mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 21:53:48 +01:00
61c7ec29f1
Included crypto_digest.h in some files in order to solve xof+digest module dependency issues. Removed crypto.h where it isn't needed anymore. Follows #24658. Signed-off-by: Fernando Fernandez Mancera <ffmancera@riseup.net>
1844 lines
53 KiB
C
1844 lines
53 KiB
C
/* Copyright (c) 2001, Matej Pfajfar.
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file crypto.c
|
|
* \brief Wrapper functions to present a consistent interface to
|
|
* public-key and symmetric cryptography operations from OpenSSL and
|
|
* other places.
|
|
**/
|
|
|
|
#include "orconfig.h"
|
|
|
|
#ifdef _WIN32
|
|
#include <winsock2.h>
|
|
#include <windows.h>
|
|
#include <wincrypt.h>
|
|
/* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually
|
|
* use either definition. */
|
|
#undef OCSP_RESPONSE
|
|
#endif /* defined(_WIN32) */
|
|
|
|
#define CRYPTO_PRIVATE
|
|
#include "crypto.h"
|
|
#include "compat_openssl.h"
|
|
#include "crypto_curve25519.h"
|
|
#include "crypto_ed25519.h"
|
|
#include "crypto_format.h"
|
|
#include "crypto_rsa.h"
|
|
#include "crypto_digest.h"
|
|
|
|
DISABLE_GCC_WARNING(redundant-decls)
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/conf.h>
|
|
#include <openssl/hmac.h>
|
|
|
|
ENABLE_GCC_WARNING(redundant-decls)
|
|
|
|
#if __GNUC__ && GCC_VERSION >= 402
|
|
#if GCC_VERSION >= 406
|
|
#pragma GCC diagnostic pop
|
|
#else
|
|
#pragma GCC diagnostic warning "-Wredundant-decls"
|
|
#endif
|
|
#endif /* __GNUC__ && GCC_VERSION >= 402 */
|
|
|
|
#ifdef HAVE_CTYPE_H
|
|
#include <ctype.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_FCNTL_H
|
|
#include <sys/fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
#include <sys/syscall.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_RANDOM_H
|
|
#include <sys/random.h>
|
|
#endif
|
|
|
|
#include "torlog.h"
|
|
#include "torint.h"
|
|
#include "aes.h"
|
|
#include "util.h"
|
|
#include "container.h"
|
|
#include "compat.h"
|
|
#include "sandbox.h"
|
|
#include "util_format.h"
|
|
|
|
#include "keccak-tiny/keccak-tiny.h"
|
|
|
|
/** Longest recognized */
|
|
#define MAX_DNS_LABEL_SIZE 63
|
|
|
|
/** Largest strong entropy request */
|
|
#define MAX_STRONGEST_RAND_SIZE 256
|
|
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
* while we're waiting for the second.*/
|
|
struct crypto_dh_t {
|
|
DH *dh; /**< The openssl DH object */
|
|
};
|
|
|
|
static int tor_check_dh_key(int severity, const BIGNUM *bn);
|
|
|
|
/** Boolean: has OpenSSL's crypto been initialized? */
|
|
static int crypto_early_initialized_ = 0;
|
|
|
|
/** Boolean: has OpenSSL's crypto been initialized? */
|
|
static int crypto_global_initialized_ = 0;
|
|
|
|
/** Log all pending crypto errors at level <b>severity</b>. Use
|
|
* <b>doing</b> to describe our current activities.
|
|
*/
|
|
static void
|
|
crypto_log_errors(int severity, const char *doing)
|
|
{
|
|
unsigned long err;
|
|
const char *msg, *lib, *func;
|
|
while ((err = ERR_get_error()) != 0) {
|
|
msg = (const char*)ERR_reason_error_string(err);
|
|
lib = (const char*)ERR_lib_error_string(err);
|
|
func = (const char*)ERR_func_error_string(err);
|
|
if (!msg) msg = "(null)";
|
|
if (!lib) lib = "(null)";
|
|
if (!func) func = "(null)";
|
|
if (BUG(!doing)) doing = "(null)";
|
|
tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
|
|
doing, msg, lib, func);
|
|
}
|
|
}
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
/** Log any OpenSSL engines we're using at NOTICE. */
|
|
static void
|
|
log_engine(const char *fn, ENGINE *e)
|
|
{
|
|
if (e) {
|
|
const char *name, *id;
|
|
name = ENGINE_get_name(e);
|
|
id = ENGINE_get_id(e);
|
|
log_notice(LD_CRYPTO, "Default OpenSSL engine for %s is %s [%s]",
|
|
fn, name?name:"?", id?id:"?");
|
|
} else {
|
|
log_info(LD_CRYPTO, "Using default implementation for %s", fn);
|
|
}
|
|
}
|
|
#endif /* !defined(DISABLE_ENGINES) */
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
/** Try to load an engine in a shared library via fully qualified path.
|
|
*/
|
|
static ENGINE *
|
|
try_load_engine(const char *path, const char *engine)
|
|
{
|
|
ENGINE *e = ENGINE_by_id("dynamic");
|
|
if (e) {
|
|
if (!ENGINE_ctrl_cmd_string(e, "ID", engine, 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "DIR_LOAD", "2", 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "DIR_ADD", path, 0) ||
|
|
!ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) {
|
|
ENGINE_free(e);
|
|
e = NULL;
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
#endif /* !defined(DISABLE_ENGINES) */
|
|
|
|
/** Make sure that openssl is using its default PRNG. Return 1 if we had to
|
|
* adjust it; 0 otherwise. */
|
|
STATIC int
|
|
crypto_force_rand_ssleay(void)
|
|
{
|
|
RAND_METHOD *default_method;
|
|
default_method = RAND_OpenSSL();
|
|
if (RAND_get_rand_method() != default_method) {
|
|
log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
|
|
"a replacement the OpenSSL RNG. Resetting it to the default "
|
|
"implementation.");
|
|
RAND_set_rand_method(default_method);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int have_seeded_siphash = 0;
|
|
|
|
/** Set up the siphash key if we haven't already done so. */
|
|
int
|
|
crypto_init_siphash_key(void)
|
|
{
|
|
struct sipkey key;
|
|
if (have_seeded_siphash)
|
|
return 0;
|
|
|
|
crypto_rand((char*) &key, sizeof(key));
|
|
siphash_set_global_key(&key);
|
|
have_seeded_siphash = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Initialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_early_init(void)
|
|
{
|
|
if (!crypto_early_initialized_) {
|
|
|
|
crypto_early_initialized_ = 1;
|
|
|
|
ERR_load_crypto_strings();
|
|
OpenSSL_add_all_algorithms();
|
|
|
|
setup_openssl_threading();
|
|
|
|
unsigned long version_num = OpenSSL_version_num();
|
|
const char *version_str = OpenSSL_version(OPENSSL_VERSION);
|
|
if (version_num == OPENSSL_VERSION_NUMBER &&
|
|
!strcmp(version_str, OPENSSL_VERSION_TEXT)) {
|
|
log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
|
|
"(%lx: %s).", version_num, version_str);
|
|
} else {
|
|
log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
|
|
"version we're running with. If you get weird crashes, that "
|
|
"might be why. (Compiled with %lx: %s; running with %lx: %s).",
|
|
(unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
|
|
version_num, version_str);
|
|
}
|
|
|
|
crypto_force_rand_ssleay();
|
|
|
|
if (crypto_seed_rng() < 0)
|
|
return -1;
|
|
if (crypto_init_siphash_key() < 0)
|
|
return -1;
|
|
|
|
curve25519_init();
|
|
ed25519_init();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Initialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
|
|
{
|
|
if (!crypto_global_initialized_) {
|
|
if (crypto_early_init() < 0)
|
|
return -1;
|
|
|
|
crypto_global_initialized_ = 1;
|
|
|
|
if (useAccel > 0) {
|
|
#ifdef DISABLE_ENGINES
|
|
(void)accelName;
|
|
(void)accelDir;
|
|
log_warn(LD_CRYPTO, "No OpenSSL hardware acceleration support enabled.");
|
|
#else
|
|
ENGINE *e = NULL;
|
|
|
|
log_info(LD_CRYPTO, "Initializing OpenSSL engine support.");
|
|
ENGINE_load_builtin_engines();
|
|
ENGINE_register_all_complete();
|
|
|
|
if (accelName) {
|
|
if (accelDir) {
|
|
log_info(LD_CRYPTO, "Trying to load dynamic OpenSSL engine \"%s\""
|
|
" via path \"%s\".", accelName, accelDir);
|
|
e = try_load_engine(accelName, accelDir);
|
|
} else {
|
|
log_info(LD_CRYPTO, "Initializing dynamic OpenSSL engine \"%s\""
|
|
" acceleration support.", accelName);
|
|
e = ENGINE_by_id(accelName);
|
|
}
|
|
if (!e) {
|
|
log_warn(LD_CRYPTO, "Unable to load dynamic OpenSSL engine \"%s\".",
|
|
accelName);
|
|
} else {
|
|
log_info(LD_CRYPTO, "Loaded dynamic OpenSSL engine \"%s\".",
|
|
accelName);
|
|
}
|
|
}
|
|
if (e) {
|
|
log_info(LD_CRYPTO, "Loaded OpenSSL hardware acceleration engine,"
|
|
" setting default ciphers.");
|
|
ENGINE_set_default(e, ENGINE_METHOD_ALL);
|
|
}
|
|
/* Log, if available, the intersection of the set of algorithms
|
|
used by Tor and the set of algorithms available in the engine */
|
|
log_engine("RSA", ENGINE_get_default_RSA());
|
|
log_engine("DH", ENGINE_get_default_DH());
|
|
#ifdef OPENSSL_1_1_API
|
|
log_engine("EC", ENGINE_get_default_EC());
|
|
#else
|
|
log_engine("ECDH", ENGINE_get_default_ECDH());
|
|
log_engine("ECDSA", ENGINE_get_default_ECDSA());
|
|
#endif /* defined(OPENSSL_1_1_API) */
|
|
log_engine("RAND", ENGINE_get_default_RAND());
|
|
log_engine("RAND (which we will not use)", ENGINE_get_default_RAND());
|
|
log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
|
|
log_engine("3DES-CBC", ENGINE_get_cipher_engine(NID_des_ede3_cbc));
|
|
log_engine("AES-128-ECB", ENGINE_get_cipher_engine(NID_aes_128_ecb));
|
|
log_engine("AES-128-CBC", ENGINE_get_cipher_engine(NID_aes_128_cbc));
|
|
#ifdef NID_aes_128_ctr
|
|
log_engine("AES-128-CTR", ENGINE_get_cipher_engine(NID_aes_128_ctr));
|
|
#endif
|
|
#ifdef NID_aes_128_gcm
|
|
log_engine("AES-128-GCM", ENGINE_get_cipher_engine(NID_aes_128_gcm));
|
|
#endif
|
|
log_engine("AES-256-CBC", ENGINE_get_cipher_engine(NID_aes_256_cbc));
|
|
#ifdef NID_aes_256_gcm
|
|
log_engine("AES-256-GCM", ENGINE_get_cipher_engine(NID_aes_256_gcm));
|
|
#endif
|
|
|
|
#endif /* defined(DISABLE_ENGINES) */
|
|
} else {
|
|
log_info(LD_CRYPTO, "NOT using OpenSSL engine support.");
|
|
}
|
|
|
|
if (crypto_force_rand_ssleay()) {
|
|
if (crypto_seed_rng() < 0)
|
|
return -1;
|
|
}
|
|
|
|
evaluate_evp_for_aes(-1);
|
|
evaluate_ctr_for_aes();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Free crypto resources held by this thread. */
|
|
void
|
|
crypto_thread_cleanup(void)
|
|
{
|
|
#ifndef NEW_THREAD_API
|
|
ERR_remove_thread_state(NULL);
|
|
#endif
|
|
}
|
|
|
|
/** Used by tortls.c: Get the DH* from a crypto_dh_t.
|
|
*/
|
|
DH *
|
|
crypto_dh_get_dh_(crypto_dh_t *dh)
|
|
{
|
|
return dh->dh;
|
|
}
|
|
|
|
/** Allocate and return a new symmetric cipher using the provided key and iv.
|
|
* The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes. Both
|
|
* must be provided. Key length must be 128, 192, or 256 */
|
|
crypto_cipher_t *
|
|
crypto_cipher_new_with_iv_and_bits(const uint8_t *key,
|
|
const uint8_t *iv,
|
|
int bits)
|
|
{
|
|
tor_assert(key);
|
|
tor_assert(iv);
|
|
|
|
return aes_new_cipher((const uint8_t*)key, (const uint8_t*)iv, bits);
|
|
}
|
|
|
|
/** Allocate and return a new symmetric cipher using the provided key and iv.
|
|
* The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes. Both
|
|
* must be provided.
|
|
*/
|
|
crypto_cipher_t *
|
|
crypto_cipher_new_with_iv(const char *key, const char *iv)
|
|
{
|
|
return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv,
|
|
128);
|
|
}
|
|
|
|
/** Return a new crypto_cipher_t with the provided <b>key</b> and an IV of all
|
|
* zero bytes and key length <b>bits</b>. Key length must be 128, 192, or
|
|
* 256. */
|
|
crypto_cipher_t *
|
|
crypto_cipher_new_with_bits(const char *key, int bits)
|
|
{
|
|
char zeroiv[CIPHER_IV_LEN];
|
|
memset(zeroiv, 0, sizeof(zeroiv));
|
|
return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)zeroiv,
|
|
bits);
|
|
}
|
|
|
|
/** Return a new crypto_cipher_t with the provided <b>key</b> (of
|
|
* CIPHER_KEY_LEN bytes) and an IV of all zero bytes. */
|
|
crypto_cipher_t *
|
|
crypto_cipher_new(const char *key)
|
|
{
|
|
return crypto_cipher_new_with_bits(key, 128);
|
|
}
|
|
|
|
/** Free a symmetric cipher.
|
|
*/
|
|
void
|
|
crypto_cipher_free_(crypto_cipher_t *env)
|
|
{
|
|
if (!env)
|
|
return;
|
|
|
|
aes_cipher_free(env);
|
|
}
|
|
|
|
/* public key crypto */
|
|
|
|
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
|
|
* bytes of data from <b>from</b>, with padding type 'padding',
|
|
* storing the results on <b>to</b>.
|
|
*
|
|
* Returns the number of bytes written on success, -1 on failure.
|
|
*
|
|
* The encrypted data consists of:
|
|
* - The source data, padded and encrypted with the public key, if the
|
|
* padded source data is no longer than the public key, and <b>force</b>
|
|
* is false, OR
|
|
* - The beginning of the source data prefixed with a 16-byte symmetric key,
|
|
* padded and encrypted with the public key; followed by the rest of
|
|
* the source data encrypted in AES-CTR mode with the symmetric key.
|
|
*
|
|
* NOTE that this format does not authenticate the symmetrically encrypted
|
|
* part of the data, and SHOULD NOT BE USED for new protocols.
|
|
*/
|
|
int
|
|
crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env,
|
|
char *to, size_t tolen,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int force)
|
|
{
|
|
int overhead, outlen, r;
|
|
size_t pkeylen, symlen;
|
|
crypto_cipher_t *cipher = NULL;
|
|
char *buf = NULL;
|
|
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (!force && fromlen+overhead <= pkeylen) {
|
|
/* It all fits in a single encrypt. */
|
|
return crypto_pk_public_encrypt(env,to,
|
|
tolen,
|
|
from,fromlen,padding);
|
|
}
|
|
tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
|
|
tor_assert(tolen >= pkeylen);
|
|
|
|
char key[CIPHER_KEY_LEN];
|
|
crypto_rand(key, sizeof(key)); /* generate a new key. */
|
|
cipher = crypto_cipher_new(key);
|
|
|
|
buf = tor_malloc(pkeylen+1);
|
|
memcpy(buf, key, CIPHER_KEY_LEN);
|
|
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
/* Length of symmetrically encrypted data. */
|
|
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
|
|
if (outlen!=(int)pkeylen) {
|
|
goto err;
|
|
}
|
|
r = crypto_cipher_encrypt(cipher, to+outlen,
|
|
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);
|
|
|
|
if (r<0) goto err;
|
|
memwipe(buf, 0, pkeylen);
|
|
memwipe(key, 0, sizeof(key));
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
tor_assert(outlen+symlen < INT_MAX);
|
|
return (int)(outlen + symlen);
|
|
err:
|
|
|
|
memwipe(buf, 0, pkeylen);
|
|
memwipe(key, 0, sizeof(key));
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of
|
|
* bytes written on success, -1 on failure.
|
|
*
|
|
* NOTE that this format does not authenticate the symmetrically encrypted
|
|
* part of the data, and SHOULD NOT BE USED for new protocols.
|
|
*/
|
|
int
|
|
crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
|
|
char *to,
|
|
size_t tolen,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int warnOnFailure)
|
|
{
|
|
int outlen, r;
|
|
size_t pkeylen;
|
|
crypto_cipher_t *cipher = NULL;
|
|
char *buf = NULL;
|
|
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (fromlen <= pkeylen) {
|
|
return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
|
|
warnOnFailure);
|
|
}
|
|
|
|
buf = tor_malloc(pkeylen);
|
|
outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
|
|
warnOnFailure);
|
|
if (outlen<0) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
|
|
"Error decrypting public-key data");
|
|
goto err;
|
|
}
|
|
if (outlen < CIPHER_KEY_LEN) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
|
|
"No room for a symmetric key");
|
|
goto err;
|
|
}
|
|
cipher = crypto_cipher_new(buf);
|
|
if (!cipher) {
|
|
goto err;
|
|
}
|
|
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
|
|
outlen -= CIPHER_KEY_LEN;
|
|
tor_assert(tolen - outlen >= fromlen - pkeylen);
|
|
r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
|
|
if (r<0)
|
|
goto err;
|
|
memwipe(buf,0,pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
tor_assert(outlen + fromlen < INT_MAX);
|
|
return (int)(outlen + (fromlen-pkeylen));
|
|
err:
|
|
memwipe(buf,0,pkeylen);
|
|
tor_free(buf);
|
|
crypto_cipher_free(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
|
|
* every four characters. */
|
|
void
|
|
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
|
|
{
|
|
int n = 0;
|
|
char *end = out+outlen;
|
|
tor_assert(outlen < SIZE_T_CEILING);
|
|
|
|
while (*in && out<end) {
|
|
*out++ = *in++;
|
|
if (++n == 4 && *in && out<end) {
|
|
n = 0;
|
|
*out++ = ' ';
|
|
}
|
|
}
|
|
tor_assert(out<end);
|
|
*out = '\0';
|
|
}
|
|
|
|
/* symmetric crypto */
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* Does not check for failure.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(fromlen);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
memcpy(to, from, fromlen);
|
|
aes_crypt_inplace(env, to, fromlen);
|
|
return 0;
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* Does not check for failure.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < SIZE_T_CEILING);
|
|
|
|
memcpy(to, from, fromlen);
|
|
aes_crypt_inplace(env, to, fromlen);
|
|
return 0;
|
|
}
|
|
|
|
/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
|
|
* on success. Does not check for failure.
|
|
*/
|
|
void
|
|
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
|
|
{
|
|
tor_assert(len < SIZE_T_CEILING);
|
|
aes_crypt_inplace(env, buf, len);
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
|
|
* <b>key</b> to the buffer in <b>to</b> of length
|
|
* <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> plus
|
|
* CIPHER_IV_LEN bytes for the initialization vector. On success, return the
|
|
* number of bytes written, on failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt_with_iv(const char *key,
|
|
char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
crypto_cipher_t *cipher;
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
|
|
if (fromlen < 1)
|
|
return -1;
|
|
if (tolen < fromlen + CIPHER_IV_LEN)
|
|
return -1;
|
|
|
|
char iv[CIPHER_IV_LEN];
|
|
crypto_rand(iv, sizeof(iv));
|
|
cipher = crypto_cipher_new_with_iv(key, iv);
|
|
|
|
memcpy(to, iv, CIPHER_IV_LEN);
|
|
crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen);
|
|
crypto_cipher_free(cipher);
|
|
memwipe(iv, 0, sizeof(iv));
|
|
return (int)(fromlen + CIPHER_IV_LEN);
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes (at least 1+CIPHER_IV_LEN) from <b>from</b>
|
|
* with the key in <b>key</b> to the buffer in <b>to</b> of length
|
|
* <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> minus
|
|
* CIPHER_IV_LEN bytes for the initialization vector. On success, return the
|
|
* number of bytes written, on failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt_with_iv(const char *key,
|
|
char *to, size_t tolen,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
crypto_cipher_t *cipher;
|
|
tor_assert(key);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(fromlen < INT_MAX);
|
|
|
|
if (fromlen <= CIPHER_IV_LEN)
|
|
return -1;
|
|
if (tolen < fromlen - CIPHER_IV_LEN)
|
|
return -1;
|
|
|
|
cipher = crypto_cipher_new_with_iv(key, from);
|
|
|
|
crypto_cipher_encrypt(cipher, to, from+CIPHER_IV_LEN, fromlen-CIPHER_IV_LEN);
|
|
crypto_cipher_free(cipher);
|
|
return (int)(fromlen - CIPHER_IV_LEN);
|
|
}
|
|
|
|
/* DH */
|
|
|
|
/** Our DH 'g' parameter */
|
|
#define DH_GENERATOR 2
|
|
|
|
/** Shared P parameter for our circuit-crypto DH key exchanges. */
|
|
static BIGNUM *dh_param_p = NULL;
|
|
/** Shared P parameter for our TLS DH key exchanges. */
|
|
static BIGNUM *dh_param_p_tls = NULL;
|
|
/** Shared G parameter for our DH key exchanges. */
|
|
static BIGNUM *dh_param_g = NULL;
|
|
|
|
/** Validate a given set of Diffie-Hellman parameters. This is moderately
|
|
* computationally expensive (milliseconds), so should only be called when
|
|
* the DH parameters change. Returns 0 on success, * -1 on failure.
|
|
*/
|
|
static int
|
|
crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g)
|
|
{
|
|
DH *dh = NULL;
|
|
int ret = -1;
|
|
|
|
/* Copy into a temporary DH object, just so that DH_check() can be called. */
|
|
if (!(dh = DH_new()))
|
|
goto out;
|
|
#ifdef OPENSSL_1_1_API
|
|
BIGNUM *dh_p, *dh_g;
|
|
if (!(dh_p = BN_dup(p)))
|
|
goto out;
|
|
if (!(dh_g = BN_dup(g)))
|
|
goto out;
|
|
if (!DH_set0_pqg(dh, dh_p, NULL, dh_g))
|
|
goto out;
|
|
#else /* !(defined(OPENSSL_1_1_API)) */
|
|
if (!(dh->p = BN_dup(p)))
|
|
goto out;
|
|
if (!(dh->g = BN_dup(g)))
|
|
goto out;
|
|
#endif /* defined(OPENSSL_1_1_API) */
|
|
|
|
/* Perform the validation. */
|
|
int codes = 0;
|
|
if (!DH_check(dh, &codes))
|
|
goto out;
|
|
if (BN_is_word(g, DH_GENERATOR_2)) {
|
|
/* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters
|
|
*
|
|
* OpenSSL checks the prime is congruent to 11 when g = 2; while the
|
|
* IETF's primes are congruent to 23 when g = 2.
|
|
*/
|
|
BN_ULONG residue = BN_mod_word(p, 24);
|
|
if (residue == 11 || residue == 23)
|
|
codes &= ~DH_NOT_SUITABLE_GENERATOR;
|
|
}
|
|
if (codes != 0) /* Specifics on why the params suck is irrelevant. */
|
|
goto out;
|
|
|
|
/* Things are probably not evil. */
|
|
ret = 0;
|
|
|
|
out:
|
|
if (dh)
|
|
DH_free(dh);
|
|
return ret;
|
|
}
|
|
|
|
/** Set the global Diffie-Hellman generator, used for both TLS and internal
|
|
* DH stuff.
|
|
*/
|
|
static void
|
|
crypto_set_dh_generator(void)
|
|
{
|
|
BIGNUM *generator;
|
|
int r;
|
|
|
|
if (dh_param_g)
|
|
return;
|
|
|
|
generator = BN_new();
|
|
tor_assert(generator);
|
|
|
|
r = BN_set_word(generator, DH_GENERATOR);
|
|
tor_assert(r);
|
|
|
|
dh_param_g = generator;
|
|
}
|
|
|
|
/** Set the global TLS Diffie-Hellman modulus. Use the Apache mod_ssl DH
|
|
* modulus. */
|
|
void
|
|
crypto_set_tls_dh_prime(void)
|
|
{
|
|
BIGNUM *tls_prime = NULL;
|
|
int r;
|
|
|
|
/* If the space is occupied, free the previous TLS DH prime */
|
|
if (BUG(dh_param_p_tls)) {
|
|
/* LCOV_EXCL_START
|
|
*
|
|
* We shouldn't be calling this twice.
|
|
*/
|
|
BN_clear_free(dh_param_p_tls);
|
|
dh_param_p_tls = NULL;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
tls_prime = BN_new();
|
|
tor_assert(tls_prime);
|
|
|
|
/* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
|
|
* modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
|
|
* prime.
|
|
*/
|
|
r = BN_hex2bn(&tls_prime,
|
|
"D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
|
|
"BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
|
|
"467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
|
|
"DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
|
|
"B0E7393E0F24218EB3");
|
|
tor_assert(r);
|
|
|
|
tor_assert(tls_prime);
|
|
|
|
dh_param_p_tls = tls_prime;
|
|
crypto_set_dh_generator();
|
|
tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g));
|
|
}
|
|
|
|
/** Initialize dh_param_p and dh_param_g if they are not already
|
|
* set. */
|
|
static void
|
|
init_dh_param(void)
|
|
{
|
|
BIGNUM *circuit_dh_prime;
|
|
int r;
|
|
if (BUG(dh_param_p && dh_param_g))
|
|
return; // LCOV_EXCL_LINE This function isn't supposed to be called twice.
|
|
|
|
circuit_dh_prime = BN_new();
|
|
tor_assert(circuit_dh_prime);
|
|
|
|
/* This is from rfc2409, section 6.2. It's a safe prime, and
|
|
supposedly it equals:
|
|
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
|
|
*/
|
|
r = BN_hex2bn(&circuit_dh_prime,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF");
|
|
tor_assert(r);
|
|
|
|
/* Set the new values as the global DH parameters. */
|
|
dh_param_p = circuit_dh_prime;
|
|
crypto_set_dh_generator();
|
|
tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g));
|
|
|
|
if (!dh_param_p_tls) {
|
|
crypto_set_tls_dh_prime();
|
|
}
|
|
}
|
|
|
|
/** Number of bits to use when choosing the x or y value in a Diffie-Hellman
|
|
* handshake. Since we exponentiate by this value, choosing a smaller one
|
|
* lets our handhake go faster.
|
|
*/
|
|
#define DH_PRIVATE_KEY_BITS 320
|
|
|
|
/** Allocate and return a new DH object for a key exchange. Returns NULL on
|
|
* failure.
|
|
*/
|
|
crypto_dh_t *
|
|
crypto_dh_new(int dh_type)
|
|
{
|
|
crypto_dh_t *res = tor_malloc_zero(sizeof(crypto_dh_t));
|
|
|
|
tor_assert(dh_type == DH_TYPE_CIRCUIT || dh_type == DH_TYPE_TLS ||
|
|
dh_type == DH_TYPE_REND);
|
|
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
|
|
if (!(res->dh = DH_new()))
|
|
goto err;
|
|
|
|
#ifdef OPENSSL_1_1_API
|
|
BIGNUM *dh_p = NULL, *dh_g = NULL;
|
|
|
|
if (dh_type == DH_TYPE_TLS) {
|
|
dh_p = BN_dup(dh_param_p_tls);
|
|
} else {
|
|
dh_p = BN_dup(dh_param_p);
|
|
}
|
|
if (!dh_p)
|
|
goto err;
|
|
|
|
dh_g = BN_dup(dh_param_g);
|
|
if (!dh_g) {
|
|
BN_free(dh_p);
|
|
goto err;
|
|
}
|
|
|
|
if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS))
|
|
goto err;
|
|
#else /* !(defined(OPENSSL_1_1_API)) */
|
|
if (dh_type == DH_TYPE_TLS) {
|
|
if (!(res->dh->p = BN_dup(dh_param_p_tls)))
|
|
goto err;
|
|
} else {
|
|
if (!(res->dh->p = BN_dup(dh_param_p)))
|
|
goto err;
|
|
}
|
|
|
|
if (!(res->dh->g = BN_dup(dh_param_g)))
|
|
goto err;
|
|
|
|
res->dh->length = DH_PRIVATE_KEY_BITS;
|
|
#endif /* defined(OPENSSL_1_1_API) */
|
|
|
|
return res;
|
|
|
|
/* LCOV_EXCL_START
|
|
* This error condition is only reached when an allocation fails */
|
|
err:
|
|
crypto_log_errors(LOG_WARN, "creating DH object");
|
|
if (res->dh) DH_free(res->dh); /* frees p and g too */
|
|
tor_free(res);
|
|
return NULL;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
/** Return a copy of <b>dh</b>, sharing its internal state. */
|
|
crypto_dh_t *
|
|
crypto_dh_dup(const crypto_dh_t *dh)
|
|
{
|
|
crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
|
|
tor_assert(dh);
|
|
tor_assert(dh->dh);
|
|
dh_new->dh = dh->dh;
|
|
DH_up_ref(dh->dh);
|
|
return dh_new;
|
|
}
|
|
|
|
/** Return the length of the DH key in <b>dh</b>, in bytes.
|
|
*/
|
|
int
|
|
crypto_dh_get_bytes(crypto_dh_t *dh)
|
|
{
|
|
tor_assert(dh);
|
|
return DH_size(dh->dh);
|
|
}
|
|
|
|
/** Generate \<x,g^x\> for our part of the key exchange. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_dh_generate_public(crypto_dh_t *dh)
|
|
{
|
|
#ifndef OPENSSL_1_1_API
|
|
again:
|
|
#endif
|
|
if (!DH_generate_key(dh->dh)) {
|
|
/* LCOV_EXCL_START
|
|
* To test this we would need some way to tell openssl to break DH. */
|
|
crypto_log_errors(LOG_WARN, "generating DH key");
|
|
return -1;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
#ifdef OPENSSL_1_1_API
|
|
/* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without
|
|
* recreating the DH object. I have no idea what sort of aliasing madness
|
|
* can occur here, so do the check, and just bail on failure.
|
|
*/
|
|
const BIGNUM *pub_key, *priv_key;
|
|
DH_get0_key(dh->dh, &pub_key, &priv_key);
|
|
if (tor_check_dh_key(LOG_WARN, pub_key)<0) {
|
|
log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
|
|
"the-universe chances really do happen. Treating as a failure.");
|
|
return -1;
|
|
}
|
|
#else /* !(defined(OPENSSL_1_1_API)) */
|
|
if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) {
|
|
/* LCOV_EXCL_START
|
|
* If this happens, then openssl's DH implementation is busted. */
|
|
log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
|
|
"the-universe chances really do happen. Trying again.");
|
|
/* Free and clear the keys, so OpenSSL will actually try again. */
|
|
BN_clear_free(dh->dh->pub_key);
|
|
BN_clear_free(dh->dh->priv_key);
|
|
dh->dh->pub_key = dh->dh->priv_key = NULL;
|
|
goto again;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
#endif /* defined(OPENSSL_1_1_API) */
|
|
return 0;
|
|
}
|
|
|
|
/** Generate g^x as necessary, and write the g^x for the key exchange
|
|
* as a <b>pubkey_len</b>-byte value into <b>pubkey</b>. Return 0 on
|
|
* success, -1 on failure. <b>pubkey_len</b> must be \>= DH_BYTES.
|
|
*/
|
|
int
|
|
crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
|
|
{
|
|
int bytes;
|
|
tor_assert(dh);
|
|
|
|
const BIGNUM *dh_pub;
|
|
|
|
#ifdef OPENSSL_1_1_API
|
|
const BIGNUM *dh_priv;
|
|
DH_get0_key(dh->dh, &dh_pub, &dh_priv);
|
|
#else
|
|
dh_pub = dh->dh->pub_key;
|
|
#endif /* defined(OPENSSL_1_1_API) */
|
|
|
|
if (!dh_pub) {
|
|
if (crypto_dh_generate_public(dh)<0)
|
|
return -1;
|
|
else {
|
|
#ifdef OPENSSL_1_1_API
|
|
DH_get0_key(dh->dh, &dh_pub, &dh_priv);
|
|
#else
|
|
dh_pub = dh->dh->pub_key;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
tor_assert(dh_pub);
|
|
bytes = BN_num_bytes(dh_pub);
|
|
tor_assert(bytes >= 0);
|
|
if (pubkey_len < (size_t)bytes) {
|
|
log_warn(LD_CRYPTO,
|
|
"Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)",
|
|
(int) pubkey_len, bytes);
|
|
return -1;
|
|
}
|
|
|
|
memset(pubkey, 0, pubkey_len);
|
|
BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Check for bad Diffie-Hellman public keys (g^x). Return 0 if the key is
|
|
* okay (in the subgroup [2,p-2]), or -1 if it's bad.
|
|
* See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
|
|
*/
|
|
static int
|
|
tor_check_dh_key(int severity, const BIGNUM *bn)
|
|
{
|
|
BIGNUM *x;
|
|
char *s;
|
|
tor_assert(bn);
|
|
x = BN_new();
|
|
tor_assert(x);
|
|
if (BUG(!dh_param_p))
|
|
init_dh_param(); //LCOV_EXCL_LINE we already checked whether we did this.
|
|
BN_set_word(x, 1);
|
|
if (BN_cmp(bn,x)<=0) {
|
|
log_fn(severity, LD_CRYPTO, "DH key must be at least 2.");
|
|
goto err;
|
|
}
|
|
BN_copy(x,dh_param_p);
|
|
BN_sub_word(x, 1);
|
|
if (BN_cmp(bn,x)>=0) {
|
|
log_fn(severity, LD_CRYPTO, "DH key must be at most p-2.");
|
|
goto err;
|
|
}
|
|
BN_clear_free(x);
|
|
return 0;
|
|
err:
|
|
BN_clear_free(x);
|
|
s = BN_bn2hex(bn);
|
|
log_fn(severity, LD_CRYPTO, "Rejecting insecure DH key [%s]", s);
|
|
OPENSSL_free(s);
|
|
return -1;
|
|
}
|
|
|
|
/** Given a DH key exchange object, and our peer's value of g^y (as a
|
|
* <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
|
|
* <b>secret_bytes_out</b> bytes of shared key material and write them
|
|
* to <b>secret_out</b>. Return the number of bytes generated on success,
|
|
* or -1 on failure.
|
|
*
|
|
* (We generate key material by computing
|
|
* SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
|
|
* where || is concatenation.)
|
|
*/
|
|
ssize_t
|
|
crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
|
|
const char *pubkey, size_t pubkey_len,
|
|
char *secret_out, size_t secret_bytes_out)
|
|
{
|
|
char *secret_tmp = NULL;
|
|
BIGNUM *pubkey_bn = NULL;
|
|
size_t secret_len=0, secret_tmp_len=0;
|
|
int result=0;
|
|
tor_assert(dh);
|
|
tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
|
|
tor_assert(pubkey_len < INT_MAX);
|
|
|
|
if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey,
|
|
(int)pubkey_len, NULL)))
|
|
goto error;
|
|
if (tor_check_dh_key(severity, pubkey_bn)<0) {
|
|
/* Check for invalid public keys. */
|
|
log_fn(severity, LD_CRYPTO,"Rejected invalid g^x");
|
|
goto error;
|
|
}
|
|
secret_tmp_len = crypto_dh_get_bytes(dh);
|
|
secret_tmp = tor_malloc(secret_tmp_len);
|
|
result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh);
|
|
if (result < 0) {
|
|
log_warn(LD_CRYPTO,"DH_compute_key() failed.");
|
|
goto error;
|
|
}
|
|
secret_len = result;
|
|
if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len,
|
|
(uint8_t*)secret_out, secret_bytes_out)<0)
|
|
goto error;
|
|
secret_len = secret_bytes_out;
|
|
|
|
goto done;
|
|
error:
|
|
result = -1;
|
|
done:
|
|
crypto_log_errors(LOG_WARN, "completing DH handshake");
|
|
if (pubkey_bn)
|
|
BN_clear_free(pubkey_bn);
|
|
if (secret_tmp) {
|
|
memwipe(secret_tmp, 0, secret_tmp_len);
|
|
tor_free(secret_tmp);
|
|
}
|
|
if (result < 0)
|
|
return result;
|
|
else
|
|
return secret_len;
|
|
}
|
|
|
|
/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
|
|
* ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
|
|
* <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
|
|
* H(K | [00]) | H(K | [01]) | ....
|
|
*
|
|
* This is the key expansion algorithm used in the "TAP" circuit extension
|
|
* mechanism; it shouldn't be used for new protocols.
|
|
*
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
|
|
uint8_t *key_out, size_t key_out_len)
|
|
{
|
|
int i, r = -1;
|
|
uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
|
|
uint8_t digest[DIGEST_LEN];
|
|
|
|
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
|
|
tor_assert(key_out_len <= DIGEST_LEN*256);
|
|
|
|
memcpy(tmp, key_in, key_in_len);
|
|
for (cp = key_out, i=0; cp < key_out+key_out_len;
|
|
++i, cp += DIGEST_LEN) {
|
|
tmp[key_in_len] = i;
|
|
if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1) < 0)
|
|
goto exit;
|
|
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
|
|
}
|
|
|
|
r = 0;
|
|
exit:
|
|
memwipe(tmp, 0, key_in_len+1);
|
|
tor_free(tmp);
|
|
memwipe(digest, 0, sizeof(digest));
|
|
return r;
|
|
}
|
|
|
|
/** Expand some secret key material according to RFC5869, using SHA256 as the
|
|
* underlying hash. The <b>key_in_len</b> bytes at <b>key_in</b> are the
|
|
* secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
|
|
* <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
|
|
* and "info" parameters respectively. On success, write <b>key_out_len</b>
|
|
* bytes to <b>key_out</b> and return 0. Assert on failure.
|
|
*/
|
|
int
|
|
crypto_expand_key_material_rfc5869_sha256(
|
|
const uint8_t *key_in, size_t key_in_len,
|
|
const uint8_t *salt_in, size_t salt_in_len,
|
|
const uint8_t *info_in, size_t info_in_len,
|
|
uint8_t *key_out, size_t key_out_len)
|
|
{
|
|
uint8_t prk[DIGEST256_LEN];
|
|
uint8_t tmp[DIGEST256_LEN + 128 + 1];
|
|
uint8_t mac[DIGEST256_LEN];
|
|
int i;
|
|
uint8_t *outp;
|
|
size_t tmp_len;
|
|
|
|
crypto_hmac_sha256((char*)prk,
|
|
(const char*)salt_in, salt_in_len,
|
|
(const char*)key_in, key_in_len);
|
|
|
|
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
|
|
tor_assert(key_out_len <= DIGEST256_LEN * 256);
|
|
tor_assert(info_in_len <= 128);
|
|
memset(tmp, 0, sizeof(tmp));
|
|
outp = key_out;
|
|
i = 1;
|
|
|
|
while (key_out_len) {
|
|
size_t n;
|
|
if (i > 1) {
|
|
memcpy(tmp, mac, DIGEST256_LEN);
|
|
memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
|
|
tmp[DIGEST256_LEN+info_in_len] = i;
|
|
tmp_len = DIGEST256_LEN + info_in_len + 1;
|
|
} else {
|
|
memcpy(tmp, info_in, info_in_len);
|
|
tmp[info_in_len] = i;
|
|
tmp_len = info_in_len + 1;
|
|
}
|
|
crypto_hmac_sha256((char*)mac,
|
|
(const char*)prk, DIGEST256_LEN,
|
|
(const char*)tmp, tmp_len);
|
|
n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
|
|
memcpy(outp, mac, n);
|
|
key_out_len -= n;
|
|
outp += n;
|
|
++i;
|
|
}
|
|
|
|
memwipe(tmp, 0, sizeof(tmp));
|
|
memwipe(mac, 0, sizeof(mac));
|
|
return 0;
|
|
}
|
|
|
|
/** Free a DH key exchange object.
|
|
*/
|
|
void
|
|
crypto_dh_free_(crypto_dh_t *dh)
|
|
{
|
|
if (!dh)
|
|
return;
|
|
tor_assert(dh->dh);
|
|
DH_free(dh->dh);
|
|
tor_free(dh);
|
|
}
|
|
|
|
/* random numbers */
|
|
|
|
/** How many bytes of entropy we add at once.
|
|
*
|
|
* This is how much entropy OpenSSL likes to add right now, so maybe it will
|
|
* work for us too. */
|
|
#define ADD_ENTROPY 32
|
|
|
|
/** Set the seed of the weak RNG to a random value. */
|
|
void
|
|
crypto_seed_weak_rng(tor_weak_rng_t *rng)
|
|
{
|
|
unsigned seed;
|
|
crypto_rand((void*)&seed, sizeof(seed));
|
|
tor_init_weak_random(rng, seed);
|
|
}
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
int break_strongest_rng_syscall = 0;
|
|
int break_strongest_rng_fallback = 0;
|
|
#endif
|
|
|
|
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
* via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
|
|
* failure. A maximum request size of 256 bytes is imposed.
|
|
*/
|
|
static int
|
|
crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
|
|
{
|
|
tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
if (break_strongest_rng_syscall)
|
|
return -1;
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
static int provider_set = 0;
|
|
static HCRYPTPROV provider;
|
|
|
|
if (!provider_set) {
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
CRYPT_VERIFYCONTEXT)) {
|
|
log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
|
|
return -1;
|
|
}
|
|
provider_set = 1;
|
|
}
|
|
if (!CryptGenRandom(provider, out_len, out)) {
|
|
log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI.");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
#elif defined(__linux__) && defined(SYS_getrandom)
|
|
static int getrandom_works = 1; /* Be optimitic about our chances... */
|
|
|
|
/* getrandom() isn't as straight foward as getentropy(), and has
|
|
* no glibc wrapper.
|
|
*
|
|
* As far as I can tell from getrandom(2) and the source code, the
|
|
* requests we issue will always succeed (though it will block on the
|
|
* call if /dev/urandom isn't seeded yet), since we are NOT specifying
|
|
* GRND_NONBLOCK and the request is <= 256 bytes.
|
|
*
|
|
* The manpage is unclear on what happens if a signal interrupts the call
|
|
* while the request is blocked due to lack of entropy....
|
|
*
|
|
* We optimistically assume that getrandom() is available and functional
|
|
* because it is the way of the future, and 2 branch mispredicts pale in
|
|
* comparision to the overheads involved with failing to open
|
|
* /dev/srandom followed by opening and reading from /dev/urandom.
|
|
*/
|
|
if (PREDICT_LIKELY(getrandom_works)) {
|
|
long ret;
|
|
/* A flag of '0' here means to read from '/dev/urandom', and to
|
|
* block if insufficient entropy is available to service the
|
|
* request.
|
|
*/
|
|
const unsigned int flags = 0;
|
|
do {
|
|
ret = syscall(SYS_getrandom, out, out_len, flags);
|
|
} while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));
|
|
|
|
if (PREDICT_UNLIKELY(ret == -1)) {
|
|
/* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
|
|
tor_assert(errno != EAGAIN);
|
|
tor_assert(errno != EINTR);
|
|
|
|
/* Useful log message for errno. */
|
|
if (errno == ENOSYS) {
|
|
log_warn(LD_CRYPTO, "Can't get entropy from getrandom()."
|
|
" You are running a version of Tor built to support"
|
|
" getrandom(), but the kernel doesn't implement this"
|
|
" function--probably because it is too old?");
|
|
} else {
|
|
log_warn(LD_CRYPTO, "Can't get entropy from getrandom(): %s.",
|
|
strerror(errno));
|
|
}
|
|
|
|
getrandom_works = 0; /* Don't bother trying again. */
|
|
return -1;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
tor_assert(ret == (long)out_len);
|
|
return 0;
|
|
}
|
|
|
|
return -1; /* getrandom() previously failed unexpectedly. */
|
|
#elif defined(HAVE_GETENTROPY)
|
|
/* getentropy() is what Linux's getrandom() wants to be when it grows up.
|
|
* the only gotcha is that requests are limited to 256 bytes.
|
|
*/
|
|
return getentropy(out, out_len);
|
|
#else
|
|
(void) out;
|
|
#endif /* defined(_WIN32) || ... */
|
|
|
|
/* This platform doesn't have a supported syscall based random. */
|
|
return -1;
|
|
}
|
|
|
|
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
* via the per-platform fallback mechanism, storing it into <b>out</b>.
|
|
* Return 0 on success, -1 on failure. A maximum request size of 256 bytes
|
|
* is imposed.
|
|
*/
|
|
static int
|
|
crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
|
|
{
|
|
#ifdef TOR_UNIT_TESTS
|
|
if (break_strongest_rng_fallback)
|
|
return -1;
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
/* Windows exclusively uses crypto_strongest_rand_syscall(). */
|
|
(void)out;
|
|
(void)out_len;
|
|
return -1;
|
|
#else /* !(defined(_WIN32)) */
|
|
static const char *filenames[] = {
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
};
|
|
int fd, i;
|
|
size_t n;
|
|
|
|
for (i = 0; filenames[i]; ++i) {
|
|
log_debug(LD_FS, "Considering %s for entropy", filenames[i]);
|
|
fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
|
|
if (fd<0) continue;
|
|
log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
|
|
n = read_all(fd, (char*)out, out_len, 0);
|
|
close(fd);
|
|
if (n != out_len) {
|
|
/* LCOV_EXCL_START
|
|
* We can't make /dev/foorandom actually fail. */
|
|
log_warn(LD_CRYPTO,
|
|
"Error reading from entropy source (read only %lu bytes).",
|
|
(unsigned long)n);
|
|
return -1;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
#endif /* defined(_WIN32) */
|
|
}
|
|
|
|
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
* storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum
|
|
* request size of 256 bytes is imposed.
|
|
*/
|
|
STATIC int
|
|
crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
|
|
{
|
|
static const size_t sanity_min_size = 16;
|
|
static const int max_attempts = 3;
|
|
tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
/* For buffers >= 16 bytes (128 bits), we sanity check the output by
|
|
* zero filling the buffer and ensuring that it actually was at least
|
|
* partially modified.
|
|
*
|
|
* Checking that any individual byte is non-zero seems like it would
|
|
* fail too often (p = out_len * 1/256) for comfort, but this is an
|
|
* "adjust according to taste" sort of check.
|
|
*/
|
|
memwipe(out, 0, out_len);
|
|
for (int i = 0; i < max_attempts; i++) {
|
|
/* Try to use the syscall/OS favored mechanism to get strong entropy. */
|
|
if (crypto_strongest_rand_syscall(out, out_len) != 0) {
|
|
/* Try to use the less-favored mechanism to get strong entropy. */
|
|
if (crypto_strongest_rand_fallback(out, out_len) != 0) {
|
|
/* Welp, we tried. Hopefully the calling code terminates the process
|
|
* since we're basically boned without good entropy.
|
|
*/
|
|
log_warn(LD_CRYPTO,
|
|
"Cannot get strong entropy: no entropy source found.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
|
|
return 0;
|
|
}
|
|
|
|
/* LCOV_EXCL_START
|
|
*
|
|
* We tried max_attempts times to fill a buffer >= 128 bits long,
|
|
* and each time it returned all '0's. Either the system entropy
|
|
* source is busted, or the user should go out and buy a ticket to
|
|
* every lottery on the planet.
|
|
*/
|
|
log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");
|
|
|
|
return -1;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
|
|
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
* storing it into <b>out</b>.
|
|
*/
|
|
void
|
|
crypto_strongest_rand(uint8_t *out, size_t out_len)
|
|
{
|
|
#define DLEN SHA512_DIGEST_LENGTH
|
|
/* We're going to hash DLEN bytes from the system RNG together with some
|
|
* bytes from the openssl PRNG, in order to yield DLEN bytes.
|
|
*/
|
|
uint8_t inp[DLEN*2];
|
|
uint8_t tmp[DLEN];
|
|
tor_assert(out);
|
|
while (out_len) {
|
|
crypto_rand((char*) inp, DLEN);
|
|
if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
|
|
// LCOV_EXCL_START
|
|
log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
|
|
"important key. Exiting.");
|
|
/* Die with an assertion so we get a stack trace. */
|
|
tor_assert(0);
|
|
// LCOV_EXCL_STOP
|
|
}
|
|
if (out_len >= DLEN) {
|
|
SHA512(inp, sizeof(inp), out);
|
|
out += DLEN;
|
|
out_len -= DLEN;
|
|
} else {
|
|
SHA512(inp, sizeof(inp), tmp);
|
|
memcpy(out, tmp, out_len);
|
|
break;
|
|
}
|
|
}
|
|
memwipe(tmp, 0, sizeof(tmp));
|
|
memwipe(inp, 0, sizeof(inp));
|
|
#undef DLEN
|
|
}
|
|
|
|
/** Seed OpenSSL's random number generator with bytes from the operating
|
|
* system. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_seed_rng(void)
|
|
{
|
|
int rand_poll_ok = 0, load_entropy_ok = 0;
|
|
uint8_t buf[ADD_ENTROPY];
|
|
|
|
/* OpenSSL has a RAND_poll function that knows about more kinds of
|
|
* entropy than we do. We'll try calling that, *and* calling our own entropy
|
|
* functions. If one succeeds, we'll accept the RNG as seeded. */
|
|
rand_poll_ok = RAND_poll();
|
|
if (rand_poll_ok == 0)
|
|
log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE
|
|
|
|
load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
|
|
if (load_entropy_ok) {
|
|
RAND_seed(buf, sizeof(buf));
|
|
}
|
|
|
|
memwipe(buf, 0, sizeof(buf));
|
|
|
|
if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
|
|
* for unit tests.
|
|
*
|
|
* This function is not allowed to fail; if it would fail to generate strong
|
|
* entropy, it must terminate the process instead.
|
|
*/
|
|
MOCK_IMPL(void,
|
|
crypto_rand, (char *to, size_t n))
|
|
{
|
|
crypto_rand_unmocked(to, n);
|
|
}
|
|
|
|
/** Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers
|
|
* will want crypto_rand instead.
|
|
*
|
|
* This function is not allowed to fail; if it would fail to generate strong
|
|
* entropy, it must terminate the process instead.
|
|
*/
|
|
void
|
|
crypto_rand_unmocked(char *to, size_t n)
|
|
{
|
|
int r;
|
|
if (n == 0)
|
|
return;
|
|
|
|
tor_assert(n < INT_MAX);
|
|
tor_assert(to);
|
|
r = RAND_bytes((unsigned char*)to, (int)n);
|
|
/* We consider a PRNG failure non-survivable. Let's assert so that we get a
|
|
* stack trace about where it happened.
|
|
*/
|
|
tor_assert(r >= 0);
|
|
}
|
|
|
|
/** Return a pseudorandom integer, chosen uniformly from the values
|
|
* between 0 and <b>max</b>-1 inclusive. <b>max</b> must be between 1 and
|
|
* INT_MAX+1, inclusive. */
|
|
int
|
|
crypto_rand_int(unsigned int max)
|
|
{
|
|
unsigned int val;
|
|
unsigned int cutoff;
|
|
tor_assert(max <= ((unsigned int)INT_MAX)+1);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a pseudorandom integer, chosen uniformly from the values i such
|
|
* that min <= i < max.
|
|
*
|
|
* <b>min</b> MUST be in range [0, <b>max</b>).
|
|
* <b>max</b> MUST be in range (min, INT_MAX].
|
|
*/
|
|
int
|
|
crypto_rand_int_range(unsigned int min, unsigned int max)
|
|
{
|
|
tor_assert(min < max);
|
|
tor_assert(max <= INT_MAX);
|
|
|
|
/* The overflow is avoided here because crypto_rand_int() returns a value
|
|
* between 0 and (max - min) inclusive. */
|
|
return min + crypto_rand_int(max - min);
|
|
}
|
|
|
|
/** As crypto_rand_int_range, but supports uint64_t. */
|
|
uint64_t
|
|
crypto_rand_uint64_range(uint64_t min, uint64_t max)
|
|
{
|
|
tor_assert(min < max);
|
|
return min + crypto_rand_uint64(max - min);
|
|
}
|
|
|
|
/** As crypto_rand_int_range, but supports time_t. */
|
|
time_t
|
|
crypto_rand_time_range(time_t min, time_t max)
|
|
{
|
|
tor_assert(min < max);
|
|
return min + (time_t)crypto_rand_uint64(max - min);
|
|
}
|
|
|
|
/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
|
|
* between 0 and <b>max</b>-1 inclusive. */
|
|
uint64_t
|
|
crypto_rand_uint64(uint64_t max)
|
|
{
|
|
uint64_t val;
|
|
uint64_t cutoff;
|
|
tor_assert(max < UINT64_MAX);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT64_MAX - (UINT64_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a pseudorandom double d, chosen uniformly from the range
|
|
* 0.0 <= d < 1.0.
|
|
*/
|
|
double
|
|
crypto_rand_double(void)
|
|
{
|
|
/* We just use an unsigned int here; we don't really care about getting
|
|
* more than 32 bits of resolution */
|
|
unsigned int u;
|
|
crypto_rand((char*)&u, sizeof(u));
|
|
#if SIZEOF_INT == 4
|
|
#define UINT_MAX_AS_DOUBLE 4294967296.0
|
|
#elif SIZEOF_INT == 8
|
|
#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
|
|
#else
|
|
#error SIZEOF_INT is neither 4 nor 8
|
|
#endif /* SIZEOF_INT == 4 || ... */
|
|
return ((double)u) / UINT_MAX_AS_DOUBLE;
|
|
}
|
|
|
|
/** Generate and return a new random hostname starting with <b>prefix</b>,
|
|
* ending with <b>suffix</b>, and containing no fewer than
|
|
* <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
|
|
* characters. Does not check for failure.
|
|
*
|
|
* Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
|
|
**/
|
|
char *
|
|
crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
|
|
const char *suffix)
|
|
{
|
|
char *result, *rand_bytes;
|
|
int randlen, rand_bytes_len;
|
|
size_t resultlen, prefixlen;
|
|
|
|
if (max_rand_len > MAX_DNS_LABEL_SIZE)
|
|
max_rand_len = MAX_DNS_LABEL_SIZE;
|
|
if (min_rand_len > max_rand_len)
|
|
min_rand_len = max_rand_len;
|
|
|
|
randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);
|
|
|
|
prefixlen = strlen(prefix);
|
|
resultlen = prefixlen + strlen(suffix) + randlen + 16;
|
|
|
|
rand_bytes_len = ((randlen*5)+7)/8;
|
|
if (rand_bytes_len % 5)
|
|
rand_bytes_len += 5 - (rand_bytes_len%5);
|
|
rand_bytes = tor_malloc(rand_bytes_len);
|
|
crypto_rand(rand_bytes, rand_bytes_len);
|
|
|
|
result = tor_malloc(resultlen);
|
|
memcpy(result, prefix, prefixlen);
|
|
base32_encode(result+prefixlen, resultlen-prefixlen,
|
|
rand_bytes, rand_bytes_len);
|
|
tor_free(rand_bytes);
|
|
strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
|
|
* is empty. */
|
|
void *
|
|
smartlist_choose(const smartlist_t *sl)
|
|
{
|
|
int len = smartlist_len(sl);
|
|
if (len)
|
|
return smartlist_get(sl,crypto_rand_int(len));
|
|
return NULL; /* no elements to choose from */
|
|
}
|
|
|
|
/** Scramble the elements of <b>sl</b> into a random order. */
|
|
void
|
|
smartlist_shuffle(smartlist_t *sl)
|
|
{
|
|
int i;
|
|
/* From the end of the list to the front, choose at random from the
|
|
positions we haven't looked at yet, and swap that position into the
|
|
current position. Remember to give "no swap" the same probability as
|
|
any other swap. */
|
|
for (i = smartlist_len(sl)-1; i > 0; --i) {
|
|
int j = crypto_rand_int(i+1);
|
|
smartlist_swap(sl, i, j);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
|
|
* the value <b>byte</b>.
|
|
* If <b>mem</b> is NULL or <b>sz</b> is zero, nothing happens.
|
|
*
|
|
* This function is preferable to memset, since many compilers will happily
|
|
* optimize out memset() when they can convince themselves that the data being
|
|
* cleared will never be read.
|
|
*
|
|
* Right now, our convention is to use this function when we are wiping data
|
|
* that's about to become inaccessible, such as stack buffers that are about
|
|
* to go out of scope or structures that are about to get freed. (In
|
|
* practice, it appears that the compilers we're currently using will optimize
|
|
* out the memset()s for stack-allocated buffers, but not those for
|
|
* about-to-be-freed structures. That could change, though, so we're being
|
|
* wary.) If there are live reads for the data, then you can just use
|
|
* memset().
|
|
*/
|
|
void
|
|
memwipe(void *mem, uint8_t byte, size_t sz)
|
|
{
|
|
if (sz == 0) {
|
|
return;
|
|
}
|
|
/* If sz is nonzero, then mem must not be NULL. */
|
|
tor_assert(mem != NULL);
|
|
|
|
/* Data this large is likely to be an underflow. */
|
|
tor_assert(sz < SIZE_T_CEILING);
|
|
|
|
/* Because whole-program-optimization exists, we may not be able to just
|
|
* have this function call "memset". A smart compiler could inline it, then
|
|
* eliminate dead memsets, and declare itself to be clever. */
|
|
|
|
#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
|
|
/* Here's what you do on windows. */
|
|
SecureZeroMemory(mem,sz);
|
|
#elif defined(HAVE_RTLSECUREZEROMEMORY)
|
|
RtlSecureZeroMemory(mem,sz);
|
|
#elif defined(HAVE_EXPLICIT_BZERO)
|
|
/* The BSDs provide this. */
|
|
explicit_bzero(mem, sz);
|
|
#elif defined(HAVE_MEMSET_S)
|
|
/* This is in the C99 standard. */
|
|
memset_s(mem, sz, 0, sz);
|
|
#else
|
|
/* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
|
|
* based on the pointer value, then uses that junk to update a global
|
|
* variable. It's an elaborate ruse to trick the compiler into not
|
|
* optimizing out the "wipe this memory" code. Read it if you like zany
|
|
* programming tricks! In later versions of Tor, we should look for better
|
|
* not-optimized-out memory wiping stuff...
|
|
*
|
|
* ...or maybe not. In practice, there are pure-asm implementations of
|
|
* OPENSSL_cleanse() on most platforms, which ought to do the job.
|
|
**/
|
|
|
|
OPENSSL_cleanse(mem, sz);
|
|
#endif /* defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY) || ... */
|
|
|
|
/* Just in case some caller of memwipe() is relying on getting a buffer
|
|
* filled with a particular value, fill the buffer.
|
|
*
|
|
* If this function gets inlined, this memset might get eliminated, but
|
|
* that's okay: We only care about this particular memset in the case where
|
|
* the caller should have been using memset(), and the memset() wouldn't get
|
|
* eliminated. In other words, this is here so that we won't break anything
|
|
* if somebody accidentally calls memwipe() instead of memset().
|
|
**/
|
|
memset(mem, byte, sz);
|
|
}
|
|
|
|
/** @{ */
|
|
/** Uninitialize the crypto library. Return 0 on success. Does not detect
|
|
* failure.
|
|
*/
|
|
int
|
|
crypto_global_cleanup(void)
|
|
{
|
|
EVP_cleanup();
|
|
#ifndef NEW_THREAD_API
|
|
ERR_remove_thread_state(NULL);
|
|
#endif
|
|
ERR_free_strings();
|
|
|
|
if (dh_param_p)
|
|
BN_clear_free(dh_param_p);
|
|
if (dh_param_p_tls)
|
|
BN_clear_free(dh_param_p_tls);
|
|
if (dh_param_g)
|
|
BN_clear_free(dh_param_g);
|
|
|
|
dh_param_p = dh_param_p_tls = dh_param_g = NULL;
|
|
|
|
#ifndef DISABLE_ENGINES
|
|
ENGINE_cleanup();
|
|
#endif
|
|
|
|
CONF_modules_unload(1);
|
|
CRYPTO_cleanup_all_ex_data();
|
|
|
|
crypto_openssl_free_all();
|
|
|
|
crypto_early_initialized_ = 0;
|
|
crypto_global_initialized_ = 0;
|
|
have_seeded_siphash = 0;
|
|
siphash_unset_global_key();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** @} */
|
|
|
|
#ifdef USE_DMALLOC
|
|
/** Tell the crypto library to use Tor's allocation functions rather than
|
|
* calling libc's allocation functions directly. Return 0 on success, -1
|
|
* on failure. */
|
|
int
|
|
crypto_use_tor_alloc_functions(void)
|
|
{
|
|
int r = CRYPTO_set_mem_ex_functions(tor_malloc_, tor_realloc_, tor_free_);
|
|
return r ? 0 : -1;
|
|
}
|
|
#endif /* defined(USE_DMALLOC) */
|
|
|