long time ago, we
|
|
// should get an automatic retry on it.
|
|
g->failing_since = approx_time() - 72*60*60;
|
|
g->last_tried_to_connect = approx_time() - 72*60*60;
|
|
state = 9999;
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_ptr_op(g2, OP_EQ, g);
|
|
tt_assert(g2);
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
// And if we mark ALL the primary guards down, we should get another guard
|
|
// at random.
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
|
|
guard->is_reachable = GUARD_REACHABLE_NO;
|
|
guard->last_tried_to_connect = approx_time() - 5;
|
|
guard->failing_since = approx_time() - 30;
|
|
});
|
|
state = 9999;
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_assert(g2);
|
|
tt_assert(!g2->is_primary);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ, -1);
|
|
tt_uint_op(g2->is_pending, OP_EQ, 1);
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
|
|
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
|
|
// As a bonus, maybe we should be retrying the primary guards. Let's say so.
|
|
mark_primary_guards_maybe_reachable(gs);
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
|
|
tt_int_op(guard->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
tt_assert(guard->is_usable_filtered_guard == 1);
|
|
// no change to these fields.
|
|
tt_i64_op(guard->last_tried_to_connect, OP_EQ, approx_time() - 5);
|
|
tt_i64_op(guard->failing_since, OP_EQ, approx_time() - 30);
|
|
});
|
|
|
|
/* Let's try again and we should get the first primary guard again */
|
|
g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_ptr_op(g, OP_EQ, smartlist_get(gs->primary_entry_guards, 0));
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_ptr_op(g2, OP_EQ, g);
|
|
|
|
/* But if we impose a restriction, we don't get the same guard */
|
|
rst = guard_create_exit_restriction((uint8_t*)g->identity);
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state);
|
|
tt_ptr_op(g2, OP_NE, g);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
entry_guard_restriction_free(rst);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_for_circuit_confirmed(void *arg)
|
|
{
|
|
/* Case 2: if all the primary guards are down, and there are more confirmed
|
|
guards, we use a confirmed guard. */
|
|
(void)arg;
|
|
int i;
|
|
entry_guard_restriction_t *rst = NULL;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
const int N_CONFIRMED = 10;
|
|
|
|
/* slightly more complicated simple starting configuration */
|
|
entry_guards_update_primary(gs);
|
|
for (i = 0; i < N_CONFIRMED; ++i) {
|
|
entry_guard_t *guard = smartlist_get(gs->sampled_entry_guards, i);
|
|
make_guard_confirmed(gs, guard);
|
|
}
|
|
entry_guards_update_primary(gs); // rebuild the primary list.
|
|
|
|
unsigned state = 9999;
|
|
|
|
// As above, this gives us a primary guard.
|
|
entry_guard_t *g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC,
|
|
NULL, &state);
|
|
tt_assert(g);
|
|
tt_assert(g->is_primary);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 0);
|
|
tt_uint_op(g->is_pending, OP_EQ, 0); // primary implies non-pending.
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
|
|
tt_ptr_op(g, OP_EQ, smartlist_get(gs->primary_entry_guards, 0));
|
|
|
|
// But if we mark all the primary guards down...
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
|
|
guard->last_tried_to_connect = approx_time();
|
|
entry_guards_note_guard_failure(gs, guard);
|
|
});
|
|
|
|
// ... we should get a confirmed guard.
|
|
state = 9999;
|
|
g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_assert(g);
|
|
tt_assert(! g->is_primary);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, smartlist_len(gs->primary_entry_guards));
|
|
tt_assert(g->is_pending);
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
|
|
|
|
// And if we try again, we should get a different confirmed guard, since
|
|
// that one is pending.
|
|
state = 9999;
|
|
entry_guard_t *g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC,
|
|
NULL, &state);
|
|
tt_assert(g2);
|
|
tt_assert(! g2->is_primary);
|
|
tt_ptr_op(g2, OP_NE, g);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ,
|
|
smartlist_len(gs->primary_entry_guards)+1);
|
|
tt_assert(g2->is_pending);
|
|
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
|
|
|
|
// If we say that the next confirmed guard in order is excluded, and
|
|
// we disable EnforceDistinctSubnets, we get the guard AFTER the
|
|
// one we excluded.
|
|
get_options_mutable()->EnforceDistinctSubnets = 0;
|
|
g = smartlist_get(gs->confirmed_entry_guards,
|
|
smartlist_len(gs->primary_entry_guards)+2);
|
|
rst = guard_create_exit_restriction((uint8_t*)g->identity);
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state);
|
|
tt_ptr_op(g2, OP_NE, NULL);
|
|
tt_ptr_op(g2, OP_NE, g);
|
|
tt_int_op(g2->confirmed_idx, OP_EQ,
|
|
smartlist_len(gs->primary_entry_guards)+3);
|
|
|
|
// If we make every confirmed guard become pending then we start poking
|
|
// other guards.
|
|
const int n_remaining_confirmed =
|
|
N_CONFIRMED - 3 - smartlist_len(gs->primary_entry_guards);
|
|
for (i = 0; i < n_remaining_confirmed; ++i) {
|
|
g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_int_op(g->confirmed_idx, OP_GE, 0);
|
|
tt_assert(g);
|
|
}
|
|
state = 9999;
|
|
g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state);
|
|
tt_assert(g);
|
|
tt_assert(g->is_pending);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, -1);
|
|
|
|
// If we EnforceDistinctSubnets and apply a restriction, we get
|
|
// nothing, since we put all of the nodes in the same /16.
|
|
// Regression test for bug 22753/TROVE-2017-006.
|
|
get_options_mutable()->EnforceDistinctSubnets = 1;
|
|
g = smartlist_get(gs->confirmed_entry_guards, 0);
|
|
memcpy(rst->exclude_id, g->identity, DIGEST_LEN);
|
|
g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state);
|
|
tt_ptr_op(g2, OP_EQ, NULL);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
entry_guard_restriction_free(rst);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_for_circuit_highlevel_primary(void *arg)
|
|
{
|
|
/* Play around with selecting primary guards for circuits and markign
|
|
* them up and down */
|
|
(void)arg;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
|
|
time_t start = approx_time();
|
|
|
|
const node_t *node = NULL;
|
|
circuit_guard_state_t *guard = NULL;
|
|
entry_guard_t *g;
|
|
guard_usable_t u;
|
|
/*
|
|
* Make sure that the pick-for-circuit API basically works. We'll get
|
|
* a primary guard, so it'll be usable on completion.
|
|
*/
|
|
int r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, start);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, -1);
|
|
|
|
/* Call that circuit successful. */
|
|
update_approx_time(start+15);
|
|
u = entry_guard_succeeded(&guard);
|
|
tt_int_op(u, OP_EQ, GUARD_USABLE_NOW); /* We can use it now. */
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 0);
|
|
|
|
circuit_guard_state_free(guard);
|
|
guard = NULL;
|
|
node = NULL;
|
|
g = NULL;
|
|
|
|
/* Try again. We'll also get a primary guard this time. (The same one,
|
|
in fact.) But this time, we'll say the connection has failed. */
|
|
update_approx_time(start+35);
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
tt_i64_op(guard->state_set_at, OP_EQ, start+35);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, start+35);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 0); // same one.
|
|
|
|
/* It's failed! What will happen to our poor guard? */
|
|
update_approx_time(start+45);
|
|
entry_guard_failed(&guard);
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_DEAD);
|
|
tt_i64_op(guard->state_set_at, OP_EQ, start+45);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
tt_i64_op(g->failing_since, OP_EQ, start+45);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 0); // still confirmed.
|
|
|
|
circuit_guard_state_free(guard);
|
|
guard = NULL;
|
|
node = NULL;
|
|
entry_guard_t *g_prev = g;
|
|
g = NULL;
|
|
|
|
/* Now try a third time. Since the other one is down, we'll get a different
|
|
* (still primary) guard.
|
|
*/
|
|
update_approx_time(start+60);
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_ptr_op(g, OP_NE, g_prev);
|
|
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
|
|
tt_mem_op(g->identity, OP_NE, g_prev->identity, DIGEST_LEN);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
tt_i64_op(g->last_tried_to_connect, OP_EQ, start+60);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, -1); // not confirmed now.
|
|
|
|
/* Call this one up; watch it get confirmed. */
|
|
update_approx_time(start+90);
|
|
u = entry_guard_succeeded(&guard);
|
|
tt_int_op(u, OP_EQ, GUARD_USABLE_NOW);
|
|
tt_assert(guard);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 1);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
circuit_guard_state_free(guard);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_for_circuit_highlevel_confirm_other(void *arg)
|
|
{
|
|
(void) arg;
|
|
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
|
|
|
|
/* At the start, we have no confirmed guards. We'll mark the primary guards
|
|
* down, then confirm something else. As soon as we do, it should become
|
|
* primary, and we should get it next time. */
|
|
|
|
time_t start = approx_time();
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
circuit_guard_state_t *guard = NULL;
|
|
int i, r;
|
|
const node_t *node = NULL;
|
|
guard_usable_t u;
|
|
|
|
/* Declare that we're on the internet. */
|
|
entry_guards_note_internet_connectivity(gs);
|
|
|
|
/* Primary guards are down! */
|
|
for (i = 0; i < N_PRIMARY; ++i) {
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
entry_guard_failed(&guard);
|
|
circuit_guard_state_free(guard);
|
|
guard = NULL;
|
|
node = NULL;
|
|
}
|
|
|
|
/* Next guard should be non-primary. */
|
|
node = NULL;
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
entry_guard_t *g = entry_guard_handle_get(guard->guard);
|
|
tt_assert(g);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, -1);
|
|
tt_int_op(g->is_primary, OP_EQ, 0);
|
|
tt_int_op(g->is_pending, OP_EQ, 1);
|
|
(void)start;
|
|
|
|
u = entry_guard_succeeded(&guard);
|
|
/* We're on the internet (by fiat), so this guard will get called "confirmed"
|
|
* and should immediately become primary.
|
|
*/
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
tt_assert(u == GUARD_USABLE_NOW);
|
|
tt_int_op(g->confirmed_idx, OP_EQ, 0);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
tt_int_op(g->is_pending, OP_EQ, 0);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
circuit_guard_state_free(guard);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_for_circuit_highlevel_primary_retry(void *arg)
|
|
{
|
|
(void) arg;
|
|
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
|
|
|
|
/* At the start, we have no confirmed guards. We'll mark the primary guards
|
|
* down, then confirm something else. As soon as we do, it should become
|
|
* primary, and we should get it next time. */
|
|
|
|
time_t start = approx_time();
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
circuit_guard_state_t *guard = NULL, *guard2 = NULL;
|
|
int i, r;
|
|
const node_t *node = NULL;
|
|
entry_guard_t *g;
|
|
guard_usable_t u;
|
|
|
|
/* Declare that we're on the internet. */
|
|
entry_guards_note_internet_connectivity(gs);
|
|
|
|
/* Make primary guards confirmed (so they won't be superseded by a later
|
|
* guard), then mark them down. */
|
|
for (i = 0; i < N_PRIMARY; ++i) {
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
make_guard_confirmed(gs, g);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
entry_guard_failed(&guard);
|
|
circuit_guard_state_free(guard);
|
|
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
|
|
guard = NULL;
|
|
node = NULL;
|
|
}
|
|
|
|
/* Get another guard that we might try. */
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_int_op(g->is_primary, OP_EQ, 0);
|
|
|
|
tt_assert(entry_guards_all_primary_guards_are_down(gs));
|
|
|
|
/* And an hour has passed ... */
|
|
update_approx_time(start + 3600);
|
|
|
|
/* Say that guard has succeeded! */
|
|
u = entry_guard_succeeded(&guard);
|
|
tt_int_op(u, OP_EQ, GUARD_MAYBE_USABLE_LATER);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
|
|
/* The primary guards should have been marked up! */
|
|
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, pg, {
|
|
tt_int_op(pg->is_primary, OP_EQ, 1);
|
|
tt_ptr_op(g, OP_NE, pg);
|
|
tt_int_op(pg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
|
|
});
|
|
|
|
/* Have a circuit to a primary guard succeed. */
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard2);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
u = entry_guard_succeeded(&guard2);
|
|
tt_assert(u == GUARD_USABLE_NOW);
|
|
tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
|
|
tt_assert(! entry_guards_all_primary_guards_are_down(gs));
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
circuit_guard_state_free(guard);
|
|
circuit_guard_state_free(guard2);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_select_and_cancel(void *arg)
|
|
{
|
|
(void) arg;
|
|
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
|
|
int i,r;
|
|
const node_t *node = NULL;
|
|
circuit_guard_state_t *guard;
|
|
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
|
|
entry_guard_t *g;
|
|
|
|
/* Once more, we mark all the primary guards down. */
|
|
entry_guards_note_internet_connectivity(gs);
|
|
for (i = 0; i < N_PRIMARY; ++i) {
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_int_op(g->is_primary, OP_EQ, 1);
|
|
tt_int_op(g->is_pending, OP_EQ, 0);
|
|
make_guard_confirmed(gs, g);
|
|
entry_guard_failed(&guard);
|
|
circuit_guard_state_free(guard);
|
|
guard = NULL;
|
|
node = NULL;
|
|
}
|
|
|
|
tt_assert(entry_guards_all_primary_guards_are_down(gs));
|
|
|
|
/* Now get another guard we could try... */
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_assert(node);
|
|
tt_assert(guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
tt_int_op(g->is_primary, OP_EQ, 0);
|
|
tt_int_op(g->is_pending, OP_EQ, 1);
|
|
|
|
/* Whoops! We should never have asked for this guard. Cancel the request! */
|
|
entry_guard_cancel(&guard);
|
|
tt_ptr_op(guard, OP_EQ, NULL);
|
|
tt_int_op(g->is_primary, OP_EQ, 0);
|
|
tt_int_op(g->is_pending, OP_EQ, 0);
|
|
|
|
done:
|
|
guard_selection_free(gs);
|
|
circuit_guard_state_free(guard);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_drop_guards(void *arg)
|
|
{
|
|
(void) arg;
|
|
int r;
|
|
const node_t *node = NULL;
|
|
circuit_guard_state_t *guard;
|
|
guard_selection_t *gs = get_guard_selection_info();
|
|
|
|
// Pick a guard, to get things set up.
|
|
r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &guard);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_GE,
|
|
DFLT_MIN_FILTERED_SAMPLE_SIZE);
|
|
tt_ptr_op(gs, OP_EQ, get_guard_selection_info());
|
|
|
|
// Drop all the guards! (This is a bad idea....)
|
|
remove_all_entry_guards_for_guard_selection(gs);
|
|
gs = get_guard_selection_info();
|
|
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, 0);
|
|
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, 0);
|
|
tt_int_op(smartlist_len(gs->confirmed_entry_guards), OP_EQ, 0);
|
|
|
|
done:
|
|
circuit_guard_state_free(guard);
|
|
guard_selection_free(gs);
|
|
}
|
|
|
|
/* Unit test setup function: Create a fake network, and set everything up
|
|
* for testing the upgrade-a-waiting-circuit code. */
|
|
typedef struct {
|
|
guard_selection_t *gs;
|
|
time_t start;
|
|
circuit_guard_state_t *guard1_state;
|
|
circuit_guard_state_t *guard2_state;
|
|
entry_guard_t *guard1;
|
|
entry_guard_t *guard2;
|
|
origin_circuit_t *circ1;
|
|
origin_circuit_t *circ2;
|
|
smartlist_t *all_origin_circuits;
|
|
} upgrade_circuits_data_t;
|
|
static void *
|
|
upgrade_circuits_setup(const struct testcase_t *testcase)
|
|
{
|
|
upgrade_circuits_data_t *data = tor_malloc_zero(sizeof(*data));
|
|
guard_selection_t *gs = data->gs =
|
|
guard_selection_new("default", GS_TYPE_NORMAL);
|
|
circuit_guard_state_t *guard;
|
|
const node_t *node;
|
|
entry_guard_t *g;
|
|
int i;
|
|
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
|
|
const char *argument = testcase->setup_data;
|
|
const int make_circ1_succeed = strstr(argument, "c1-done") != NULL;
|
|
const int make_circ2_succeed = strstr(argument, "c2-done") != NULL;
|
|
|
|
big_fake_network_setup(testcase);
|
|
|
|
/* We're going to set things up in a state where a circuit will be ready to
|
|
* be upgraded. Each test can make a single change (or not) that should
|
|
* block the upgrade.
|
|
*/
|
|
|
|
/* First, make all the primary guards confirmed, and down. */
|
|
data->start = approx_time();
|
|
entry_guards_note_internet_connectivity(gs);
|
|
for (i = 0; i < N_PRIMARY; ++i) {
|
|
entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard);
|
|
g = entry_guard_handle_get(guard->guard);
|
|
make_guard_confirmed(gs, g);
|
|
entry_guard_failed(&guard);
|
|
circuit_guard_state_free(guard);
|
|
}
|
|
|
|
/* Grab another couple of guards */
|
|
data->all_origin_circuits = smartlist_new();
|
|
|
|
update_approx_time(data->start + 27);
|
|
entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &data->guard1_state);
|
|
origin_circuit_t *circ;
|
|
data->circ1 = circ = origin_circuit_new();
|
|
circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL;
|
|
circ->guard_state = data->guard1_state;
|
|
smartlist_add(data->all_origin_circuits, circ);
|
|
|
|
update_approx_time(data->start + 30);
|
|
entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL,
|
|
&node, &data->guard2_state);
|
|
data->circ2 = circ = origin_circuit_new();
|
|
circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL;
|
|
circ->guard_state = data->guard2_state;
|
|
smartlist_add(data->all_origin_circuits, circ);
|
|
|
|
data->guard1 = entry_guard_handle_get(data->guard1_state->guard);
|
|
data->guard2 = entry_guard_handle_get(data->guard2_state->guard);
|
|
tor_assert(data->guard1 != data->guard2);
|
|
tor_assert(data->guard1_state->state ==
|
|
GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
tor_assert(data->guard2_state->state ==
|
|
GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
|
|
|
|
guard_usable_t r;
|
|
update_approx_time(data->start + 32);
|
|
if (make_circ1_succeed) {
|
|
r = entry_guard_succeeded(&data->guard1_state);
|
|
tor_assert(r == GUARD_MAYBE_USABLE_LATER);
|
|
tor_assert(data->guard1_state->state ==
|
|
GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
|
|
}
|
|
update_approx_time(data->start + 33);
|
|
if (make_circ2_succeed) {
|
|
r = entry_guard_succeeded(&data->guard2_state);
|
|
tor_assert(r == GUARD_MAYBE_USABLE_LATER);
|
|
tor_assert(data->guard2_state->state ==
|
|
GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
static int
|
|
upgrade_circuits_cleanup(const struct testcase_t *testcase, void *ptr)
|
|
{
|
|
upgrade_circuits_data_t *data = ptr;
|
|
// circuit_guard_state_free(data->guard1_state); // held in circ1
|
|
// circuit_guard_state_free(data->guard2_state); // held in circ2
|
|
guard_selection_free(data->gs);
|
|
smartlist_free(data->all_origin_circuits);
|
|
circuit_free_(TO_CIRCUIT(data->circ1));
|
|
circuit_free_(TO_CIRCUIT(data->circ2));
|
|
tor_free(data);
|
|
return big_fake_network_cleanup(testcase, NULL);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_a_circuit(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* This is the easy case: we have no COMPLETED circuits, all the
|
|
* primary guards are down, we have two WAITING circuits: one will
|
|
* get upgraded to COMPLETED! (The one that started first.)
|
|
*/
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
|
|
/* circ1 was started first, so we'll get told to ugrade it... */
|
|
tt_ptr_op(oc, OP_EQ, data->circ1);
|
|
|
|
/* And the guard state should be complete */
|
|
tt_ptr_op(data->guard1_state, OP_NE, NULL);
|
|
tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
|
|
done:
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_blocked_by_live_primary_guards(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* If any primary guards might be up, we can't upgrade any waiting
|
|
* circuits.
|
|
*/
|
|
mark_primary_guards_maybe_reachable(data->gs);
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
setup_capture_of_logs(LOG_DEBUG);
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 0);
|
|
expect_log_msg_containing("not all primary guards were definitely down.");
|
|
|
|
done:
|
|
teardown_capture_of_logs();
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_blocked_by_lack_of_waiting_circuits(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* If no circuits are waiting, we can't upgrade anything. (The test
|
|
* setup in this case was told not to make any of the circuits "waiting".)
|
|
*/
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
setup_capture_of_logs(LOG_DEBUG);
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 0);
|
|
expect_log_msg_containing("Considered upgrading guard-stalled circuits, "
|
|
"but didn't find any.");
|
|
|
|
done:
|
|
teardown_capture_of_logs();
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_blocked_by_better_circ_complete(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* We'll run through the logic of upgrade_a_circuit below...
|
|
* and then try again to make sure that circ2 isn't also upgraded.
|
|
*/
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
tt_ptr_op(oc, OP_EQ, data->circ1);
|
|
tt_ptr_op(data->guard1_state, OP_NE, NULL);
|
|
tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
|
|
/* Now, try again. Make sure that circ2 isn't upgraded. */
|
|
smartlist_clear(result);
|
|
setup_capture_of_logs(LOG_DEBUG);
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 0);
|
|
expect_log_msg_containing("At least one complete circuit had higher "
|
|
"priority, so not upgrading.");
|
|
|
|
done:
|
|
teardown_capture_of_logs();
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_not_blocked_by_restricted_circ_complete(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* Once more, let circ1 become complete. But this time, we'll claim
|
|
* that circ2 was restricted to not use the same guard as circ1. */
|
|
data->guard2_state->restrictions =
|
|
guard_create_exit_restriction((uint8_t*)data->guard1->identity);
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
tt_ptr_op(oc, OP_EQ, data->circ1);
|
|
tt_ptr_op(data->guard1_state, OP_NE, NULL);
|
|
tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
|
|
|
|
/* Now, we try again. Since circ2 has a restriction that circ1 doesn't obey,
|
|
* circ2 _is_ eligible for upgrade. */
|
|
smartlist_clear(result);
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc2 = smartlist_get(result, 0);
|
|
tt_ptr_op(oc2, OP_EQ, data->circ2);
|
|
|
|
done:
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_not_blocked_by_worse_circ_complete(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
smartlist_t *result = smartlist_new();
|
|
/* here we manually make circ2 COMPLETE, and make sure that circ1
|
|
* gets made complete anyway, since guard1 has higher priority
|
|
*/
|
|
update_approx_time(data->start + 300);
|
|
data->guard2_state->state = GUARD_CIRC_STATE_COMPLETE;
|
|
data->guard2_state->state_set_at = approx_time();
|
|
update_approx_time(data->start + 301);
|
|
|
|
/* Now, try again. Make sure that circ1 is approved. */
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
tt_ptr_op(oc, OP_EQ, data->circ1);
|
|
|
|
done:
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_blocked_by_better_circ_pending(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* circ2 is done, but circ1 is still pending. Since circ1 is better,
|
|
* we won't upgrade circ2. */
|
|
|
|
/* XXXX Prop271 -- this is a kludge. I'm making sure circ1 _is_ better,
|
|
* by messing with the guards' confirmed_idx */
|
|
make_guard_confirmed(data->gs, data->guard1);
|
|
{
|
|
int tmp;
|
|
tmp = data->guard1->confirmed_idx;
|
|
data->guard1->confirmed_idx = data->guard2->confirmed_idx;
|
|
data->guard2->confirmed_idx = tmp;
|
|
}
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
setup_capture_of_logs(LOG_DEBUG);
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 0);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 0);
|
|
expect_log_msg_containing("but 1 pending circuit(s) had higher guard "
|
|
"priority, so not upgrading.");
|
|
|
|
done:
|
|
teardown_capture_of_logs();
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_not_blocked_by_restricted_circ_pending(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
/* circ2 is done, but circ1 is still pending. But when there is a
|
|
restriction on circ2 that circ1 can't satisfy, circ1 can't block
|
|
circ2. */
|
|
|
|
/* XXXX Prop271 -- this is a kludge. I'm making sure circ1 _is_ better,
|
|
* by messing with the guards' confirmed_idx */
|
|
make_guard_confirmed(data->gs, data->guard1);
|
|
{
|
|
int tmp;
|
|
tmp = data->guard1->confirmed_idx;
|
|
data->guard1->confirmed_idx = data->guard2->confirmed_idx;
|
|
data->guard2->confirmed_idx = tmp;
|
|
}
|
|
|
|
data->guard2_state->restrictions =
|
|
guard_create_exit_restriction((uint8_t*)data->guard1->identity);
|
|
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
tt_ptr_op(oc, OP_EQ, data->circ2);
|
|
|
|
done:
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_upgrade_not_blocked_by_worse_circ_pending(void *arg)
|
|
{
|
|
upgrade_circuits_data_t *data = arg;
|
|
|
|
/* circ1 is done, but circ2 is still pending. Since circ1 is better,
|
|
* we will upgrade it. */
|
|
smartlist_t *result = smartlist_new();
|
|
int r;
|
|
r = entry_guards_upgrade_waiting_circuits(data->gs,
|
|
data->all_origin_circuits,
|
|
result);
|
|
tt_int_op(r, OP_EQ, 1);
|
|
tt_int_op(smartlist_len(result), OP_EQ, 1);
|
|
origin_circuit_t *oc = smartlist_get(result, 0);
|
|
tt_ptr_op(oc, OP_EQ, data->circ1);
|
|
|
|
done:
|
|
smartlist_free(result);
|
|
}
|
|
|
|
static void
|
|
test_entry_guard_should_expire_waiting(void *arg)
|
|
{
|
|
(void)arg;
|
|
circuit_guard_state_t *fake_state = tor_malloc_zero(sizeof(*fake_state));
|
|
/* We'll leave "guard" unset -- it won't matter here. */
|
|
|
|
/* No state? Can't expire. */
|
|
tt_assert(! entry_guard_state_should_expire(NULL));
|
|
|
|
/* Let's try one that expires. */
|
|
fake_state->state = GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD;
|
|
fake_state->state_set_at =
|
|
approx_time() - DFLT_NONPRIMARY_GUARD_IDLE_TIMEOUT - 1;
|
|
|
|
tt_assert(entry_guard_state_should_expire(fake_state));
|
|
|
|
/* But it wouldn't expire if we changed the state. */
|
|
fake_state->state = GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD;
|
|
tt_assert(! entry_guard_state_should_expire(fake_state));
|
|
|
|
/* And it wouldn't have expired a few seconds ago. */
|
|
fake_state->state = GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD;
|
|
fake_state->state_set_at =
|
|
approx_time() - DFLT_NONPRIMARY_GUARD_IDLE_TIMEOUT + 5;
|
|
tt_assert(! entry_guard_state_should_expire(fake_state));
|
|
|
|
done:
|
|
tor_free(fake_state);
|
|
}
|
|
|
|
/** Test that the number of primary guards can be controlled using torrc */
|
|
static void
|
|
test_entry_guard_number_of_primaries(void *arg)
|
|
{
|
|
(void) arg;
|
|
|
|
/* Get default value */
|
|
tt_int_op(get_n_primary_guards(), OP_EQ, DFLT_N_PRIMARY_GUARDS);
|
|
|
|
/* Set number of primaries using torrc */
|
|
get_options_mutable()->NumPrimaryGuards = 42;
|
|
tt_int_op(get_n_primary_guards(), OP_EQ, 42);
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
mock_directory_initiate_request(directory_request_t *req)
|
|
{
|
|
if (req->guard_state) {
|
|
circuit_guard_state_free(req->guard_state);
|
|
}
|
|
}
|
|
|
|
static networkstatus_t *mock_ns_val = NULL;
|
|
static networkstatus_t *
|
|
mock_ns_get_by_flavor(consensus_flavor_t f)
|
|
{
|
|
(void)f;
|
|
return mock_ns_val;
|
|
}
|
|
|
|
/** Test that when we fetch microdescriptors we skip guards that have
|
|
* previously failed to serve us needed microdescriptors. */
|
|
static void
|
|
test_entry_guard_outdated_dirserver_exclusion(void *arg)
|
|
{
|
|
int retval;
|
|
response_handler_args_t *args = NULL;
|
|
dir_connection_t *conn = NULL;
|
|
(void) arg;
|
|
|
|
/* Test prep: Make a new guard selection */
|
|
guard_selection_t *gs = get_guard_selection_by_name("default",
|
|
GS_TYPE_NORMAL, 1);
|
|
|
|
/* ... we want to use entry guards */
|
|
or_options_t *options = get_options_mutable();
|
|
options->UseEntryGuards = 1;
|
|
options->UseBridges = 0;
|
|
|
|
/* ... prepare some md digests we want to download in the future */
|
|
smartlist_t *digests = smartlist_new();
|
|
const char *prose = "unhurried and wise, we perceive.";
|
|
for (int i = 0; i < 20; i++) {
|
|
smartlist_add(digests, (char*)prose);
|
|
}
|
|
|
|
tt_int_op(smartlist_len(digests), OP_EQ, 20);
|
|
|
|
/* ... now mock some functions */
|
|
mock_ns_val = tor_malloc_zero(sizeof(networkstatus_t));
|
|
MOCK(networkstatus_get_latest_consensus_by_flavor, mock_ns_get_by_flavor);
|
|
MOCK(directory_initiate_request, mock_directory_initiate_request);
|
|
|
|
/* Test logic:
|
|
* 0. Create a proper guard set and primary guard list.
|
|
* 1. Pretend to fail microdescriptor fetches from all the primary guards.
|
|
* 2. Order another microdescriptor fetch and make sure that primary guards
|
|
* get skipped since they failed previous fetches.
|
|
*/
|
|
|
|
{ /* Setup primary guard list */
|
|
int i;
|
|
entry_guards_update_primary(gs);
|
|
for (i = 0; i < DFLT_N_PRIMARY_GUARDS; ++i) {
|
|
entry_guard_t *guard = smartlist_get(gs->sampled_entry_guards, i);
|
|
make_guard_confirmed(gs, guard);
|
|
}
|
|
entry_guards_update_primary(gs);
|
|
}
|
|
|
|
{
|
|
/* Fail microdesc fetches with all the primary guards */
|
|
args = tor_malloc_zero(sizeof(response_handler_args_t));
|
|
args->status_code = 404;
|
|
args->reason = NULL;
|
|
args->body = NULL;
|
|
args->body_len = 0;
|
|
|
|
conn = tor_malloc_zero(sizeof(dir_connection_t));
|
|
conn->requested_resource = tor_strdup("d/jlinblackorigami");
|
|
conn->base_.purpose = DIR_PURPOSE_FETCH_MICRODESC;
|
|
|
|
/* Pretend to fail fetches with all primary guards */
|
|
SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards,const entry_guard_t *,g) {
|
|
memcpy(conn->identity_digest, g->identity, DIGEST_LEN);
|
|
|
|
retval = handle_response_fetch_microdesc(conn, args);
|
|
tt_int_op(retval, OP_EQ, 0);
|
|
} SMARTLIST_FOREACH_END(g);
|
|
}
|
|
|
|
{
|
|
/* Now order the final md download */
|
|
setup_full_capture_of_logs(LOG_INFO);
|
|
initiate_descriptor_downloads(NULL, DIR_PURPOSE_FETCH_MICRODESC,
|
|
digests, 3, 7, 0);
|
|
|
|
/* ... and check that because we failed to fetch microdescs from all our
|
|
* primaries, we didn't end up selecting a primary for fetching dir info */
|
|
expect_log_msg_containing("No primary or confirmed guards available.");
|
|
teardown_capture_of_logs();
|
|
}
|
|
|
|
done:
|
|
UNMOCK(networkstatus_get_latest_consensus_by_flavor);
|
|
UNMOCK(directory_initiate_request);
|
|
smartlist_free(digests);
|
|
tor_free(mock_ns_val);
|
|
tor_free(args);
|
|
if (conn) {
|
|
tor_free(conn->requested_resource);
|
|
tor_free(conn);
|
|
}
|
|
}
|
|
|
|
/** Test helper to extend the <b>oc</b> circuit path <b>n</b> times and then
|
|
* ensure that the circuit is now complete. */
|
|
static void
|
|
helper_extend_circuit_path_n_times(origin_circuit_t *oc, int n)
|
|
{
|
|
int retval;
|
|
int i;
|
|
|
|
/* Extend path n times */
|
|
for (i = 0 ; i < n ; i++) {
|
|
retval = onion_extend_cpath(oc);
|
|
tt_int_op(retval, OP_EQ, 0);
|
|
tt_int_op(circuit_get_cpath_len(oc), OP_EQ, i+1);
|
|
}
|
|
|
|
/* Now do it one last time and see that circ is complete */
|
|
retval = onion_extend_cpath(oc);
|
|
tt_int_op(retval, OP_EQ, 1);
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
/** Test for basic Tor path selection. Makes sure we build 3-hop circuits. */
|
|
static void
|
|
test_entry_guard_basic_path_selection(void *arg)
|
|
{
|
|
(void) arg;
|
|
|
|
int retval;
|
|
|
|
/* Enable entry guards */
|
|
or_options_t *options = get_options_mutable();
|
|
options->UseEntryGuards = 1;
|
|
|
|
/* disables /16 check since all nodes have the same addr... */
|
|
options->EnforceDistinctSubnets = 0;
|
|
|
|
/* Create our circuit */
|
|
circuit_t *circ = dummy_origin_circuit_new(30);
|
|
origin_circuit_t *oc = TO_ORIGIN_CIRCUIT(circ);
|
|
oc->build_state = tor_malloc_zero(sizeof(cpath_build_state_t));
|
|
|
|
/* First pick the exit and pin it on the build_state */
|
|
retval = onion_pick_cpath_exit(oc, NULL, 0);
|
|
tt_int_op(retval, OP_EQ, 0);
|
|
|
|
/* Extend path 3 times. First we pick guard, then middle, then exit. */
|
|
helper_extend_circuit_path_n_times(oc, 3);
|
|
|
|
done:
|
|
circuit_free_(circ);
|
|
}
|
|
|
|
/** Test helper to build an L2 and L3 vanguard list. The vanguard lists
|
|
* produced should be completely disjoint. */
|
|
static void
|
|
helper_setup_vanguard_list(or_options_t *options)
|
|
{
|
|
int i = 0;
|
|
|
|
/* Add some nodes to the vanguard L2 list */
|
|
options->HSLayer2Nodes = routerset_new();
|
|
for (i = 0; i < 10 ; i += 2) {
|
|
node_t *vanguard_node = smartlist_get(big_fake_net_nodes, i);
|
|
tt_assert(vanguard_node->is_possible_guard);
|
|
routerset_parse(options->HSLayer2Nodes, vanguard_node->rs->nickname, "l2");
|
|
}
|
|
/* also add some nodes to vanguard L3 list
|
|
* (L2 list and L3 list should be disjoint for this test to work) */
|
|
options->HSLayer3Nodes = routerset_new();
|
|
for (i = 10; i < 20 ; i += 2) {
|
|
node_t *vanguard_node = smartlist_get(big_fake_net_nodes, i);
|
|
tt_assert(vanguard_node->is_possible_guard);
|
|
routerset_parse(options->HSLayer3Nodes, vanguard_node->rs->nickname, "l3");
|
|
}
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
/** Test to ensure that vanguard path selection works properly. Ensures that
|
|
* default vanguard circuits are 4 hops, and that path selection works
|
|
* correctly given the vanguard settings. */
|
|
static void
|
|
test_entry_guard_vanguard_path_selection(void *arg)
|
|
{
|
|
(void) arg;
|
|
|
|
int retval;
|
|
|
|
/* Enable entry guards */
|
|
or_options_t *options = get_options_mutable();
|
|
options->UseEntryGuards = 1;
|
|
|
|
/* XXX disables /16 check */
|
|
options->EnforceDistinctSubnets = 0;
|
|
|
|
/* Setup our vanguard list */
|
|
helper_setup_vanguard_list(options);
|
|
|
|
/* Create our circuit */
|
|
circuit_t *circ = dummy_origin_circuit_new(30);
|
|
origin_circuit_t *oc = TO_ORIGIN_CIRCUIT(circ);
|
|
oc->build_state = tor_malloc_zero(sizeof(cpath_build_state_t));
|
|
oc->build_state->is_internal = 1;
|
|
|
|
/* Switch circuit purpose to vanguards */
|
|
circ->purpose = CIRCUIT_PURPOSE_HS_VANGUARDS;
|
|
|
|
/* First pick the exit and pin it on the build_state */
|
|
tt_int_op(oc->build_state->desired_path_len, OP_EQ, 0);
|
|
retval = onion_pick_cpath_exit(oc, NULL, 0);
|
|
tt_int_op(retval, OP_EQ, 0);
|
|
|
|
/* Ensure that vanguards make 4-hop circuits by default */
|
|
tt_int_op(oc->build_state->desired_path_len, OP_EQ, 4);
|
|
|
|
/* Extend path as many times as needed to have complete circ. */
|
|
helper_extend_circuit_path_n_times(oc, oc->build_state->desired_path_len);
|
|
|
|
/* Test that the cpath linked list is set correctly. */
|
|
crypt_path_t *l1_node = oc->cpath;
|
|
crypt_path_t *l2_node = l1_node->next;
|
|
crypt_path_t *l3_node = l2_node->next;
|
|
crypt_path_t *l4_node = l3_node->next;
|
|
crypt_path_t *l1_node_again = l4_node->next;
|
|
tt_ptr_op(l1_node, OP_EQ, l1_node_again);
|
|
|
|
/* Test that L2 is indeed HSLayer2Node */
|
|
retval = routerset_contains_extendinfo(options->HSLayer2Nodes,
|
|
l2_node->extend_info);
|
|
tt_int_op(retval, OP_EQ, 4);
|
|
/* test that L3 node is _not_ contained in HSLayer2Node */
|
|
retval = routerset_contains_extendinfo(options->HSLayer2Nodes,
|
|
l3_node->extend_info);
|
|
tt_int_op(retval, OP_LT, 4);
|
|
|
|
/* Test that L3 is indeed HSLayer3Node */
|
|
retval = routerset_contains_extendinfo(options->HSLayer3Nodes,
|
|
l3_node->extend_info);
|
|
tt_int_op(retval, OP_EQ, 4);
|
|
/* test that L2 node is _not_ contained in HSLayer3Node */
|
|
retval = routerset_contains_extendinfo(options->HSLayer3Nodes,
|
|
l2_node->extend_info);
|
|
tt_int_op(retval, OP_LT, 4);
|
|
|
|
/* TODO: Test that L1 can be the same as exit. To test this we need start
|
|
enforcing EnforceDistinctSubnets again, which means that we need to give
|
|
each test node a different address which currently breaks some tests. */
|
|
|
|
done:
|
|
circuit_free_(circ);
|
|
}
|
|
|
|
static const struct testcase_setup_t big_fake_network = {
|
|
big_fake_network_setup, big_fake_network_cleanup
|
|
};
|
|
|
|
static const struct testcase_setup_t upgrade_circuits = {
|
|
upgrade_circuits_setup, upgrade_circuits_cleanup
|
|
};
|
|
|
|
#define NO_PREFIX_TEST(name) \
|
|
{ #name, test_ ## name, 0, NULL, NULL }
|
|
|
|
#define EN_TEST_BASE(name, fork, setup, arg) \
|
|
{ #name, test_entry_guard_ ## name, fork, setup, (void*)(arg) }
|
|
|
|
#define EN_TEST(name) EN_TEST_BASE(name, 0, NULL, NULL)
|
|
#define EN_TEST_FORK(name) EN_TEST_BASE(name, TT_FORK, NULL, NULL)
|
|
|
|
#define BFN_TEST(name) \
|
|
EN_TEST_BASE(name, TT_FORK, &big_fake_network, NULL), \
|
|
{ #name "_reasonably_future", test_entry_guard_ ## name, TT_FORK, \
|
|
&big_fake_network, (void*)(REASONABLY_FUTURE) }, \
|
|
{ #name "_reasonably_past", test_entry_guard_ ## name, TT_FORK, \
|
|
&big_fake_network, (void*)(REASONABLY_PAST) }
|
|
|
|
#define UPGRADE_TEST(name, arg) \
|
|
EN_TEST_BASE(name, TT_FORK, &upgrade_circuits, arg), \
|
|
{ #name "_reasonably_future", test_entry_guard_ ## name, TT_FORK, \
|
|
&upgrade_circuits, (void*)(arg REASONABLY_FUTURE) }, \
|
|
{ #name "_reasonably_past", test_entry_guard_ ## name, TT_FORK, \
|
|
&upgrade_circuits, (void*)(arg REASONABLY_PAST) }
|
|
|
|
struct testcase_t entrynodes_tests[] = {
|
|
NO_PREFIX_TEST(node_preferred_orport),
|
|
NO_PREFIX_TEST(entry_guard_describe),
|
|
|
|
EN_TEST(randomize_time),
|
|
EN_TEST(encode_for_state_minimal),
|
|
EN_TEST(encode_for_state_maximal),
|
|
EN_TEST(parse_from_state_minimal),
|
|
EN_TEST(parse_from_state_maximal),
|
|
EN_TEST(parse_from_state_failure),
|
|
EN_TEST(parse_from_state_partial_failure),
|
|
|
|
EN_TEST_FORK(parse_from_state_full),
|
|
EN_TEST_FORK(parse_from_state_broken),
|
|
EN_TEST_FORK(get_guard_selection_by_name),
|
|
EN_TEST_FORK(number_of_primaries),
|
|
|
|
BFN_TEST(choose_selection_initial),
|
|
BFN_TEST(add_single_guard),
|
|
BFN_TEST(node_filter),
|
|
BFN_TEST(expand_sample),
|
|
BFN_TEST(expand_sample_small_net),
|
|
BFN_TEST(update_from_consensus_status),
|
|
BFN_TEST(update_from_consensus_repair),
|
|
BFN_TEST(update_from_consensus_remove),
|
|
BFN_TEST(confirming_guards),
|
|
BFN_TEST(sample_reachable_filtered),
|
|
BFN_TEST(sample_reachable_filtered_empty),
|
|
BFN_TEST(retry_unreachable),
|
|
BFN_TEST(manage_primary),
|
|
|
|
EN_TEST_FORK(guard_preferred),
|
|
|
|
BFN_TEST(select_for_circuit_no_confirmed),
|
|
BFN_TEST(select_for_circuit_confirmed),
|
|
BFN_TEST(select_for_circuit_highlevel_primary),
|
|
BFN_TEST(select_for_circuit_highlevel_confirm_other),
|
|
BFN_TEST(select_for_circuit_highlevel_primary_retry),
|
|
BFN_TEST(select_and_cancel),
|
|
BFN_TEST(drop_guards),
|
|
BFN_TEST(outdated_dirserver_exclusion),
|
|
BFN_TEST(basic_path_selection),
|
|
BFN_TEST(vanguard_path_selection),
|
|
|
|
UPGRADE_TEST(upgrade_a_circuit, "c1-done c2-done"),
|
|
UPGRADE_TEST(upgrade_blocked_by_live_primary_guards, "c1-done c2-done"),
|
|
UPGRADE_TEST(upgrade_blocked_by_lack_of_waiting_circuits, ""),
|
|
UPGRADE_TEST(upgrade_blocked_by_better_circ_complete, "c1-done c2-done"),
|
|
UPGRADE_TEST(upgrade_not_blocked_by_restricted_circ_complete,
|
|
"c1-done c2-done"),
|
|
UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_complete, "c1-done c2-done"),
|
|
UPGRADE_TEST(upgrade_blocked_by_better_circ_pending, "c2-done"),
|
|
UPGRADE_TEST(upgrade_not_blocked_by_restricted_circ_pending,
|
|
"c2-done"),
|
|
UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_pending, "c1-done"),
|
|
|
|
EN_TEST_FORK(should_expire_waiting),
|
|
|
|
END_OF_TESTCASES
|
|
};
|