mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 13:43:47 +01:00
632c035ad9
New debugging code to figure out what is happending with socket counts. svn:r13593
417 lines
19 KiB
C
417 lines
19 KiB
C
/* Copyright (c) 2003-2004, Roger Dingledine
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2008, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
|
|
#ifndef __CONTAINER_H
|
|
#define __CONTAINER_H
|
|
#define CONTAINER_H_ID \
|
|
"$Id$"
|
|
|
|
#include "util.h"
|
|
|
|
/** A resizeable list of pointers, with associated helpful functionality.
|
|
*
|
|
* The members of this struct are exposed only so that macros and inlines can
|
|
* use them; all access to smartlist internals should go throuch the functions
|
|
* and macros defined here.
|
|
**/
|
|
typedef struct smartlist_t {
|
|
/** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
|
|
* before it needs to be resized. Only the first <b>num_used</b> (\<=
|
|
* capacity) elements point to valid data.
|
|
*/
|
|
void **list;
|
|
int num_used;
|
|
int capacity;
|
|
} smartlist_t;
|
|
|
|
smartlist_t *smartlist_create(void);
|
|
void smartlist_free(smartlist_t *sl);
|
|
void smartlist_set_capacity(smartlist_t *sl, int n);
|
|
void smartlist_clear(smartlist_t *sl);
|
|
void smartlist_add(smartlist_t *sl, void *element);
|
|
void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
|
|
void smartlist_remove(smartlist_t *sl, const void *element);
|
|
void *smartlist_pop_last(smartlist_t *sl);
|
|
void smartlist_reverse(smartlist_t *sl);
|
|
void smartlist_string_remove(smartlist_t *sl, const char *element);
|
|
int smartlist_isin(const smartlist_t *sl, const void *element) ATTR_PURE;
|
|
int smartlist_string_isin(const smartlist_t *sl, const char *element)
|
|
ATTR_PURE;
|
|
int smartlist_string_pos(const smartlist_t *, const char *elt) ATTR_PURE;
|
|
int smartlist_string_isin_case(const smartlist_t *sl, const char *element)
|
|
ATTR_PURE;
|
|
int smartlist_string_num_isin(const smartlist_t *sl, int num) ATTR_PURE;
|
|
int smartlist_digest_isin(const smartlist_t *sl, const char *element)
|
|
ATTR_PURE;
|
|
int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
|
|
ATTR_PURE;
|
|
void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
|
|
void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
|
|
|
|
/* smartlist_choose() is defined in crypto.[ch] */
|
|
#ifdef DEBUG_SMARTLIST
|
|
/** Return the number of items in sl.
|
|
*/
|
|
static INLINE int smartlist_len(const smartlist_t *sl) ATTR_PURE;
|
|
static INLINE int smartlist_len(const smartlist_t *sl) {
|
|
tor_assert(sl);
|
|
return (sl)->num_used;
|
|
}
|
|
/** Return the <b>idx</b>th element of sl.
|
|
*/
|
|
static INLINE void *smartlist_get(const smartlist_t *sl, int idx) ATTR_PURE;
|
|
static INLINE void *smartlist_get(const smartlist_t *sl, int idx) {
|
|
tor_assert(sl);
|
|
tor_assert(idx>=0);
|
|
tor_assert(sl->num_used > idx);
|
|
return sl->list[idx];
|
|
}
|
|
static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) {
|
|
tor_assert(sl);
|
|
tor_assert(idx>=0);
|
|
tor_assert(sl->num_used > idx);
|
|
sl->list[idx] = val;
|
|
}
|
|
#else
|
|
#define smartlist_len(sl) ((sl)->num_used)
|
|
#define smartlist_get(sl, idx) ((sl)->list[idx])
|
|
#define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
|
|
#endif
|
|
|
|
/** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
|
|
* smartlist <b>sl</b>. */
|
|
static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
|
|
{
|
|
if (idx1 != idx2) {
|
|
void *elt = smartlist_get(sl, idx1);
|
|
smartlist_set(sl, idx1, smartlist_get(sl, idx2));
|
|
smartlist_set(sl, idx2, elt);
|
|
}
|
|
}
|
|
|
|
void smartlist_del(smartlist_t *sl, int idx);
|
|
void smartlist_del_keeporder(smartlist_t *sl, int idx);
|
|
void smartlist_insert(smartlist_t *sl, int idx, void *val);
|
|
void smartlist_sort(smartlist_t *sl,
|
|
int (*compare)(const void **a, const void **b));
|
|
void smartlist_uniq(smartlist_t *sl,
|
|
int (*compare)(const void **a, const void **b),
|
|
void (*free_fn)(void *elt));
|
|
void smartlist_sort_strings(smartlist_t *sl);
|
|
void smartlist_sort_digests(smartlist_t *sl);
|
|
void smartlist_uniq_strings(smartlist_t *sl);
|
|
void smartlist_uniq_digests(smartlist_t *sl);
|
|
void *smartlist_bsearch(smartlist_t *sl, const void *key,
|
|
int (*compare)(const void *key, const void **member))
|
|
ATTR_PURE;
|
|
int smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
|
|
int (*compare)(const void *key, const void **member),
|
|
int *found_out)
|
|
ATTR_PURE;
|
|
|
|
void smartlist_pqueue_add(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b),
|
|
void *item);
|
|
void *smartlist_pqueue_pop(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b));
|
|
void smartlist_pqueue_assert_ok(smartlist_t *sl,
|
|
int (*compare)(const void *a, const void *b));
|
|
|
|
#define SPLIT_SKIP_SPACE 0x01
|
|
#define SPLIT_IGNORE_BLANK 0x02
|
|
int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
|
|
int flags, int max);
|
|
char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
|
|
size_t *len_out) ATTR_MALLOC;
|
|
char *smartlist_join_strings2(smartlist_t *sl, const char *join,
|
|
size_t join_len, int terminate, size_t *len_out)
|
|
ATTR_MALLOC;
|
|
|
|
/** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
|
|
* assign it to a new local variable of type <b>type</b> named <b>var</b>, and
|
|
* execute the statement <b>cmd</b>. Inside the loop, the loop index can
|
|
* be accessed as <b>var</b>_sl_idx and the length of the list can be accessed
|
|
* as <b>var</b>_sl_len.
|
|
*
|
|
* NOTE: Do not change the length of the list while the loop is in progress,
|
|
* unless you adjust the _sl_len variable correspondingly. See second example
|
|
* below.
|
|
*
|
|
* Example use:
|
|
* <pre>
|
|
* smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
|
|
* SMARTLIST_FOREACH(list, char *, cp,
|
|
* {
|
|
* printf("%d: %s\n", cp_sl_idx, cp);
|
|
* tor_free(cp);
|
|
* });
|
|
* smartlist_free(list);
|
|
* </pre>
|
|
*
|
|
* Example use (advanced):
|
|
* <pre>
|
|
* SMARTLIST_FOREACH(list, char *, cp,
|
|
* {
|
|
* if (!strcmp(cp, "junk")) {
|
|
* smartlist_del(list, cp_sl_idx);
|
|
* tor_free(cp);
|
|
* --cp_sl_len; // decrement length of list so we don't run off the end
|
|
* --cp_sl_idx; // decrement idx so we consider the item that moved here
|
|
* }
|
|
* });
|
|
* </pre>
|
|
*/
|
|
#define SMARTLIST_FOREACH(sl, type, var, cmd) \
|
|
STMT_BEGIN \
|
|
int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
|
|
type var; \
|
|
for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
|
|
++var ## _sl_idx) { \
|
|
var = (sl)->list[var ## _sl_idx]; \
|
|
cmd; \
|
|
} STMT_END
|
|
|
|
/** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
|
|
* with the variable <b>var</b>, remove the current element in a way that
|
|
* won't confuse the loop. */
|
|
#define SMARTLIST_DEL_CURRENT(sl, var) \
|
|
STMT_BEGIN \
|
|
smartlist_del(sl, var ## _sl_idx); \
|
|
--var ## _sl_idx; \
|
|
--var ## _sl_len; \
|
|
STMT_END
|
|
|
|
#define DECLARE_MAP_FNS(maptype, keytype, prefix) \
|
|
typedef struct maptype maptype; \
|
|
typedef struct prefix##entry_t *prefix##iter_t; \
|
|
maptype* prefix##new(void); \
|
|
void* prefix##set(maptype *map, keytype key, void *val); \
|
|
void* prefix##get(const maptype *map, keytype key); \
|
|
void* prefix##remove(maptype *map, keytype key); \
|
|
void prefix##free(maptype *map, void (*free_val)(void*)); \
|
|
int prefix##isempty(const maptype *map); \
|
|
int prefix##size(const maptype *map); \
|
|
prefix##iter_t *prefix##iter_init(maptype *map); \
|
|
prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
|
|
prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
|
|
void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
|
|
int prefix##iter_done(prefix##iter_t *iter); \
|
|
void prefix##assert_ok(const maptype *map)
|
|
|
|
/* Map from const char * to void *. Implemented with a hash table. */
|
|
DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
|
|
/* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */
|
|
DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
|
|
|
|
#undef DECLARE_MAP_FNS
|
|
|
|
#define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \
|
|
STMT_BEGIN \
|
|
prefix##iter_t *key##_iter; \
|
|
for (key##_iter = prefix##iter_init(map); \
|
|
!prefix##iter_done(key##_iter); \
|
|
key##_iter = prefix##iter_next(map, key##_iter)) { \
|
|
keytype keyvar; \
|
|
void *valvar##_voidp; \
|
|
valtype valvar; \
|
|
prefix##iter_get(key##_iter, &keyvar, &valvar##_voidp); \
|
|
valvar = valvar##_voidp;
|
|
|
|
#define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \
|
|
STMT_BEGIN \
|
|
prefix##iter_t *key##_iter; \
|
|
int keyvar##_del=0; \
|
|
for (key##_iter = prefix##iter_init(map); \
|
|
!prefix##iter_done(key##_iter); \
|
|
key##_iter = keyvar##_del ? \
|
|
prefix##iter_next_rmv(map, key##_iter) : \
|
|
prefix##iter_next(map, key##_iter)) { \
|
|
keytype keyvar; \
|
|
void *valvar##_voidp; \
|
|
valtype valvar; \
|
|
keyvar##_del=0; \
|
|
prefix##iter_get(key##_iter, &keyvar, &valvar##_voidp); \
|
|
valvar = valvar##_voidp;
|
|
|
|
#define MAP_DEL_CURRENT(keyvar) \
|
|
STMT_BEGIN \
|
|
keyvar##_del = 1; \
|
|
STMT_END
|
|
|
|
#define MAP_FOREACH_END } STMT_END ;
|
|
|
|
#define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \
|
|
MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar)
|
|
#define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
|
|
MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar)
|
|
#define DIGESTMAP_FOREACH_END MAP_FOREACH_END
|
|
|
|
void* strmap_set_lc(strmap_t *map, const char *key, void *val);
|
|
void* strmap_get_lc(const strmap_t *map, const char *key);
|
|
void* strmap_remove_lc(strmap_t *map, const char *key);
|
|
|
|
#define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
|
|
typedef struct maptype maptype; \
|
|
typedef struct prefix##iter_t prefix##iter_t; \
|
|
static INLINE maptype* prefix##new(void) \
|
|
{ \
|
|
return (maptype*)digestmap_new(); \
|
|
} \
|
|
static INLINE digestmap_t* prefix##to_digestmap(maptype *map) \
|
|
{ \
|
|
return (digestmap_t*)map; \
|
|
} \
|
|
static INLINE valtype* prefix##get(maptype *map, const char *key) \
|
|
{ \
|
|
return (valtype*)digestmap_get((digestmap_t*)map, key); \
|
|
} \
|
|
static INLINE valtype* prefix##set(maptype *map, const char *key, \
|
|
valtype *val) \
|
|
{ \
|
|
return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
|
|
} \
|
|
static INLINE valtype* prefix##remove(maptype *map, const char *key) \
|
|
{ \
|
|
return (valtype*)digestmap_remove((digestmap_t*)map, key); \
|
|
} \
|
|
static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \
|
|
{ \
|
|
digestmap_free((digestmap_t*)map, free_val); \
|
|
} \
|
|
static INLINE int prefix##isempty(maptype *map) \
|
|
{ \
|
|
return digestmap_isempty((digestmap_t*)map); \
|
|
} \
|
|
static INLINE int prefix##size(maptype *map) \
|
|
{ \
|
|
return digestmap_size((digestmap_t*)map); \
|
|
} \
|
|
static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \
|
|
{ \
|
|
return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
|
|
} \
|
|
static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \
|
|
prefix##iter_t *iter) \
|
|
{ \
|
|
return (prefix##iter_t*) digestmap_iter_next( \
|
|
(digestmap_t*)map, (digestmap_iter_t*)iter); \
|
|
} \
|
|
static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \
|
|
prefix##iter_t *iter) \
|
|
{ \
|
|
return (prefix##iter_t*) digestmap_iter_next_rmv( \
|
|
(digestmap_t*)map, (digestmap_iter_t*)iter); \
|
|
} \
|
|
static INLINE void prefix##iter_get(prefix##iter_t *iter, \
|
|
const char **keyp, \
|
|
valtype **valp) \
|
|
{ \
|
|
void *v; \
|
|
digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
|
|
*valp = v; \
|
|
} \
|
|
static INLINE int prefix##iter_done(prefix##iter_t *iter) \
|
|
{ \
|
|
return digestmap_iter_done((digestmap_iter_t*)iter); \
|
|
}
|
|
|
|
#if SIZEOF_INT == 4
|
|
#define BITARRAY_SHIFT 5
|
|
#elif SIZEOF_INT == 8
|
|
#define BITARRAY_SHIFT 6
|
|
#else
|
|
#error "int is neither 4 nor 8 bytes. I can't deal with that."
|
|
#endif
|
|
#define BITARRAY_MASK ((1u<<BITARRAY_SHIFT)-1)
|
|
|
|
/** A random-access array of one-bit-wide elements. */
|
|
typedef unsigned int bitarray_t;
|
|
/** Create a new bit array that can hold <b>n_bits</b> bits. */
|
|
static INLINE bitarray_t *
|
|
bitarray_init_zero(int n_bits)
|
|
{
|
|
size_t sz = (n_bits+BITARRAY_MASK) / (1u << BITARRAY_SHIFT);
|
|
return tor_malloc_zero(sz*sizeof(unsigned int));
|
|
}
|
|
static INLINE bitarray_t *
|
|
bitarray_expand(bitarray_t *ba, int n_bits_old, int n_bits_new)
|
|
{
|
|
size_t sz_old = (n_bits_old+BITARRAY_MASK) / (1u << BITARRAY_SHIFT);
|
|
size_t sz_new = (n_bits_new+BITARRAY_MASK) / (1u << BITARRAY_SHIFT);
|
|
char *ptr;
|
|
if (sz_new <= sz_old)
|
|
return ba;
|
|
ptr = tor_realloc(ba, sz_new);
|
|
memset(ptr+sz_old, 0, sz_new-sz_old); /* This does nothing to the older
|
|
* excess bytes. But they were
|
|
* already set to 0 by
|
|
* bitarry_init_zero. */
|
|
return (bitarray_t*) ptr;
|
|
}
|
|
/** Free the bit array <b>ba</b>. */
|
|
static INLINE void
|
|
bitarray_free(bitarray_t *ba)
|
|
{
|
|
tor_free(ba);
|
|
}
|
|
/** Set the <b>bit</b>th bit in <b>b</b> to 1. */
|
|
static INLINE void
|
|
bitarray_set(bitarray_t *b, int bit)
|
|
{
|
|
b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
|
|
}
|
|
/** Set the <b>bit</b>th bit in <b>b</b> to 0. */
|
|
static INLINE void
|
|
bitarray_clear(bitarray_t *b, int bit)
|
|
{
|
|
b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
|
|
}
|
|
/** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
|
|
* not necessarily return 1 on true. */
|
|
static INLINE unsigned int
|
|
bitarray_is_set(bitarray_t *b, int bit)
|
|
{
|
|
return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
|
|
}
|
|
|
|
/* These functions, given an <b>array</b> of <b>n_elements</b>, return the
|
|
* <b>nth</b> lowest element. <b>nth</b>=0 gives the lowest element;
|
|
* <b>n_elements</b>-1 gives the highest; and (<b>n_elements</b>-1) / 2 gives
|
|
* the median. As a side effect, the elements of <b>array</b> are sorted. */
|
|
int find_nth_int(int *array, int n_elements, int nth);
|
|
time_t find_nth_time(time_t *array, int n_elements, int nth);
|
|
double find_nth_double(double *array, int n_elements, int nth);
|
|
uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth);
|
|
long find_nth_long(long *array, int n_elements, int nth);
|
|
static INLINE int
|
|
median_int(int *array, int n_elements)
|
|
{
|
|
return find_nth_int(array, n_elements, (n_elements-1)/2);
|
|
}
|
|
static INLINE time_t
|
|
median_time(time_t *array, int n_elements)
|
|
{
|
|
return find_nth_time(array, n_elements, (n_elements-1)/2);
|
|
}
|
|
static INLINE double
|
|
median_double(double *array, int n_elements)
|
|
{
|
|
return find_nth_double(array, n_elements, (n_elements-1)/2);
|
|
}
|
|
static INLINE uint32_t
|
|
median_uint32(uint32_t *array, int n_elements)
|
|
{
|
|
return find_nth_uint32(array, n_elements, (n_elements-1)/2);
|
|
}
|
|
static INLINE long
|
|
median_long(long *array, int n_elements)
|
|
{
|
|
return find_nth_long(array, n_elements, (n_elements-1)/2);
|
|
}
|
|
|
|
#endif
|
|
|