tor/src/or/buffers.c
Nick Mathewson f45cde05f9 Remove tor_malloc_roundup().
This function never actually did us any good, and it added a little
complexity.  See the changes file for more info.
2012-08-13 13:27:32 -04:00

2512 lines
76 KiB
C

/* Copyright (c) 2001 Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2012, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file buffers.c
* \brief Implements a generic interface buffer. Buffers are
* fairly opaque string holders that can read to or flush from:
* memory, file descriptors, or TLS connections.
**/
#define BUFFERS_PRIVATE
#include "or.h"
#include "buffers.h"
#include "config.h"
#include "connection_edge.h"
#include "connection_or.h"
#include "control.h"
#include "reasons.h"
#include "../common/util.h"
#include "../common/torlog.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
//#define PARANOIA
#ifdef PARANOIA
/** Helper: If PARANOIA is defined, assert that the buffer in local variable
* <b>buf</b> is well-formed. */
#define check() STMT_BEGIN assert_buf_ok(buf); STMT_END
#else
#define check() STMT_NIL
#endif
/* Implementation notes:
*
* After flirting with memmove, and dallying with ring-buffers, we're finally
* getting up to speed with the 1970s and implementing buffers as a linked
* list of small chunks. Each buffer has such a list; data is removed from
* the head of the list, and added at the tail. The list is singly linked,
* and the buffer keeps a pointer to the head and the tail.
*
* Every chunk, except the tail, contains at least one byte of data. Data in
* each chunk is contiguous.
*
* When you need to treat the first N characters on a buffer as a contiguous
* string, use the buf_pullup function to make them so. Don't do this more
* than necessary.
*
* The major free Unix kernels have handled buffers like this since, like,
* forever.
*/
static int parse_socks(const char *data, size_t datalen, socks_request_t *req,
int log_sockstype, int safe_socks, ssize_t *drain_out,
size_t *want_length_out);
static int parse_socks_client(const uint8_t *data, size_t datalen,
int state, char **reason,
ssize_t *drain_out);
/* Chunk manipulation functions */
/** A single chunk on a buffer or in a freelist. */
typedef struct chunk_t {
struct chunk_t *next; /**< The next chunk on the buffer or freelist. */
size_t datalen; /**< The number of bytes stored in this chunk */
size_t memlen; /**< The number of usable bytes of storage in <b>mem</b>. */
char *data; /**< A pointer to the first byte of data stored in <b>mem</b>. */
char mem[FLEXIBLE_ARRAY_MEMBER]; /**< The actual memory used for storage in
* this chunk. */
} chunk_t;
#define CHUNK_HEADER_LEN STRUCT_OFFSET(chunk_t, mem[0])
/** Return the number of bytes needed to allocate a chunk to hold
* <b>memlen</b> bytes. */
#define CHUNK_ALLOC_SIZE(memlen) (CHUNK_HEADER_LEN + (memlen))
/** Return the number of usable bytes in a chunk allocated with
* malloc(<b>memlen</b>). */
#define CHUNK_SIZE_WITH_ALLOC(memlen) ((memlen) - CHUNK_HEADER_LEN)
/** Return the next character in <b>chunk</b> onto which data can be appended.
* If the chunk is full, this might be off the end of chunk->mem. */
static INLINE char *
CHUNK_WRITE_PTR(chunk_t *chunk)
{
return chunk->data + chunk->datalen;
}
/** Return the number of bytes that can be written onto <b>chunk</b> without
* running out of space. */
static INLINE size_t
CHUNK_REMAINING_CAPACITY(const chunk_t *chunk)
{
return (chunk->mem + chunk->memlen) - (chunk->data + chunk->datalen);
}
/** Move all bytes stored in <b>chunk</b> to the front of <b>chunk</b>->mem,
* to free up space at the end. */
static INLINE void
chunk_repack(chunk_t *chunk)
{
if (chunk->datalen && chunk->data != &chunk->mem[0]) {
memmove(chunk->mem, chunk->data, chunk->datalen);
}
chunk->data = &chunk->mem[0];
}
#if defined(ENABLE_BUF_FREELISTS) || defined(RUNNING_DOXYGEN)
/** A freelist of chunks. */
typedef struct chunk_freelist_t {
size_t alloc_size; /**< What size chunks does this freelist hold? */
int max_length; /**< Never allow more than this number of chunks in the
* freelist. */
int slack; /**< When trimming the freelist, leave this number of extra
* chunks beyond lowest_length.*/
int cur_length; /**< How many chunks on the freelist now? */
int lowest_length; /**< What's the smallest value of cur_length since the
* last time we cleaned this freelist? */
uint64_t n_alloc;
uint64_t n_free;
uint64_t n_hit;
chunk_t *head; /**< First chunk on the freelist. */
} chunk_freelist_t;
/** Macro to help define freelists. */
#define FL(a,m,s) { a, m, s, 0, 0, 0, 0, 0, NULL }
/** Static array of freelists, sorted by alloc_len, terminated by an entry
* with alloc_size of 0. */
static chunk_freelist_t freelists[] = {
FL(4096, 256, 8), FL(8192, 128, 4), FL(16384, 64, 4), FL(32768, 32, 2),
FL(0, 0, 0)
};
#undef FL
/** How many times have we looked for a chunk of a size that no freelist
* could help with? */
static uint64_t n_freelist_miss = 0;
static void assert_freelist_ok(chunk_freelist_t *fl);
/** Return the freelist to hold chunks of size <b>alloc</b>, or NULL if
* no freelist exists for that size. */
static INLINE chunk_freelist_t *
get_freelist(size_t alloc)
{
int i;
for (i=0; freelists[i].alloc_size <= alloc; ++i) {
if (freelists[i].alloc_size == alloc) {
return &freelists[i];
}
}
return NULL;
}
/** Deallocate a chunk or put it on a freelist */
static void
chunk_free_unchecked(chunk_t *chunk)
{
size_t alloc;
chunk_freelist_t *freelist;
alloc = CHUNK_ALLOC_SIZE(chunk->memlen);
freelist = get_freelist(alloc);
if (freelist && freelist->cur_length < freelist->max_length) {
chunk->next = freelist->head;
freelist->head = chunk;
++freelist->cur_length;
} else {
if (freelist)
++freelist->n_free;
tor_free(chunk);
}
}
/** Allocate a new chunk with a given allocation size, or get one from the
* freelist. Note that a chunk with allocation size A can actually hold only
* CHUNK_SIZE_WITH_ALLOC(A) bytes in its mem field. */
static INLINE chunk_t *
chunk_new_with_alloc_size(size_t alloc)
{
chunk_t *ch;
chunk_freelist_t *freelist;
tor_assert(alloc >= sizeof(chunk_t));
freelist = get_freelist(alloc);
if (freelist && freelist->head) {
ch = freelist->head;
freelist->head = ch->next;
if (--freelist->cur_length < freelist->lowest_length)
freelist->lowest_length = freelist->cur_length;
++freelist->n_hit;
} else {
if (freelist)
++freelist->n_alloc;
else
++n_freelist_miss;
ch = tor_malloc(alloc);
}
ch->next = NULL;
ch->datalen = 0;
ch->memlen = CHUNK_SIZE_WITH_ALLOC(alloc);
ch->data = &ch->mem[0];
return ch;
}
#else
static void
chunk_free_unchecked(chunk_t *chunk)
{
tor_free(chunk);
}
static INLINE chunk_t *
chunk_new_with_alloc_size(size_t alloc)
{
chunk_t *ch;
ch = tor_malloc(alloc);
ch->next = NULL;
ch->datalen = 0;
ch->memlen = CHUNK_SIZE_WITH_ALLOC(alloc);
ch->data = &ch->mem[0];
return ch;
}
#endif
/** Expand <b>chunk</b> until it can hold <b>sz</b> bytes, and return a
* new pointer to <b>chunk</b>. Old pointers are no longer valid. */
static INLINE chunk_t *
chunk_grow(chunk_t *chunk, size_t sz)
{
off_t offset;
tor_assert(sz > chunk->memlen);
offset = chunk->data - chunk->mem;
chunk = tor_realloc(chunk, CHUNK_ALLOC_SIZE(sz));
chunk->memlen = sz;
chunk->data = chunk->mem + offset;
return chunk;
}
/** If a read onto the end of a chunk would be smaller than this number, then
* just start a new chunk. */
#define MIN_READ_LEN 8
/** Every chunk should take up at least this many bytes. */
#define MIN_CHUNK_ALLOC 256
/** No chunk should take up more than this many bytes. */
#define MAX_CHUNK_ALLOC 65536
/** Return the allocation size we'd like to use to hold <b>target</b>
* bytes. */
static INLINE size_t
preferred_chunk_size(size_t target)
{
size_t sz = MIN_CHUNK_ALLOC;
while (CHUNK_SIZE_WITH_ALLOC(sz) < target) {
sz <<= 1;
}
return sz;
}
/** Remove from the freelists most chunks that have not been used since the
* last call to buf_shrink_freelists(). */
void
buf_shrink_freelists(int free_all)
{
#ifdef ENABLE_BUF_FREELISTS
int i;
disable_control_logging();
for (i = 0; freelists[i].alloc_size; ++i) {
int slack = freelists[i].slack;
assert_freelist_ok(&freelists[i]);
if (free_all || freelists[i].lowest_length > slack) {
int n_to_free = free_all ? freelists[i].cur_length :
(freelists[i].lowest_length - slack);
int n_to_skip = freelists[i].cur_length - n_to_free;
int orig_length = freelists[i].cur_length;
int orig_n_to_free = n_to_free, n_freed=0;
int orig_n_to_skip = n_to_skip;
int new_length = n_to_skip;
chunk_t **chp = &freelists[i].head;
chunk_t *chunk;
while (n_to_skip) {
if (! (*chp)->next) {
log_warn(LD_BUG, "I wanted to skip %d chunks in the freelist for "
"%d-byte chunks, but only found %d. (Length %d)",
orig_n_to_skip, (int)freelists[i].alloc_size,
orig_n_to_skip-n_to_skip, freelists[i].cur_length);
assert_freelist_ok(&freelists[i]);
goto done;
}
// tor_assert((*chp)->next);
chp = &(*chp)->next;
--n_to_skip;
}
chunk = *chp;
*chp = NULL;
while (chunk) {
chunk_t *next = chunk->next;
tor_free(chunk);
chunk = next;
--n_to_free;
++n_freed;
++freelists[i].n_free;
}
if (n_to_free) {
log_warn(LD_BUG, "Freelist length for %d-byte chunks may have been "
"messed up somehow.", (int)freelists[i].alloc_size);
log_warn(LD_BUG, "There were %d chunks at the start. I decided to "
"keep %d. I wanted to free %d. I freed %d. I somehow think "
"I have %d left to free.",
freelists[i].cur_length, n_to_skip, orig_n_to_free,
n_freed, n_to_free);
}
// tor_assert(!n_to_free);
freelists[i].cur_length = new_length;
log_info(LD_MM, "Cleaned freelist for %d-byte chunks: original "
"length %d, kept %d, dropped %d.",
(int)freelists[i].alloc_size, orig_length,
orig_n_to_skip, orig_n_to_free);
}
freelists[i].lowest_length = freelists[i].cur_length;
assert_freelist_ok(&freelists[i]);
}
done:
enable_control_logging();
#else
(void) free_all;
#endif
}
/** Describe the current status of the freelists at log level <b>severity</b>.
*/
void
buf_dump_freelist_sizes(int severity)
{
#ifdef ENABLE_BUF_FREELISTS
int i;
log(severity, LD_MM, "====== Buffer freelists:");
for (i = 0; freelists[i].alloc_size; ++i) {
uint64_t total = ((uint64_t)freelists[i].cur_length) *
freelists[i].alloc_size;
log(severity, LD_MM,
U64_FORMAT" bytes in %d %d-byte chunks ["U64_FORMAT
" misses; "U64_FORMAT" frees; "U64_FORMAT" hits]",
U64_PRINTF_ARG(total),
freelists[i].cur_length, (int)freelists[i].alloc_size,
U64_PRINTF_ARG(freelists[i].n_alloc),
U64_PRINTF_ARG(freelists[i].n_free),
U64_PRINTF_ARG(freelists[i].n_hit));
}
log(severity, LD_MM, U64_FORMAT" allocations in non-freelist sizes",
U64_PRINTF_ARG(n_freelist_miss));
#else
(void)severity;
#endif
}
/** Magic value for buf_t.magic, to catch pointer errors. */
#define BUFFER_MAGIC 0xB0FFF312u
/** A resizeable buffer, optimized for reading and writing. */
struct buf_t {
uint32_t magic; /**< Magic cookie for debugging: Must be set to
* BUFFER_MAGIC. */
size_t datalen; /**< How many bytes is this buffer holding right now? */
size_t default_chunk_size; /**< Don't allocate any chunks smaller than
* this for this buffer. */
chunk_t *head; /**< First chunk in the list, or NULL for none. */
chunk_t *tail; /**< Last chunk in the list, or NULL for none. */
};
/** Collapse data from the first N chunks from <b>buf</b> into buf->head,
* growing it as necessary, until buf->head has the first <b>bytes</b> bytes
* of data from the buffer, or until buf->head has all the data in <b>buf</b>.
*
* If <b>nulterminate</b> is true, ensure that there is a 0 byte in
* buf->head->mem right after all the data. */
static void
buf_pullup(buf_t *buf, size_t bytes, int nulterminate)
{
chunk_t *dest, *src;
size_t capacity;
if (!buf->head)
return;
check();
if (buf->datalen < bytes)
bytes = buf->datalen;
if (nulterminate) {
capacity = bytes + 1;
if (buf->head->datalen >= bytes && CHUNK_REMAINING_CAPACITY(buf->head)) {
*CHUNK_WRITE_PTR(buf->head) = '\0';
return;
}
} else {
capacity = bytes;
if (buf->head->datalen >= bytes)
return;
}
if (buf->head->memlen >= capacity) {
/* We don't need to grow the first chunk, but we might need to repack it.*/
size_t needed = capacity - buf->head->datalen;
if (CHUNK_REMAINING_CAPACITY(buf->head) < needed)
chunk_repack(buf->head);
tor_assert(CHUNK_REMAINING_CAPACITY(buf->head) >= needed);
} else {
chunk_t *newhead;
size_t newsize;
/* We need to grow the chunk. */
chunk_repack(buf->head);
newsize = CHUNK_SIZE_WITH_ALLOC(preferred_chunk_size(capacity));
newhead = chunk_grow(buf->head, newsize);
tor_assert(newhead->memlen >= capacity);
if (newhead != buf->head) {
if (buf->tail == buf->head)
buf->tail = newhead;
buf->head = newhead;
}
}
dest = buf->head;
while (dest->datalen < bytes) {
size_t n = bytes - dest->datalen;
src = dest->next;
tor_assert(src);
if (n > src->datalen) {
memcpy(CHUNK_WRITE_PTR(dest), src->data, src->datalen);
dest->datalen += src->datalen;
dest->next = src->next;
if (buf->tail == src)
buf->tail = dest;
chunk_free_unchecked(src);
} else {
memcpy(CHUNK_WRITE_PTR(dest), src->data, n);
dest->datalen += n;
src->data += n;
src->datalen -= n;
tor_assert(dest->datalen == bytes);
}
}
if (nulterminate) {
tor_assert(CHUNK_REMAINING_CAPACITY(buf->head));
*CHUNK_WRITE_PTR(buf->head) = '\0';
}
check();
}
/** Resize buf so it won't hold extra memory that we haven't been
* using lately.
*/
void
buf_shrink(buf_t *buf)
{
(void)buf;
}
/** Remove the first <b>n</b> bytes from buf. */
static INLINE void
buf_remove_from_front(buf_t *buf, size_t n)
{
tor_assert(buf->datalen >= n);
while (n) {
tor_assert(buf->head);
if (buf->head->datalen > n) {
buf->head->datalen -= n;
buf->head->data += n;
buf->datalen -= n;
return;
} else {
chunk_t *victim = buf->head;
n -= victim->datalen;
buf->datalen -= victim->datalen;
buf->head = victim->next;
if (buf->tail == victim)
buf->tail = NULL;
chunk_free_unchecked(victim);
}
}
check();
}
/** Create and return a new buf with default chunk capacity <b>size</b>.
*/
buf_t *
buf_new_with_capacity(size_t size)
{
buf_t *b = buf_new();
b->default_chunk_size = preferred_chunk_size(size);
return b;
}
/** Allocate and return a new buffer with default capacity. */
buf_t *
buf_new(void)
{
buf_t *buf = tor_malloc_zero(sizeof(buf_t));
buf->magic = BUFFER_MAGIC;
buf->default_chunk_size = 4096;
return buf;
}
/** Remove all data from <b>buf</b>. */
void
buf_clear(buf_t *buf)
{
chunk_t *chunk, *next;
buf->datalen = 0;
for (chunk = buf->head; chunk; chunk = next) {
next = chunk->next;
chunk_free_unchecked(chunk);
}
buf->head = buf->tail = NULL;
}
/** Return the number of bytes stored in <b>buf</b> */
size_t
buf_datalen(const buf_t *buf)
{
return buf->datalen;
}
/** Return the total length of all chunks used in <b>buf</b>. */
size_t
buf_allocation(const buf_t *buf)
{
size_t total = 0;
const chunk_t *chunk;
for (chunk = buf->head; chunk; chunk = chunk->next) {
total += chunk->memlen;
}
return total;
}
/** Return the number of bytes that can be added to <b>buf</b> without
* performing any additional allocation. */
size_t
buf_slack(const buf_t *buf)
{
if (!buf->tail)
return 0;
else
return CHUNK_REMAINING_CAPACITY(buf->tail);
}
/** Release storage held by <b>buf</b>. */
void
buf_free(buf_t *buf)
{
if (!buf)
return;
buf_clear(buf);
buf->magic = 0xdeadbeef;
tor_free(buf);
}
/** Return a new copy of <b>in_chunk</b> */
static chunk_t *
chunk_copy(const chunk_t *in_chunk)
{
chunk_t *newch = tor_memdup(in_chunk, CHUNK_ALLOC_SIZE(in_chunk->memlen));
newch->next = NULL;
if (in_chunk->data) {
off_t offset = in_chunk->data - in_chunk->mem;
newch->data = newch->mem + offset;
}
return newch;
}
/** Return a new copy of <b>buf</b> */
buf_t *
buf_copy(const buf_t *buf)
{
chunk_t *ch;
buf_t *out = buf_new();
out->default_chunk_size = buf->default_chunk_size;
for (ch = buf->head; ch; ch = ch->next) {
chunk_t *newch = chunk_copy(ch);
if (out->tail) {
out->tail->next = newch;
out->tail = newch;
} else {
out->head = out->tail = newch;
}
}
out->datalen = buf->datalen;
return out;
}
/** Append a new chunk with enough capacity to hold <b>capacity</b> bytes to
* the tail of <b>buf</b>. If <b>capped</b>, don't allocate a chunk bigger
* than MAX_CHUNK_ALLOC. */
static chunk_t *
buf_add_chunk_with_capacity(buf_t *buf, size_t capacity, int capped)
{
chunk_t *chunk;
if (CHUNK_ALLOC_SIZE(capacity) < buf->default_chunk_size) {
chunk = chunk_new_with_alloc_size(buf->default_chunk_size);
} else if (capped && CHUNK_ALLOC_SIZE(capacity) > MAX_CHUNK_ALLOC) {
chunk = chunk_new_with_alloc_size(MAX_CHUNK_ALLOC);
} else {
chunk = chunk_new_with_alloc_size(preferred_chunk_size(capacity));
}
if (buf->tail) {
tor_assert(buf->head);
buf->tail->next = chunk;
buf->tail = chunk;
} else {
tor_assert(!buf->head);
buf->head = buf->tail = chunk;
}
check();
return chunk;
}
/** Read up to <b>at_most</b> bytes from the socket <b>fd</b> into
* <b>chunk</b> (which must be on <b>buf</b>). If we get an EOF, set
* *<b>reached_eof</b> to 1. Return -1 on error, 0 on eof or blocking,
* and the number of bytes read otherwise. */
static INLINE int
read_to_chunk(buf_t *buf, chunk_t *chunk, tor_socket_t fd, size_t at_most,
int *reached_eof, int *socket_error)
{
ssize_t read_result;
if (at_most > CHUNK_REMAINING_CAPACITY(chunk))
at_most = CHUNK_REMAINING_CAPACITY(chunk);
read_result = tor_socket_recv(fd, CHUNK_WRITE_PTR(chunk), at_most, 0);
if (read_result < 0) {
int e = tor_socket_errno(fd);
if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */
#ifdef _WIN32
if (e == WSAENOBUFS)
log_warn(LD_NET,"recv() failed: WSAENOBUFS. Not enough ram?");
#endif
*socket_error = e;
return -1;
}
return 0; /* would block. */
} else if (read_result == 0) {
log_debug(LD_NET,"Encountered eof on fd %d", (int)fd);
*reached_eof = 1;
return 0;
} else { /* actually got bytes. */
buf->datalen += read_result;
chunk->datalen += read_result;
log_debug(LD_NET,"Read %ld bytes. %d on inbuf.", (long)read_result,
(int)buf->datalen);
tor_assert(read_result < INT_MAX);
return (int)read_result;
}
}
/** As read_to_chunk(), but return (negative) error code on error, blocking,
* or TLS, and the number of bytes read otherwise. */
static INLINE int
read_to_chunk_tls(buf_t *buf, chunk_t *chunk, tor_tls_t *tls,
size_t at_most)
{
int read_result;
tor_assert(CHUNK_REMAINING_CAPACITY(chunk) >= at_most);
read_result = tor_tls_read(tls, CHUNK_WRITE_PTR(chunk), at_most);
if (read_result < 0)
return read_result;
buf->datalen += read_result;
chunk->datalen += read_result;
return read_result;
}
/** Read from socket <b>s</b>, writing onto end of <b>buf</b>. Read at most
* <b>at_most</b> bytes, growing the buffer as necessary. If recv() returns 0
* (because of EOF), set *<b>reached_eof</b> to 1 and return 0. Return -1 on
* error; else return the number of bytes read.
*/
/* XXXX024 indicate "read blocked" somehow? */
int
read_to_buf(tor_socket_t s, size_t at_most, buf_t *buf, int *reached_eof,
int *socket_error)
{
/* XXXX024 It's stupid to overload the return values for these functions:
* "error status" and "number of bytes read" are not mutually exclusive.
*/
int r = 0;
size_t total_read = 0;
check();
tor_assert(reached_eof);
tor_assert(SOCKET_OK(s));
while (at_most > total_read) {
size_t readlen = at_most - total_read;
chunk_t *chunk;
if (!buf->tail || CHUNK_REMAINING_CAPACITY(buf->tail) < MIN_READ_LEN) {
chunk = buf_add_chunk_with_capacity(buf, at_most, 1);
if (readlen > chunk->memlen)
readlen = chunk->memlen;
} else {
size_t cap = CHUNK_REMAINING_CAPACITY(buf->tail);
chunk = buf->tail;
if (cap < readlen)
readlen = cap;
}
r = read_to_chunk(buf, chunk, s, readlen, reached_eof, socket_error);
check();
if (r < 0)
return r; /* Error */
tor_assert(total_read+r < INT_MAX);
total_read += r;
if ((size_t)r < readlen) { /* eof, block, or no more to read. */
break;
}
}
return (int)total_read;
}
/** As read_to_buf, but reads from a TLS connection, and returns a TLS
* status value rather than the number of bytes read.
*
* Using TLS on OR connections complicates matters in two ways.
*
* First, a TLS stream has its own read buffer independent of the
* connection's read buffer. (TLS needs to read an entire frame from
* the network before it can decrypt any data. Thus, trying to read 1
* byte from TLS can require that several KB be read from the network
* and decrypted. The extra data is stored in TLS's decrypt buffer.)
* Because the data hasn't been read by Tor (it's still inside the TLS),
* this means that sometimes a connection "has stuff to read" even when
* poll() didn't return POLLIN. The tor_tls_get_pending_bytes function is
* used in connection.c to detect TLS objects with non-empty internal
* buffers and read from them again.
*
* Second, the TLS stream's events do not correspond directly to network
* events: sometimes, before a TLS stream can read, the network must be
* ready to write -- or vice versa.
*/
int
read_to_buf_tls(tor_tls_t *tls, size_t at_most, buf_t *buf)
{
int r = 0;
size_t total_read = 0;
check_no_tls_errors();
check();
while (at_most > total_read) {
size_t readlen = at_most - total_read;
chunk_t *chunk;
if (!buf->tail || CHUNK_REMAINING_CAPACITY(buf->tail) < MIN_READ_LEN) {
chunk = buf_add_chunk_with_capacity(buf, at_most, 1);
if (readlen > chunk->memlen)
readlen = chunk->memlen;
} else {
size_t cap = CHUNK_REMAINING_CAPACITY(buf->tail);
chunk = buf->tail;
if (cap < readlen)
readlen = cap;
}
r = read_to_chunk_tls(buf, chunk, tls, readlen);
check();
if (r < 0)
return r; /* Error */
tor_assert(total_read+r < INT_MAX);
total_read += r;
if ((size_t)r < readlen) /* eof, block, or no more to read. */
break;
}
return (int)total_read;
}
/** Helper for flush_buf(): try to write <b>sz</b> bytes from chunk
* <b>chunk</b> of buffer <b>buf</b> onto socket <b>s</b>. On success, deduct
* the bytes written from *<b>buf_flushlen</b>. Return the number of bytes
* written on success, 0 on blocking, -1 on failure.
*/
static INLINE int
flush_chunk(tor_socket_t s, buf_t *buf, chunk_t *chunk, size_t sz,
size_t *buf_flushlen)
{
ssize_t write_result;
if (sz > chunk->datalen)
sz = chunk->datalen;
write_result = tor_socket_send(s, chunk->data, sz, 0);
if (write_result < 0) {
int e = tor_socket_errno(s);
if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */
#ifdef _WIN32
if (e == WSAENOBUFS)
log_warn(LD_NET,"write() failed: WSAENOBUFS. Not enough ram?");
#endif
return -1;
}
log_debug(LD_NET,"write() would block, returning.");
return 0;
} else {
*buf_flushlen -= write_result;
buf_remove_from_front(buf, write_result);
tor_assert(write_result < INT_MAX);
return (int)write_result;
}
}
/** Helper for flush_buf_tls(): try to write <b>sz</b> bytes from chunk
* <b>chunk</b> of buffer <b>buf</b> onto socket <b>s</b>. (Tries to write
* more if there is a forced pending write size.) On success, deduct the
* bytes written from *<b>buf_flushlen</b>. Return the number of bytes
* written on success, and a TOR_TLS error code on failure or blocking.
*/
static INLINE int
flush_chunk_tls(tor_tls_t *tls, buf_t *buf, chunk_t *chunk,
size_t sz, size_t *buf_flushlen)
{
int r;
size_t forced;
char *data;
forced = tor_tls_get_forced_write_size(tls);
if (forced > sz)
sz = forced;
if (chunk) {
data = chunk->data;
tor_assert(sz <= chunk->datalen);
} else {
data = NULL;
tor_assert(sz == 0);
}
r = tor_tls_write(tls, data, sz);
if (r < 0)
return r;
if (*buf_flushlen > (size_t)r)
*buf_flushlen -= r;
else
*buf_flushlen = 0;
buf_remove_from_front(buf, r);
log_debug(LD_NET,"flushed %d bytes, %d ready to flush, %d remain.",
r,(int)*buf_flushlen,(int)buf->datalen);
return r;
}
/** Write data from <b>buf</b> to the socket <b>s</b>. Write at most
* <b>sz</b> bytes, decrement *<b>buf_flushlen</b> by
* the number of bytes actually written, and remove the written bytes
* from the buffer. Return the number of bytes written on success,
* -1 on failure. Return 0 if write() would block.
*/
int
flush_buf(tor_socket_t s, buf_t *buf, size_t sz, size_t *buf_flushlen)
{
/* XXXX024 It's stupid to overload the return values for these functions:
* "error status" and "number of bytes flushed" are not mutually exclusive.
*/
int r;
size_t flushed = 0;
tor_assert(buf_flushlen);
tor_assert(SOCKET_OK(s));
tor_assert(*buf_flushlen <= buf->datalen);
tor_assert(sz <= *buf_flushlen);
check();
while (sz) {
size_t flushlen0;
tor_assert(buf->head);
if (buf->head->datalen >= sz)
flushlen0 = sz;
else
flushlen0 = buf->head->datalen;
r = flush_chunk(s, buf, buf->head, flushlen0, buf_flushlen);
check();
if (r < 0)
return r;
flushed += r;
sz -= r;
if (r == 0 || (size_t)r < flushlen0) /* can't flush any more now. */
break;
}
tor_assert(flushed < INT_MAX);
return (int)flushed;
}
/** As flush_buf(), but writes data to a TLS connection. Can write more than
* <b>flushlen</b> bytes.
*/
int
flush_buf_tls(tor_tls_t *tls, buf_t *buf, size_t flushlen,
size_t *buf_flushlen)
{
int r;
size_t flushed = 0;
ssize_t sz;
tor_assert(buf_flushlen);
tor_assert(*buf_flushlen <= buf->datalen);
tor_assert(flushlen <= *buf_flushlen);
sz = (ssize_t) flushlen;
/* we want to let tls write even if flushlen is zero, because it might
* have a partial record pending */
check_no_tls_errors();
check();
do {
size_t flushlen0;
if (buf->head) {
if ((ssize_t)buf->head->datalen >= sz)
flushlen0 = sz;
else
flushlen0 = buf->head->datalen;
} else {
flushlen0 = 0;
}
r = flush_chunk_tls(tls, buf, buf->head, flushlen0, buf_flushlen);
check();
if (r < 0)
return r;
flushed += r;
sz -= r;
if (r == 0) /* Can't flush any more now. */
break;
} while (sz > 0);
tor_assert(flushed < INT_MAX);
return (int)flushed;
}
/** Append <b>string_len</b> bytes from <b>string</b> to the end of
* <b>buf</b>.
*
* Return the new length of the buffer on success, -1 on failure.
*/
int
write_to_buf(const char *string, size_t string_len, buf_t *buf)
{
if (!string_len)
return (int)buf->datalen;
check();
while (string_len) {
size_t copy;
if (!buf->tail || !CHUNK_REMAINING_CAPACITY(buf->tail))
buf_add_chunk_with_capacity(buf, string_len, 1);
copy = CHUNK_REMAINING_CAPACITY(buf->tail);
if (copy > string_len)
copy = string_len;
memcpy(CHUNK_WRITE_PTR(buf->tail), string, copy);
string_len -= copy;
string += copy;
buf->datalen += copy;
buf->tail->datalen += copy;
}
check();
tor_assert(buf->datalen < INT_MAX);
return (int)buf->datalen;
}
/** Helper: copy the first <b>string_len</b> bytes from <b>buf</b>
* onto <b>string</b>.
*/
static INLINE void
peek_from_buf(char *string, size_t string_len, const buf_t *buf)
{
chunk_t *chunk;
tor_assert(string);
/* make sure we don't ask for too much */
tor_assert(string_len <= buf->datalen);
/* assert_buf_ok(buf); */
chunk = buf->head;
while (string_len) {
size_t copy = string_len;
tor_assert(chunk);
if (chunk->datalen < copy)
copy = chunk->datalen;
memcpy(string, chunk->data, copy);
string_len -= copy;
string += copy;
chunk = chunk->next;
}
}
/** Remove <b>string_len</b> bytes from the front of <b>buf</b>, and store
* them into <b>string</b>. Return the new buffer size. <b>string_len</b>
* must be \<= the number of bytes on the buffer.
*/
int
fetch_from_buf(char *string, size_t string_len, buf_t *buf)
{
/* There must be string_len bytes in buf; write them onto string,
* then memmove buf back (that is, remove them from buf).
*
* Return the number of bytes still on the buffer. */
check();
peek_from_buf(string, string_len, buf);
buf_remove_from_front(buf, string_len);
check();
tor_assert(buf->datalen < INT_MAX);
return (int)buf->datalen;
}
/** True iff the cell command <b>command</b> is one that implies a
* variable-length cell in Tor link protocol <b>linkproto</b>. */
static INLINE int
cell_command_is_var_length(uint8_t command, int linkproto)
{
/* If linkproto is v2 (2), CELL_VERSIONS is the only variable-length cells
* work as implemented here. If it's 1, there are no variable-length cells.
* Tor does not support other versions right now, and so can't negotiate
* them.
*/
switch (linkproto) {
case 1:
/* Link protocol version 1 has no variable-length cells. */
return 0;
case 2:
/* In link protocol version 2, VERSIONS is the only variable-length cell */
return command == CELL_VERSIONS;
case 0:
case 3:
default:
/* In link protocol version 3 and later, and in version "unknown",
* commands 128 and higher indicate variable-length. VERSIONS is
* grandfathered in. */
return command == CELL_VERSIONS || command >= 128;
}
}
/** Check <b>buf</b> for a variable-length cell according to the rules of link
* protocol version <b>linkproto</b>. If one is found, pull it off the buffer
* and assign a newly allocated var_cell_t to *<b>out</b>, and return 1.
* Return 0 if whatever is on the start of buf_t is not a variable-length
* cell. Return 1 and set *<b>out</b> to NULL if there seems to be the start
* of a variable-length cell on <b>buf</b>, but the whole thing isn't there
* yet. */
int
fetch_var_cell_from_buf(buf_t *buf, var_cell_t **out, int linkproto)
{
char hdr[VAR_CELL_HEADER_SIZE];
var_cell_t *result;
uint8_t command;
uint16_t length;
check();
*out = NULL;
if (buf->datalen < VAR_CELL_HEADER_SIZE)
return 0;
peek_from_buf(hdr, sizeof(hdr), buf);
command = get_uint8(hdr+2);
if (!(cell_command_is_var_length(command, linkproto)))
return 0;
length = ntohs(get_uint16(hdr+3));
if (buf->datalen < (size_t)(VAR_CELL_HEADER_SIZE+length))
return 1;
result = var_cell_new(length);
result->command = command;
result->circ_id = ntohs(get_uint16(hdr));
buf_remove_from_front(buf, VAR_CELL_HEADER_SIZE);
peek_from_buf((char*) result->payload, length, buf);
buf_remove_from_front(buf, length);
check();
*out = result;
return 1;
}
#ifdef USE_BUFFEREVENTS
/** Try to read <b>n</b> bytes from <b>buf</b> at <b>pos</b> (which may be
* NULL for the start of the buffer), copying the data only if necessary. Set
* *<b>data_out</b> to a pointer to the desired bytes. Set <b>free_out</b>
* to 1 if we needed to malloc *<b>data</b> because the original bytes were
* noncontiguous; 0 otherwise. Return the number of bytes actually available
* at *<b>data_out</b>.
*/
static ssize_t
inspect_evbuffer(struct evbuffer *buf, char **data_out, size_t n,
int *free_out, struct evbuffer_ptr *pos)
{
int n_vecs, i;
if (evbuffer_get_length(buf) < n)
n = evbuffer_get_length(buf);
if (n == 0)
return 0;
n_vecs = evbuffer_peek(buf, n, pos, NULL, 0);
tor_assert(n_vecs > 0);
if (n_vecs == 1) {
struct evbuffer_iovec v;
i = evbuffer_peek(buf, n, pos, &v, 1);
tor_assert(i == 1);
*data_out = v.iov_base;
*free_out = 0;
return v.iov_len;
} else {
ev_ssize_t copied;
*data_out = tor_malloc(n);
*free_out = 1;
copied = evbuffer_copyout(buf, *data_out, n);
tor_assert(copied >= 0 && (size_t)copied == n);
return copied;
}
}
/** As fetch_var_cell_from_buf, buf works on an evbuffer. */
int
fetch_var_cell_from_evbuffer(struct evbuffer *buf, var_cell_t **out,
int linkproto)
{
char *hdr = NULL;
int free_hdr = 0;
size_t n;
size_t buf_len;
uint8_t command;
uint16_t cell_length;
var_cell_t *cell;
int result = 0;
*out = NULL;
buf_len = evbuffer_get_length(buf);
if (buf_len < VAR_CELL_HEADER_SIZE)
return 0;
n = inspect_evbuffer(buf, &hdr, VAR_CELL_HEADER_SIZE, &free_hdr, NULL);
tor_assert(n >= VAR_CELL_HEADER_SIZE);
command = get_uint8(hdr+2);
if (!(cell_command_is_var_length(command, linkproto))) {
goto done;
}
cell_length = ntohs(get_uint16(hdr+3));
if (buf_len < (size_t)(VAR_CELL_HEADER_SIZE+cell_length)) {
result = 1; /* Not all here yet. */
goto done;
}
cell = var_cell_new(cell_length);
cell->command = command;
cell->circ_id = ntohs(get_uint16(hdr));
evbuffer_drain(buf, VAR_CELL_HEADER_SIZE);
evbuffer_remove(buf, cell->payload, cell_length);
*out = cell;
result = 1;
done:
if (free_hdr && hdr)
tor_free(hdr);
return result;
}
#endif
/** Move up to *<b>buf_flushlen</b> bytes from <b>buf_in</b> to
* <b>buf_out</b>, and modify *<b>buf_flushlen</b> appropriately.
* Return the number of bytes actually copied.
*/
int
move_buf_to_buf(buf_t *buf_out, buf_t *buf_in, size_t *buf_flushlen)
{
/* We can do way better here, but this doesn't turn up in any profiles. */
char b[4096];
size_t cp, len;
len = *buf_flushlen;
if (len > buf_in->datalen)
len = buf_in->datalen;
cp = len; /* Remember the number of bytes we intend to copy. */
tor_assert(cp < INT_MAX);
while (len) {
/* This isn't the most efficient implementation one could imagine, since
* it does two copies instead of 1, but I kinda doubt that this will be
* critical path. */
size_t n = len > sizeof(b) ? sizeof(b) : len;
fetch_from_buf(b, n, buf_in);
write_to_buf(b, n, buf_out);
len -= n;
}
*buf_flushlen -= cp;
return (int)cp;
}
/** Internal structure: represents a position in a buffer. */
typedef struct buf_pos_t {
const chunk_t *chunk; /**< Which chunk are we pointing to? */
int pos;/**< Which character inside the chunk's data are we pointing to? */
size_t chunk_pos; /**< Total length of all previous chunks. */
} buf_pos_t;
/** Initialize <b>out</b> to point to the first character of <b>buf</b>.*/
static void
buf_pos_init(const buf_t *buf, buf_pos_t *out)
{
out->chunk = buf->head;
out->pos = 0;
out->chunk_pos = 0;
}
/** Advance <b>out</b> to the first appearance of <b>ch</b> at the current
* position of <b>out</b>, or later. Return -1 if no instances are found;
* otherwise returns the absolute position of the character. */
static off_t
buf_find_pos_of_char(char ch, buf_pos_t *out)
{
const chunk_t *chunk;
int pos;
tor_assert(out);
if (out->chunk) {
if (out->chunk->datalen) {
tor_assert(out->pos < (off_t)out->chunk->datalen);
} else {
tor_assert(out->pos == 0);
}
}
pos = out->pos;
for (chunk = out->chunk; chunk; chunk = chunk->next) {
char *cp = memchr(chunk->data+pos, ch, chunk->datalen - pos);
if (cp) {
out->chunk = chunk;
tor_assert(cp - chunk->data < INT_MAX);
out->pos = (int)(cp - chunk->data);
return out->chunk_pos + out->pos;
} else {
out->chunk_pos += chunk->datalen;
pos = 0;
}
}
return -1;
}
/** Advance <b>pos</b> by a single character, if there are any more characters
* in the buffer. Returns 0 on success, -1 on failure. */
static INLINE int
buf_pos_inc(buf_pos_t *pos)
{
++pos->pos;
if (pos->pos == (off_t)pos->chunk->datalen) {
if (!pos->chunk->next)
return -1;
pos->chunk_pos += pos->chunk->datalen;
pos->chunk = pos->chunk->next;
pos->pos = 0;
}
return 0;
}
/** Return true iff the <b>n</b>-character string in <b>s</b> appears
* (verbatim) at <b>pos</b>. */
static int
buf_matches_at_pos(const buf_pos_t *pos, const char *s, size_t n)
{
buf_pos_t p;
if (!n)
return 1;
memcpy(&p, pos, sizeof(p));
while (1) {
char ch = p.chunk->data[p.pos];
if (ch != *s)
return 0;
++s;
/* If we're out of characters that don't match, we match. Check this
* _before_ we test incrementing pos, in case we're at the end of the
* string. */
if (--n == 0)
return 1;
if (buf_pos_inc(&p)<0)
return 0;
}
}
/** Return the first position in <b>buf</b> at which the <b>n</b>-character
* string <b>s</b> occurs, or -1 if it does not occur. */
/*private*/ int
buf_find_string_offset(const buf_t *buf, const char *s, size_t n)
{
buf_pos_t pos;
buf_pos_init(buf, &pos);
while (buf_find_pos_of_char(*s, &pos) >= 0) {
if (buf_matches_at_pos(&pos, s, n)) {
tor_assert(pos.chunk_pos + pos.pos < INT_MAX);
return (int)(pos.chunk_pos + pos.pos);
} else {
if (buf_pos_inc(&pos)<0)
return -1;
}
}
return -1;
}
/** There is a (possibly incomplete) http statement on <b>buf</b>, of the
* form "\%s\\r\\n\\r\\n\%s", headers, body. (body may contain NULs.)
* If a) the headers include a Content-Length field and all bytes in
* the body are present, or b) there's no Content-Length field and
* all headers are present, then:
*
* - strdup headers into <b>*headers_out</b>, and NUL-terminate it.
* - memdup body into <b>*body_out</b>, and NUL-terminate it.
* - Then remove them from <b>buf</b>, and return 1.
*
* - If headers or body is NULL, discard that part of the buf.
* - If a headers or body doesn't fit in the arg, return -1.
* (We ensure that the headers or body don't exceed max len,
* _even if_ we're planning to discard them.)
* - If force_complete is true, then succeed even if not all of the
* content has arrived.
*
* Else, change nothing and return 0.
*/
int
fetch_from_buf_http(buf_t *buf,
char **headers_out, size_t max_headerlen,
char **body_out, size_t *body_used, size_t max_bodylen,
int force_complete)
{
char *headers, *p;
size_t headerlen, bodylen, contentlen;
int crlf_offset;
check();
if (!buf->head)
return 0;
crlf_offset = buf_find_string_offset(buf, "\r\n\r\n", 4);
if (crlf_offset > (int)max_headerlen ||
(crlf_offset < 0 && buf->datalen > max_headerlen)) {
log_debug(LD_HTTP,"headers too long.");
return -1;
} else if (crlf_offset < 0) {
log_debug(LD_HTTP,"headers not all here yet.");
return 0;
}
/* Okay, we have a full header. Make sure it all appears in the first
* chunk. */
if ((int)buf->head->datalen < crlf_offset + 4)
buf_pullup(buf, crlf_offset+4, 0);
headerlen = crlf_offset + 4;
headers = buf->head->data;
bodylen = buf->datalen - headerlen;
log_debug(LD_HTTP,"headerlen %d, bodylen %d.", (int)headerlen, (int)bodylen);
if (max_headerlen <= headerlen) {
log_warn(LD_HTTP,"headerlen %d larger than %d. Failing.",
(int)headerlen, (int)max_headerlen-1);
return -1;
}
if (max_bodylen <= bodylen) {
log_warn(LD_HTTP,"bodylen %d larger than %d. Failing.",
(int)bodylen, (int)max_bodylen-1);
return -1;
}
#define CONTENT_LENGTH "\r\nContent-Length: "
p = (char*) tor_memstr(headers, headerlen, CONTENT_LENGTH);
if (p) {
int i;
i = atoi(p+strlen(CONTENT_LENGTH));
if (i < 0) {
log_warn(LD_PROTOCOL, "Content-Length is less than zero; it looks like "
"someone is trying to crash us.");
return -1;
}
contentlen = i;
/* if content-length is malformed, then our body length is 0. fine. */
log_debug(LD_HTTP,"Got a contentlen of %d.",(int)contentlen);
if (bodylen < contentlen) {
if (!force_complete) {
log_debug(LD_HTTP,"body not all here yet.");
return 0; /* not all there yet */
}
}
if (bodylen > contentlen) {
bodylen = contentlen;
log_debug(LD_HTTP,"bodylen reduced to %d.",(int)bodylen);
}
}
/* all happy. copy into the appropriate places, and return 1 */
if (headers_out) {
*headers_out = tor_malloc(headerlen+1);
fetch_from_buf(*headers_out, headerlen, buf);
(*headers_out)[headerlen] = 0; /* NUL terminate it */
}
if (body_out) {
tor_assert(body_used);
*body_used = bodylen;
*body_out = tor_malloc(bodylen+1);
fetch_from_buf(*body_out, bodylen, buf);
(*body_out)[bodylen] = 0; /* NUL terminate it */
}
check();
return 1;
}
#ifdef USE_BUFFEREVENTS
/** As fetch_from_buf_http, buf works on an evbuffer. */
int
fetch_from_evbuffer_http(struct evbuffer *buf,
char **headers_out, size_t max_headerlen,
char **body_out, size_t *body_used, size_t max_bodylen,
int force_complete)
{
struct evbuffer_ptr crlf, content_length;
size_t headerlen, bodylen, contentlen;
/* Find the first \r\n\r\n in the buffer */
crlf = evbuffer_search(buf, "\r\n\r\n", 4, NULL);
if (crlf.pos < 0) {
/* We didn't find one. */
if (evbuffer_get_length(buf) > max_headerlen)
return -1; /* Headers too long. */
return 0; /* Headers not here yet. */
} else if (crlf.pos > (int)max_headerlen) {
return -1; /* Headers too long. */
}
headerlen = crlf.pos + 4; /* Skip over the \r\n\r\n */
bodylen = evbuffer_get_length(buf) - headerlen;
if (bodylen > max_bodylen)
return -1; /* body too long */
/* Look for the first occurrence of CONTENT_LENGTH insize buf before the
* crlfcrlf */
content_length = evbuffer_search_range(buf, CONTENT_LENGTH,
strlen(CONTENT_LENGTH), NULL, &crlf);
if (content_length.pos >= 0) {
/* We found a content_length: parse it and figure out if the body is here
* yet. */
struct evbuffer_ptr eol;
char *data = NULL;
int free_data = 0;
int n, i;
n = evbuffer_ptr_set(buf, &content_length, strlen(CONTENT_LENGTH),
EVBUFFER_PTR_ADD);
tor_assert(n == 0);
eol = evbuffer_search_eol(buf, &content_length, NULL, EVBUFFER_EOL_CRLF);
tor_assert(eol.pos > content_length.pos);
tor_assert(eol.pos <= crlf.pos);
inspect_evbuffer(buf, &data, eol.pos - content_length.pos, &free_data,
&content_length);
i = atoi(data);
if (free_data)
tor_free(data);
if (i < 0) {
log_warn(LD_PROTOCOL, "Content-Length is less than zero; it looks like "
"someone is trying to crash us.");
return -1;
}
contentlen = i;
/* if content-length is malformed, then our body length is 0. fine. */
log_debug(LD_HTTP,"Got a contentlen of %d.",(int)contentlen);
if (bodylen < contentlen) {
if (!force_complete) {
log_debug(LD_HTTP,"body not all here yet.");
return 0; /* not all there yet */
}
}
if (bodylen > contentlen) {
bodylen = contentlen;
log_debug(LD_HTTP,"bodylen reduced to %d.",(int)bodylen);
}
}
if (headers_out) {
*headers_out = tor_malloc(headerlen+1);
evbuffer_remove(buf, *headers_out, headerlen);
(*headers_out)[headerlen] = '\0';
}
if (body_out) {
tor_assert(headers_out);
tor_assert(body_used);
*body_used = bodylen;
*body_out = tor_malloc(bodylen+1);
evbuffer_remove(buf, *body_out, bodylen);
(*body_out)[bodylen] = '\0';
}
return 1;
}
#endif
/**
* Wait this many seconds before warning the user about using SOCKS unsafely
* again (requires that WarnUnsafeSocks is turned on). */
#define SOCKS_WARN_INTERVAL 5
/** Warn that the user application has made an unsafe socks request using
* protocol <b>socks_protocol</b> on port <b>port</b>. Don't warn more than
* once per SOCKS_WARN_INTERVAL, unless <b>safe_socks</b> is set. */
static void
log_unsafe_socks_warning(int socks_protocol, const char *address,
uint16_t port, int safe_socks)
{
static ratelim_t socks_ratelim = RATELIM_INIT(SOCKS_WARN_INTERVAL);
const or_options_t *options = get_options();
char *m = NULL;
if (! options->WarnUnsafeSocks)
return;
if (safe_socks || (m = rate_limit_log(&socks_ratelim, approx_time()))) {
log_warn(LD_APP,
"Your application (using socks%d to port %d) is giving "
"Tor only an IP address. Applications that do DNS resolves "
"themselves may leak information. Consider using Socks4A "
"(e.g. via privoxy or socat) instead. For more information, "
"please see https://wiki.torproject.org/TheOnionRouter/"
"TorFAQ#SOCKSAndDNS.%s%s",
socks_protocol,
(int)port,
safe_socks ? " Rejecting." : "",
m ? m : "");
tor_free(m);
}
control_event_client_status(LOG_WARN,
"DANGEROUS_SOCKS PROTOCOL=SOCKS%d ADDRESS=%s:%d",
socks_protocol, address, (int)port);
}
/** Do not attempt to parse socks messages longer than this. This value is
* actually significantly higher than the longest possible socks message. */
#define MAX_SOCKS_MESSAGE_LEN 512
/** Return a new socks_request_t. */
socks_request_t *
socks_request_new(void)
{
return tor_malloc_zero(sizeof(socks_request_t));
}
/** Free all storage held in the socks_request_t <b>req</b>. */
void
socks_request_free(socks_request_t *req)
{
if (!req)
return;
if (req->username) {
memset(req->username, 0x10, req->usernamelen);
tor_free(req->username);
}
if (req->password) {
memset(req->password, 0x04, req->passwordlen);
tor_free(req->password);
}
memset(req, 0xCC, sizeof(socks_request_t));
tor_free(req);
}
/** There is a (possibly incomplete) socks handshake on <b>buf</b>, of one
* of the forms
* - socks4: "socksheader username\\0"
* - socks4a: "socksheader username\\0 destaddr\\0"
* - socks5 phase one: "version #methods methods"
* - socks5 phase two: "version command 0 addresstype..."
* If it's a complete and valid handshake, and destaddr fits in
* MAX_SOCKS_ADDR_LEN bytes, then pull the handshake off the buf,
* assign to <b>req</b>, and return 1.
*
* If it's invalid or too big, return -1.
*
* Else it's not all there yet, leave buf alone and return 0.
*
* If you want to specify the socks reply, write it into <b>req->reply</b>
* and set <b>req->replylen</b>, else leave <b>req->replylen</b> alone.
*
* If <b>log_sockstype</b> is non-zero, then do a notice-level log of whether
* the connection is possibly leaking DNS requests locally or not.
*
* If <b>safe_socks</b> is true, then reject unsafe socks protocols.
*
* If returning 0 or -1, <b>req->address</b> and <b>req->port</b> are
* undefined.
*/
int
fetch_from_buf_socks(buf_t *buf, socks_request_t *req,
int log_sockstype, int safe_socks)
{
int res;
ssize_t n_drain;
size_t want_length = 128;
if (buf->datalen < 2) /* version and another byte */
return 0;
do {
n_drain = 0;
buf_pullup(buf, want_length, 0);
tor_assert(buf->head && buf->head->datalen >= 2);
want_length = 0;
res = parse_socks(buf->head->data, buf->head->datalen, req, log_sockstype,
safe_socks, &n_drain, &want_length);
if (n_drain < 0)
buf_clear(buf);
else if (n_drain > 0)
buf_remove_from_front(buf, n_drain);
} while (res == 0 && buf->head && want_length < buf->datalen &&
buf->datalen >= 2);
return res;
}
#ifdef USE_BUFFEREVENTS
/* As fetch_from_buf_socks(), but targets an evbuffer instead. */
int
fetch_from_evbuffer_socks(struct evbuffer *buf, socks_request_t *req,
int log_sockstype, int safe_socks)
{
char *data;
ssize_t n_drain;
size_t datalen, buflen, want_length;
int res;
buflen = evbuffer_get_length(buf);
if (buflen < 2)
return 0;
{
/* See if we can find the socks request in the first chunk of the buffer.
*/
struct evbuffer_iovec v;
int i;
n_drain = 0;
i = evbuffer_peek(buf, -1, NULL, &v, 1);
tor_assert(i == 1);
data = v.iov_base;
datalen = v.iov_len;
want_length = 0;
res = parse_socks(data, datalen, req, log_sockstype,
safe_socks, &n_drain, &want_length);
if (n_drain < 0)
evbuffer_drain(buf, evbuffer_get_length(buf));
else if (n_drain > 0)
evbuffer_drain(buf, n_drain);
if (res)
return res;
}
/* Okay, the first chunk of the buffer didn't have a complete socks request.
* That means that either we don't have a whole socks request at all, or
* it's gotten split up. We're going to try passing parse_socks() bigger
* and bigger chunks until either it says "Okay, I got it", or it says it
* will need more data than we currently have. */
/* Loop while we have more data that we haven't given parse_socks() yet. */
do {
int free_data = 0;
const size_t last_wanted = want_length;
n_drain = 0;
data = NULL;
datalen = inspect_evbuffer(buf, &data, want_length, &free_data, NULL);
want_length = 0;
res = parse_socks(data, datalen, req, log_sockstype,
safe_socks, &n_drain, &want_length);
if (free_data)
tor_free(data);
if (n_drain < 0)
evbuffer_drain(buf, evbuffer_get_length(buf));
else if (n_drain > 0)
evbuffer_drain(buf, n_drain);
if (res == 0 && n_drain == 0 && want_length <= last_wanted) {
/* If we drained nothing, and we didn't ask for more than last time,
* then we probably wanted more data than the buffer actually had,
* and we're finding out that we're not satisified with it. It's
* time to break until we have more data. */
break;
}
buflen = evbuffer_get_length(buf);
} while (res == 0 && want_length <= buflen && buflen >= 2);
return res;
}
#endif
/** Implementation helper to implement fetch_from_*_socks. Instead of looking
* at a buffer's contents, we look at the <b>datalen</b> bytes of data in
* <b>data</b>. Instead of removing data from the buffer, we set
* <b>drain_out</b> to the amount of data that should be removed (or -1 if the
* buffer should be cleared). Instead of pulling more data into the first
* chunk of the buffer, we set *<b>want_length_out</b> to the number of bytes
* we'd like to see in the input buffer, if they're available. */
static int
parse_socks(const char *data, size_t datalen, socks_request_t *req,
int log_sockstype, int safe_socks, ssize_t *drain_out,
size_t *want_length_out)
{
unsigned int len;
char tmpbuf[TOR_ADDR_BUF_LEN+1];
tor_addr_t destaddr;
uint32_t destip;
uint8_t socksver;
char *next, *startaddr;
unsigned char usernamelen, passlen;
struct in_addr in;
if (datalen < 2) {
/* We always need at least 2 bytes. */
*want_length_out = 2;
return 0;
}
if (req->socks_version == 5 && !req->got_auth) {
/* See if we have received authentication. Strictly speaking, we should
also check whether we actually negotiated username/password
authentication. But some broken clients will send us authentication
even if we negotiated SOCKS_NO_AUTH. */
if (*data == 1) { /* username/pass version 1 */
/* Format is: authversion [1 byte] == 1
usernamelen [1 byte]
username [usernamelen bytes]
passlen [1 byte]
password [passlen bytes] */
usernamelen = (unsigned char)*(data + 1);
if (datalen < 2u + usernamelen + 1u) {
*want_length_out = 2u + usernamelen + 1u;
return 0;
}
passlen = (unsigned char)*(data + 2u + usernamelen);
if (datalen < 2u + usernamelen + 1u + passlen) {
*want_length_out = 2u + usernamelen + 1u + passlen;
return 0;
}
req->replylen = 2; /* 2 bytes of response */
req->reply[0] = 5;
req->reply[1] = 0; /* authentication successful */
log_debug(LD_APP,
"socks5: Accepted username/password without checking.");
if (usernamelen) {
req->username = tor_memdup(data+2u, usernamelen);
req->usernamelen = usernamelen;
}
if (passlen) {
req->password = tor_memdup(data+3u+usernamelen, passlen);
req->passwordlen = passlen;
}
*drain_out = 2u + usernamelen + 1u + passlen;
req->got_auth = 1;
*want_length_out = 7; /* Minimal socks5 sommand. */
return 0;
} else if (req->auth_type == SOCKS_USER_PASS) {
/* unknown version byte */
log_warn(LD_APP, "Socks5 username/password version %d not recognized; "
"rejecting.", (int)*data);
return -1;
}
}
socksver = *data;
switch (socksver) { /* which version of socks? */
case 5: /* socks5 */
if (req->socks_version != 5) { /* we need to negotiate a method */
unsigned char nummethods = (unsigned char)*(data+1);
int r=0;
tor_assert(!req->socks_version);
if (datalen < 2u+nummethods) {
*want_length_out = 2u+nummethods;
return 0;
}
if (!nummethods)
return -1;
req->replylen = 2; /* 2 bytes of response */
req->reply[0] = 5; /* socks5 reply */
if (memchr(data+2, SOCKS_NO_AUTH, nummethods)) {
req->reply[1] = SOCKS_NO_AUTH; /* tell client to use "none" auth
method */
req->socks_version = 5; /* remember we've already negotiated auth */
log_debug(LD_APP,"socks5: accepted method 0 (no authentication)");
r=0;
} else if (memchr(data+2, SOCKS_USER_PASS, nummethods)) {
req->auth_type = SOCKS_USER_PASS;
req->reply[1] = SOCKS_USER_PASS; /* tell client to use "user/pass"
auth method */
req->socks_version = 5; /* remember we've already negotiated auth */
log_debug(LD_APP,"socks5: accepted method 2 (username/password)");
r=0;
} else {
log_warn(LD_APP,
"socks5: offered methods don't include 'no auth' or "
"username/password. Rejecting.");
req->reply[1] = '\xFF'; /* reject all methods */
r=-1;
}
/* Remove packet from buf. Some SOCKS clients will have sent extra
* junk at this point; let's hope it's an authentication message. */
*drain_out = 2u + nummethods;
return r;
}
if (req->auth_type != SOCKS_NO_AUTH && !req->got_auth) {
log_warn(LD_APP,
"socks5: negotiated authentication, but none provided");
return -1;
}
/* we know the method; read in the request */
log_debug(LD_APP,"socks5: checking request");
if (datalen < 7) {/* basic info plus >=1 for addr plus 2 for port */
*want_length_out = 7;
return 0; /* not yet */
}
req->command = (unsigned char) *(data+1);
if (req->command != SOCKS_COMMAND_CONNECT &&
req->command != SOCKS_COMMAND_RESOLVE &&
req->command != SOCKS_COMMAND_RESOLVE_PTR) {
/* not a connect or resolve or a resolve_ptr? we don't support it. */
log_warn(LD_APP,"socks5: command %d not recognized. Rejecting.",
req->command);
return -1;
}
switch (*(data+3)) { /* address type */
case 1: /* IPv4 address */
case 4: /* IPv6 address */ {
const int is_v6 = *(data+3) == 4;
const unsigned addrlen = is_v6 ? 16 : 4;
log_debug(LD_APP,"socks5: ipv4 address type");
if (datalen < 6+addrlen) {/* ip/port there? */
*want_length_out = 6+addrlen;
return 0; /* not yet */
}
if (is_v6)
tor_addr_from_ipv6_bytes(&destaddr, data+4);
else
tor_addr_from_ipv4n(&destaddr, get_uint32(data+4));
tor_addr_to_str(tmpbuf, &destaddr, sizeof(tmpbuf), 1);
if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) {
log_warn(LD_APP,
"socks5 IP takes %d bytes, which doesn't fit in %d. "
"Rejecting.",
(int)strlen(tmpbuf)+1,(int)MAX_SOCKS_ADDR_LEN);
return -1;
}
strlcpy(req->address,tmpbuf,sizeof(req->address));
req->port = ntohs(get_uint16(data+4+addrlen));
*drain_out = 6+addrlen;
if (req->command != SOCKS_COMMAND_RESOLVE_PTR &&
!addressmap_have_mapping(req->address,0)) {
log_unsafe_socks_warning(5, req->address, req->port, safe_socks);
if (safe_socks)
return -1;
}
return 1;
}
case 3: /* fqdn */
log_debug(LD_APP,"socks5: fqdn address type");
if (req->command == SOCKS_COMMAND_RESOLVE_PTR) {
log_warn(LD_APP, "socks5 received RESOLVE_PTR command with "
"hostname type. Rejecting.");
return -1;
}
len = (unsigned char)*(data+4);
if (datalen < 7+len) { /* addr/port there? */
*want_length_out = 7+len;
return 0; /* not yet */
}
if (len+1 > MAX_SOCKS_ADDR_LEN) {
log_warn(LD_APP,
"socks5 hostname is %d bytes, which doesn't fit in "
"%d. Rejecting.", len+1,MAX_SOCKS_ADDR_LEN);
return -1;
}
memcpy(req->address,data+5,len);
req->address[len] = 0;
req->port = ntohs(get_uint16(data+5+len));
*drain_out = 5+len+2;
if (!tor_strisprint(req->address) || strchr(req->address,'\"')) {
log_warn(LD_PROTOCOL,
"Your application (using socks5 to port %d) gave Tor "
"a malformed hostname: %s. Rejecting the connection.",
req->port, escaped(req->address));
return -1;
}
if (log_sockstype)
log_notice(LD_APP,
"Your application (using socks5 to port %d) instructed "
"Tor to take care of the DNS resolution itself if "
"necessary. This is good.", req->port);
return 1;
default: /* unsupported */
log_warn(LD_APP,"socks5: unsupported address type %d. Rejecting.",
(int) *(data+3));
return -1;
}
tor_assert(0);
case 4: { /* socks4 */
enum {socks4, socks4a} socks4_prot = socks4a;
const char *authstart, *authend;
/* http://ss5.sourceforge.net/socks4.protocol.txt */
/* http://ss5.sourceforge.net/socks4A.protocol.txt */
req->socks_version = 4;
if (datalen < SOCKS4_NETWORK_LEN) {/* basic info available? */
*want_length_out = SOCKS4_NETWORK_LEN;
return 0; /* not yet */
}
// buf_pullup(buf, 1280, 0);
req->command = (unsigned char) *(data+1);
if (req->command != SOCKS_COMMAND_CONNECT &&
req->command != SOCKS_COMMAND_RESOLVE) {
/* not a connect or resolve? we don't support it. (No resolve_ptr with
* socks4.) */
log_warn(LD_APP,"socks4: command %d not recognized. Rejecting.",
req->command);
return -1;
}
req->port = ntohs(get_uint16(data+2));
destip = ntohl(get_uint32(data+4));
if ((!req->port && req->command!=SOCKS_COMMAND_RESOLVE) || !destip) {
log_warn(LD_APP,"socks4: Port or DestIP is zero. Rejecting.");
return -1;
}
if (destip >> 8) {
log_debug(LD_APP,"socks4: destip not in form 0.0.0.x.");
in.s_addr = htonl(destip);
tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf));
if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) {
log_debug(LD_APP,"socks4 addr (%d bytes) too long. Rejecting.",
(int)strlen(tmpbuf));
return -1;
}
log_debug(LD_APP,
"socks4: successfully read destip (%s)",
safe_str_client(tmpbuf));
socks4_prot = socks4;
}
authstart = data + SOCKS4_NETWORK_LEN;
next = memchr(authstart, 0,
datalen-SOCKS4_NETWORK_LEN);
if (!next) {
if (datalen >= 1024) {
log_debug(LD_APP, "Socks4 user name too long; rejecting.");
return -1;
}
log_debug(LD_APP,"socks4: Username not here yet.");
*want_length_out = datalen+1024; /* More than we need, but safe */
return 0;
}
authend = next;
tor_assert(next < data+datalen);
startaddr = NULL;
if (socks4_prot != socks4a &&
!addressmap_have_mapping(tmpbuf,0)) {
log_unsafe_socks_warning(4, tmpbuf, req->port, safe_socks);
if (safe_socks)
return -1;
}
if (socks4_prot == socks4a) {
if (next+1 == data+datalen) {
log_debug(LD_APP,"socks4: No part of destaddr here yet.");
*want_length_out = datalen + 1024; /* More than we need, but safe */
return 0;
}
startaddr = next+1;
next = memchr(startaddr, 0, data + datalen - startaddr);
if (!next) {
if (datalen >= 1024) {
log_debug(LD_APP,"socks4: Destaddr too long.");
return -1;
}
log_debug(LD_APP,"socks4: Destaddr not all here yet.");
*want_length_out = datalen + 1024; /* More than we need, but safe */
return 0;
}
if (MAX_SOCKS_ADDR_LEN <= next-startaddr) {
log_warn(LD_APP,"socks4: Destaddr too long. Rejecting.");
return -1;
}
// tor_assert(next < buf->cur+buf->datalen);
if (log_sockstype)
log_notice(LD_APP,
"Your application (using socks4a to port %d) instructed "
"Tor to take care of the DNS resolution itself if "
"necessary. This is good.", req->port);
}
log_debug(LD_APP,"socks4: Everything is here. Success.");
strlcpy(req->address, startaddr ? startaddr : tmpbuf,
sizeof(req->address));
if (!tor_strisprint(req->address) || strchr(req->address,'\"')) {
log_warn(LD_PROTOCOL,
"Your application (using socks4 to port %d) gave Tor "
"a malformed hostname: %s. Rejecting the connection.",
req->port, escaped(req->address));
return -1;
}
if (authend != authstart) {
req->got_auth = 1;
req->usernamelen = authend - authstart;
req->username = tor_memdup(authstart, authend - authstart);
}
/* next points to the final \0 on inbuf */
*drain_out = next - data + 1;
return 1;
}
case 'G': /* get */
case 'H': /* head */
case 'P': /* put/post */
case 'C': /* connect */
strlcpy((char*)req->reply,
"HTTP/1.0 501 Tor is not an HTTP Proxy\r\n"
"Content-Type: text/html; charset=iso-8859-1\r\n\r\n"
"<html>\n"
"<head>\n"
"<title>Tor is not an HTTP Proxy</title>\n"
"</head>\n"
"<body>\n"
"<h1>Tor is not an HTTP Proxy</h1>\n"
"<p>\n"
"It appears you have configured your web browser to use Tor as an HTTP proxy."
"\n"
"This is not correct: Tor is a SOCKS proxy, not an HTTP proxy.\n"
"Please configure your client accordingly.\n"
"</p>\n"
"<p>\n"
"See <a href=\"https://www.torproject.org/documentation.html\">"
"https://www.torproject.org/documentation.html</a> for more "
"information.\n"
"<!-- Plus this comment, to make the body response more than 512 bytes, so "
" IE will be willing to display it. Comment comment comment comment "
" comment comment comment comment comment comment comment comment.-->\n"
"</p>\n"
"</body>\n"
"</html>\n"
, MAX_SOCKS_REPLY_LEN);
req->replylen = strlen((char*)req->reply)+1;
/* fall through */
default: /* version is not socks4 or socks5 */
log_warn(LD_APP,
"Socks version %d not recognized. (Tor is not an http proxy.)",
*(data));
{
/* Tell the controller the first 8 bytes. */
char *tmp = tor_strndup(data, datalen < 8 ? datalen : 8);
control_event_client_status(LOG_WARN,
"SOCKS_UNKNOWN_PROTOCOL DATA=\"%s\"",
escaped(tmp));
tor_free(tmp);
}
return -1;
}
}
/** Inspect a reply from SOCKS server stored in <b>buf</b> according
* to <b>state</b>, removing the protocol data upon success. Return 0 on
* incomplete response, 1 on success and -1 on error, in which case
* <b>reason</b> is set to a descriptive message (free() when finished
* with it).
*
* As a special case, 2 is returned when user/pass is required
* during SOCKS5 handshake and user/pass is configured.
*/
int
fetch_from_buf_socks_client(buf_t *buf, int state, char **reason)
{
ssize_t drain = 0;
int r;
if (buf->datalen < 2)
return 0;
buf_pullup(buf, MAX_SOCKS_MESSAGE_LEN, 0);
tor_assert(buf->head && buf->head->datalen >= 2);
r = parse_socks_client((uint8_t*)buf->head->data, buf->head->datalen,
state, reason, &drain);
if (drain > 0)
buf_remove_from_front(buf, drain);
else if (drain < 0)
buf_clear(buf);
return r;
}
#ifdef USE_BUFFEREVENTS
/** As fetch_from_buf_socks_client, buf works on an evbuffer */
int
fetch_from_evbuffer_socks_client(struct evbuffer *buf, int state,
char **reason)
{
ssize_t drain = 0;
uint8_t *data;
size_t datalen;
int r;
/* Linearize the SOCKS response in the buffer, up to 128 bytes.
* (parse_socks_client shouldn't need to see anything beyond that.) */
datalen = evbuffer_get_length(buf);
if (datalen > MAX_SOCKS_MESSAGE_LEN)
datalen = MAX_SOCKS_MESSAGE_LEN;
data = evbuffer_pullup(buf, datalen);
r = parse_socks_client(data, datalen, state, reason, &drain);
if (drain > 0)
evbuffer_drain(buf, drain);
else if (drain < 0)
evbuffer_drain(buf, evbuffer_get_length(buf));
return r;
}
#endif
/** Implementation logic for fetch_from_*_socks_client. */
static int
parse_socks_client(const uint8_t *data, size_t datalen,
int state, char **reason,
ssize_t *drain_out)
{
unsigned int addrlen;
*drain_out = 0;
if (datalen < 2)
return 0;
switch (state) {
case PROXY_SOCKS4_WANT_CONNECT_OK:
/* Wait for the complete response */
if (datalen < 8)
return 0;
if (data[1] != 0x5a) {
*reason = tor_strdup(socks4_response_code_to_string(data[1]));
return -1;
}
/* Success */
*drain_out = 8;
return 1;
case PROXY_SOCKS5_WANT_AUTH_METHOD_NONE:
/* we don't have any credentials */
if (data[1] != 0x00) {
*reason = tor_strdup("server doesn't support any of our "
"available authentication methods");
return -1;
}
log_info(LD_NET, "SOCKS 5 client: continuing without authentication");
*drain_out = -1;
return 1;
case PROXY_SOCKS5_WANT_AUTH_METHOD_RFC1929:
/* we have a username and password. return 1 if we can proceed without
* providing authentication, or 2 otherwise. */
switch (data[1]) {
case 0x00:
log_info(LD_NET, "SOCKS 5 client: we have auth details but server "
"doesn't require authentication.");
*drain_out = -1;
return 1;
case 0x02:
log_info(LD_NET, "SOCKS 5 client: need authentication.");
*drain_out = -1;
return 2;
/* fall through */
}
*reason = tor_strdup("server doesn't support any of our available "
"authentication methods");
return -1;
case PROXY_SOCKS5_WANT_AUTH_RFC1929_OK:
/* handle server reply to rfc1929 authentication */
if (data[1] != 0x00) {
*reason = tor_strdup("authentication failed");
return -1;
}
log_info(LD_NET, "SOCKS 5 client: authentication successful.");
*drain_out = -1;
return 1;
case PROXY_SOCKS5_WANT_CONNECT_OK:
/* response is variable length. BND.ADDR, etc, isn't needed
* (don't bother with buf_pullup()), but make sure to eat all
* the data used */
/* wait for address type field to arrive */
if (datalen < 4)
return 0;
switch (data[3]) {
case 0x01: /* ip4 */
addrlen = 4;
break;
case 0x04: /* ip6 */
addrlen = 16;
break;
case 0x03: /* fqdn (can this happen here?) */
if (datalen < 5)
return 0;
addrlen = 1 + data[4];
break;
default:
*reason = tor_strdup("invalid response to connect request");
return -1;
}
/* wait for address and port */
if (datalen < 6 + addrlen)
return 0;
if (data[1] != 0x00) {
*reason = tor_strdup(socks5_response_code_to_string(data[1]));
return -1;
}
*drain_out = 6 + addrlen;
return 1;
}
/* shouldn't get here... */
tor_assert(0);
return -1;
}
/** Return 1 iff buf looks more like it has an (obsolete) v0 controller
* command on it than any valid v1 controller command. */
int
peek_buf_has_control0_command(buf_t *buf)
{
if (buf->datalen >= 4) {
char header[4];
uint16_t cmd;
peek_from_buf(header, sizeof(header), buf);
cmd = ntohs(get_uint16(header+2));
if (cmd <= 0x14)
return 1; /* This is definitely not a v1 control command. */
}
return 0;
}
#ifdef USE_BUFFEREVENTS
int
peek_evbuffer_has_control0_command(struct evbuffer *buf)
{
int result = 0;
if (evbuffer_get_length(buf) >= 4) {
int free_out = 0;
char *data = NULL;
size_t n = inspect_evbuffer(buf, &data, 4, &free_out, NULL);
uint16_t cmd;
tor_assert(n >= 4);
cmd = ntohs(get_uint16(data+2));
if (cmd <= 0x14)
result = 1;
if (free_out)
tor_free(data);
}
return result;
}
#endif
/** Return the index within <b>buf</b> at which <b>ch</b> first appears,
* or -1 if <b>ch</b> does not appear on buf. */
static off_t
buf_find_offset_of_char(buf_t *buf, char ch)
{
chunk_t *chunk;
off_t offset = 0;
for (chunk = buf->head; chunk; chunk = chunk->next) {
char *cp = memchr(chunk->data, ch, chunk->datalen);
if (cp)
return offset + (cp - chunk->data);
else
offset += chunk->datalen;
}
return -1;
}
/** Try to read a single LF-terminated line from <b>buf</b>, and write it
* (including the LF), NUL-terminated, into the *<b>data_len</b> byte buffer
* at <b>data_out</b>. Set *<b>data_len</b> to the number of bytes in the
* line, not counting the terminating NUL. Return 1 if we read a whole line,
* return 0 if we don't have a whole line yet, and return -1 if the line
* length exceeds *<b>data_len</b>.
*/
int
fetch_from_buf_line(buf_t *buf, char *data_out, size_t *data_len)
{
size_t sz;
off_t offset;
if (!buf->head)
return 0;
offset = buf_find_offset_of_char(buf, '\n');
if (offset < 0)
return 0;
sz = (size_t) offset;
if (sz+2 > *data_len) {
*data_len = sz + 2;
return -1;
}
fetch_from_buf(data_out, sz+1, buf);
data_out[sz+1] = '\0';
*data_len = sz+1;
return 1;
}
/** Compress on uncompress the <b>data_len</b> bytes in <b>data</b> using the
* zlib state <b>state</b>, appending the result to <b>buf</b>. If
* <b>done</b> is true, flush the data in the state and finish the
* compression/uncompression. Return -1 on failure, 0 on success. */
int
write_to_buf_zlib(buf_t *buf, tor_zlib_state_t *state,
const char *data, size_t data_len,
int done)
{
char *next;
size_t old_avail, avail;
int over = 0;
do {
int need_new_chunk = 0;
if (!buf->tail || ! CHUNK_REMAINING_CAPACITY(buf->tail)) {
size_t cap = data_len / 4;
buf_add_chunk_with_capacity(buf, cap, 1);
}
next = CHUNK_WRITE_PTR(buf->tail);
avail = old_avail = CHUNK_REMAINING_CAPACITY(buf->tail);
switch (tor_zlib_process(state, &next, &avail, &data, &data_len, done)) {
case TOR_ZLIB_DONE:
over = 1;
break;
case TOR_ZLIB_ERR:
return -1;
case TOR_ZLIB_OK:
if (data_len == 0)
over = 1;
break;
case TOR_ZLIB_BUF_FULL:
if (avail) {
/* Zlib says we need more room (ZLIB_BUF_FULL). Start a new chunk
* automatically, whether were going to or not. */
need_new_chunk = 1;
}
break;
}
buf->datalen += old_avail - avail;
buf->tail->datalen += old_avail - avail;
if (need_new_chunk) {
buf_add_chunk_with_capacity(buf, data_len/4, 1);
}
} while (!over);
check();
return 0;
}
#ifdef USE_BUFFEREVENTS
int
write_to_evbuffer_zlib(struct evbuffer *buf, tor_zlib_state_t *state,
const char *data, size_t data_len,
int done)
{
char *next;
size_t old_avail, avail;
int over = 0, n;
struct evbuffer_iovec vec[1];
do {
{
size_t cap = data_len / 4;
if (cap < 128)
cap = 128;
/* XXXX NM this strategy is fragmentation-prone. We should really have
* two iovecs, and write first into the one, and then into the
* second if the first gets full. */
n = evbuffer_reserve_space(buf, cap, vec, 1);
tor_assert(n == 1);
}
next = vec[0].iov_base;
avail = old_avail = vec[0].iov_len;
switch (tor_zlib_process(state, &next, &avail, &data, &data_len, done)) {
case TOR_ZLIB_DONE:
over = 1;
break;
case TOR_ZLIB_ERR:
return -1;
case TOR_ZLIB_OK:
if (data_len == 0)
over = 1;
break;
case TOR_ZLIB_BUF_FULL:
if (avail) {
/* Zlib says we need more room (ZLIB_BUF_FULL). Start a new chunk
* automatically, whether were going to or not. */
}
break;
}
/* XXXX possible infinite loop on BUF_FULL. */
vec[0].iov_len = old_avail - avail;
evbuffer_commit_space(buf, vec, 1);
} while (!over);
check();
return 0;
}
#endif
/** Set *<b>output</b> to contain a copy of the data in *<b>input</b> */
int
generic_buffer_set_to_copy(generic_buffer_t **output,
const generic_buffer_t *input)
{
#ifdef USE_BUFFEREVENTS
struct evbuffer_ptr ptr;
size_t remaining = evbuffer_get_length(input);
if (*output) {
evbuffer_drain(*output, evbuffer_get_length(*output));
} else {
if (!(*output = evbuffer_new()))
return -1;
}
evbuffer_ptr_set((struct evbuffer*)input, &ptr, 0, EVBUFFER_PTR_SET);
while (remaining) {
struct evbuffer_iovec v[4];
int n_used, i;
n_used = evbuffer_peek((struct evbuffer*)input, -1, &ptr, v, 4);
if (n_used < 0)
return -1;
for (i=0;i<n_used;++i) {
evbuffer_add(*output, v[i].iov_base, v[i].iov_len);
tor_assert(v[i].iov_len <= remaining);
remaining -= v[i].iov_len;
evbuffer_ptr_set((struct evbuffer*)input,
&ptr, v[i].iov_len, EVBUFFER_PTR_ADD);
}
}
#else
if (*output)
buf_free(*output);
*output = buf_copy(input);
#endif
return 0;
}
/** Log an error and exit if <b>buf</b> is corrupted.
*/
void
assert_buf_ok(buf_t *buf)
{
tor_assert(buf);
tor_assert(buf->magic == BUFFER_MAGIC);
if (! buf->head) {
tor_assert(!buf->tail);
tor_assert(buf->datalen == 0);
} else {
chunk_t *ch;
size_t total = 0;
tor_assert(buf->tail);
for (ch = buf->head; ch; ch = ch->next) {
total += ch->datalen;
tor_assert(ch->datalen <= ch->memlen);
tor_assert(ch->data >= &ch->mem[0]);
tor_assert(ch->data < &ch->mem[0]+ch->memlen);
tor_assert(ch->data+ch->datalen <= &ch->mem[0] + ch->memlen);
if (!ch->next)
tor_assert(ch == buf->tail);
}
tor_assert(buf->datalen == total);
}
}
#ifdef ENABLE_BUF_FREELISTS
/** Log an error and exit if <b>fl</b> is corrupted.
*/
static void
assert_freelist_ok(chunk_freelist_t *fl)
{
chunk_t *ch;
int n;
tor_assert(fl->alloc_size > 0);
n = 0;
for (ch = fl->head; ch; ch = ch->next) {
tor_assert(CHUNK_ALLOC_SIZE(ch->memlen) == fl->alloc_size);
++n;
}
tor_assert(n == fl->cur_length);
tor_assert(n >= fl->lowest_length);
tor_assert(n <= fl->max_length);
}
#endif