mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-30 23:53:32 +01:00
971b002d93
svn:r1289
611 lines
26 KiB
Plaintext
611 lines
26 KiB
Plaintext
sw$Id$
|
|
|
|
Tor Spec
|
|
|
|
Note: This is an attempt to specify Tor as it exists as implemented in
|
|
early March, 2004. It is not recommended that others implement this
|
|
design as it stands; future versions of Tor will implement improved
|
|
protocols.
|
|
|
|
This is not a design document; most design criteria are not examined. For
|
|
more information on why Tor acts as it does, see tor-design.pdf.
|
|
|
|
TODO: (very soon)
|
|
- EXTEND cells should have hostnames or nicknames, so that OPs never
|
|
resolve OR hostnames. Else DNS servers can give different answers to
|
|
different OPs, and compromise their anonymity.
|
|
- Alternatively, directories should include IPs.
|
|
- REASON_CONNECTFAILED should include an IP.
|
|
- Copy prose from tor-design to make everything more readable.
|
|
|
|
|
|
0. Notation:
|
|
|
|
PK -- a public key.
|
|
SK -- a private key
|
|
K -- a key for a symmetric cypher
|
|
|
|
a|b -- concatenation of 'a' and 'b'.
|
|
|
|
[A0 B1 C2] -- a three-byte sequence, containing the bytes with
|
|
hexadecimal values A0, B1, and C2, in that order.
|
|
|
|
All numeric values are encoded in network (big-endian) order.
|
|
|
|
Unless otherwise specified, all symmetric ciphers are AES in counter
|
|
mode, with an IV of all 0 bytes. Asymmetric ciphers are either RSA
|
|
with 1024-bit keys and exponents of 65537, or DH with the safe prime
|
|
from rfc2409, section 6.2, whose hex representation is:
|
|
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF"
|
|
|
|
1. System overview
|
|
|
|
Onion Routing is a distributed overlay network designed to anonymize
|
|
low-latency TCP-based applications such as web browsing, secure shell,
|
|
and instant messaging. Clients choose a path through the network and
|
|
build a ``circuit'', in which each node (or ``onion router'' or ``OR'')
|
|
in the path knows its predecessor and successor, but no other nodes in
|
|
the circuit. Traffic flowing down the circuit is sent in fixed-size
|
|
``cells'', which are unwrapped by a symmetric key at each node (like
|
|
the layers of an onion) and relayed downstream.
|
|
|
|
2. Connections
|
|
|
|
There are two ways to connect to an onion router (OR). The first is
|
|
as an onion proxy (OP), which allows the OP to authenticate the OR
|
|
without authenticating itself. The second is as another OR, which
|
|
allows mutual authentication.
|
|
|
|
Tor uses TLS for link encryption. All implementations MUST support
|
|
the TLS ciphersuite "TLS_EDH_RSA_WITH_DES_192_CBC3_SHA", and SHOULD
|
|
support "TLS_DHE_RSA_WITH_AES_128_CBC_SHA" if it is available.
|
|
Implementations MAY support other ciphersuites, but MUST NOT
|
|
support any suite without ephemeral keys, symmetric keys of at
|
|
least 128 bits, and digests of at least 160 bits.
|
|
|
|
An OR always sends a self-signed X.509 certificate whose commonName
|
|
is the server's nickname, and whose public key is in the server
|
|
directory.
|
|
|
|
All parties receiving certificates must confirm that the public
|
|
key is as it appears in the server directory, and close the
|
|
connection if it is not.
|
|
|
|
Once a TLS connection is established, the two sides send cells
|
|
(specified below) to one another. Cells are sent serially. All
|
|
cells are 512 bytes long. Cells may be sent embedded in TLS
|
|
records of any size or divided across TLS records, but the framing
|
|
of TLS records MUST NOT leak information about the type or contents
|
|
of the cells.
|
|
|
|
OR-to-OR connections are never deliberately closed. When an OR
|
|
starts or receives a new directory, it tries to open new
|
|
connections to any OR it is not already connected to.
|
|
|
|
OR-to-OP connections are not permanent. An OP should close a
|
|
connection to an OR if there are no circuits running over the
|
|
connection, and an amount of time (KeepalivePeriod, defaults to 5
|
|
minutes) has passed.
|
|
|
|
3. Cell Packet format
|
|
|
|
The basic unit of communication for onion routers and onion
|
|
proxies is a fixed-width "cell". Each cell contains the following
|
|
fields:
|
|
|
|
CircID [2 bytes]
|
|
Command [1 byte]
|
|
Payload (padded with 0 bytes) [509 bytes]
|
|
[Total size: 512 bytes]
|
|
|
|
The CircID field determines which circuit, if any, the cell is
|
|
associated with.
|
|
|
|
The 'Command' field holds one of the following values:
|
|
0 -- PADDING (Padding) (See Sec 6.2)
|
|
1 -- CREATE (Create a circuit) (See Sec 4)
|
|
2 -- CREATED (Acknowledge create) (See Sec 4)
|
|
3 -- RELAY (End-to-end data) (See Sec 5)
|
|
4 -- DESTROY (Stop using a circuit) (See Sec 4)
|
|
|
|
The interpretation of 'Payload' depends on the type of the cell.
|
|
PADDING: Payload is unused.
|
|
CREATE: Payload contains the handshake challenge.
|
|
CREATED: Payload contains the handshake response.
|
|
RELAY: Payload contains the relay header and relay body.
|
|
DESTROY: Payload is unused.
|
|
Upon receiving any other value for the command field, an OR must
|
|
drop the cell.
|
|
|
|
The payload is padded with 0 bytes.
|
|
|
|
PADDING cells are currently used to implement connection keepalive.
|
|
ORs and OPs send one another a PADDING cell every few minutes.
|
|
|
|
CREATE, CREATED, and DESTROY cells are used to manage circuits;
|
|
see section 4 below.
|
|
|
|
RELAY cells are used to send commands and data along a circuit; see
|
|
section 5 below.
|
|
|
|
4. Circuit management
|
|
|
|
4.1. CREATE and CREATED cells
|
|
|
|
Users set up circuits incrementally, one hop at a time. To create a
|
|
new circuit, OPs send a CREATE cell to the first node, with the
|
|
first half of the DH handshake; that node responds with a CREATED
|
|
cell with the second half of the DH handshake plus the first 20 bytes
|
|
of derivative key data (see section 4.2). To extend a circuit past
|
|
the first hop, the OP sends an EXTEND relay cell (see section 5)
|
|
which instructs the last node in the circuit to send a CREATE cell
|
|
to extend the circuit.
|
|
|
|
The payload for a CREATE cell is an 'onion skin', consisting of:
|
|
RSA-encrypted data [128 bytes]
|
|
Symmetrically-encrypted data [16 bytes]
|
|
|
|
The RSA-encrypted portion contains:
|
|
Symmetric key [16 bytes]
|
|
First part of DH data (g^x) [112 bytes]
|
|
The symmetrically encrypted portion contains:
|
|
Second part of DH data (g^x) [16 bytes]
|
|
|
|
The two parts of DH data, once decrypted and concatenated, form
|
|
g^x as calculated by the client.
|
|
|
|
The relay payload for an EXTEND relay cell consists of:
|
|
Address [4 bytes]
|
|
Port [2 bytes]
|
|
Onion skin [144 bytes]
|
|
|
|
The port and address field denote the IPV4 address and port of the
|
|
next onion router in the circuit.
|
|
|
|
The payload for a CREATED cell, or the relay payload for an
|
|
EXTENDED cell, contains:
|
|
DH data (g^y) [128 bytes]
|
|
Derivative key data (KH) [20 bytes] <see 4.2 below>
|
|
|
|
The CircID for a CREATE cell is an arbitrarily chosen 2-byte
|
|
integer, selected by the node (OP or OR) that sends the CREATE
|
|
cell. To prevent CircID collisions, when one OR sends a CREATE
|
|
cell to another, it chooses from only one half of the possible
|
|
values based on the ORs' nicknames: if the sending OR has a
|
|
lexicographically earlier nickname, it chooses a CircID with a high
|
|
bit of 0; otherwise, it chooses a CircID with a high bit of 1.
|
|
|
|
4.2. Setting circuit keys
|
|
|
|
Once the handshake between the OP and an OR is completed, both
|
|
servers can now calculate g^xy with ordinary DH. From the base key
|
|
material g^xy, they compute derivative key material as follows.
|
|
First, the server represents g^xy as a big-endian unsigned integer.
|
|
Next, the server computes 60 bytes of key data as K = SHA1(g^xy |
|
|
[00]) | SHA1(g^xy | [01]) | SHA1(g^xy | [02]) where "00" is a single
|
|
octet whose value is zero, [01] is a single octet whose value is
|
|
one, etc. The first 20 bytes of K form KH, the next 16 bytes of K
|
|
form Kf, and the next 16 bytes of K form Kb.
|
|
|
|
KH is used in the handshake response to demonstrate knowledge of the
|
|
computed shared key. Kf is used to encrypt the stream of data going
|
|
from the OP to the OR, and Kb is used to encrypt the stream of data
|
|
going from the OR to the OP.
|
|
|
|
4.3. Creating circuits
|
|
|
|
When creating a circuit through the network, the circuit creator
|
|
(OP) performs the following steps:
|
|
|
|
1. Choose an onion router as an exit node (R_N), such that the onion
|
|
router's exit policy does not exclude all pending streams
|
|
that need a circuit.
|
|
|
|
2. Choose a chain of (N-1) chain of N onion routers
|
|
(R_1...R_N-1) to constitute the path, such that no router
|
|
appears in the path twice.
|
|
|
|
3. If not already connected to the first router in the chain,
|
|
open a new connection to that router.
|
|
|
|
4. Choose a circID not already in use on the connection with the
|
|
first router in the chain; send a CREATE cell along the
|
|
connection, to be received by the first onion router.
|
|
|
|
5. Wait until a CREATED cell is received; finish the handshake
|
|
and extract the forward key Kf_1 and the backward key Kb_1.
|
|
|
|
6. For each subsequent onion router R (R_2 through R_N), extend
|
|
the circuit to R.
|
|
|
|
To extend the circuit by a single onion router R_M, the OP performs
|
|
these steps:
|
|
|
|
1. Create an onion skin, encrypting the RSA-encrypted part with
|
|
R's public key.
|
|
|
|
2. Encrypt and send the onion skin in a relay EXTEND cell along
|
|
the circuit (see section 5).
|
|
|
|
3. When a relay EXTENDED cell is received, verify KH, and
|
|
calculate the shared keys. The circuit is now extended.
|
|
|
|
When an onion router receives an EXTEND relay cell, it sends a CREATE
|
|
cell to the next onion router, with the enclosed onion skin as its
|
|
payload. The initiating onion router chooses some circID not yet
|
|
used on the connection between the two onion routers. (But see
|
|
section 4.1. above, concerning choosing circIDs based on
|
|
lexicographic order of nicknames.)
|
|
|
|
As an extension (called router twins), if the desired next onion
|
|
router R in the circuit is down, and some other onion router R'
|
|
has the same public keys as R, then it's ok to extend to R' rather than R.
|
|
|
|
When an onion router receives a CREATE cell, if it already has a
|
|
circuit on the given connection with the given circID, it drops the
|
|
cell. Otherwise, after receiving the CREATE cell, it completes the
|
|
DH handshake, and replies with a CREATED cell. Upon receiving a
|
|
CREATED cell, an onion router packs it payload into an EXTENDED relay
|
|
cell (see section 5), and sends that cell up the circuit. Upon
|
|
receiving the EXTENDED relay cell, the OP can retrieve g^y.
|
|
|
|
(As an optimization, OR implementations may delay processing onions
|
|
until a break in traffic allows time to do so without harming
|
|
network latency too greatly.)
|
|
|
|
4.4. Tearing down circuits
|
|
|
|
Circuits are torn down when an unrecoverable error occurs along
|
|
the circuit, or when all streams on a circuit are closed and the
|
|
circuit's intended lifetime is over. Circuits may be torn down
|
|
either completely or hop-by-hop.
|
|
|
|
To tear down a circuit completely, an OR or OP sends a DESTROY
|
|
cell to the adjacent nodes on that circuit, using the appropriate
|
|
direction's circID.
|
|
|
|
Upon receiving an outgoing DESTROY cell, an OR frees resources
|
|
associated with the corresponding circuit. If it's not the end of
|
|
the circuit, it sends a DESTROY cell for that circuit to the next OR
|
|
in the circuit. If the node is the end of the circuit, then it tears
|
|
down any associated edge connections (see section 5.1).
|
|
|
|
After a DESTROY cell has been processed, an OR ignores all data or
|
|
destroy cells for the corresponding circuit.
|
|
|
|
(The rest of this section is not currently used; on errors, circuits
|
|
are destroyed, not truncated.)
|
|
|
|
To tear down part of a circuit, the OP may send a RELAY_TRUNCATE cell
|
|
signaling a given OR (Stream ID zero). That OR sends a DESTROY
|
|
cell to the next node in the circuit, and replies to the OP with a
|
|
RELAY_TRUNCATED cell.
|
|
|
|
When an unrecoverable error occurs along one connection in a
|
|
circuit, the nodes on either side of the connection should, if they
|
|
are able, act as follows: the node closer to the OP should send a
|
|
RELAY_TRUNCATED cell towards the OP; the node farther from the OP
|
|
should send a DESTROY cell down the circuit.
|
|
|
|
4.5. Routing relay cells
|
|
|
|
When an OR receives a RELAY cell, it checks the cell's circID and
|
|
determines whether it has a corresponding circuit along that
|
|
connection. If not, the OR drops the RELAY cell.
|
|
|
|
Otherwise, if the OR is not at the OP edge of the circuit (that is,
|
|
either an 'exit node' or a non-edge node), it de/encrypts the payload
|
|
with AES/CTR, as follows:
|
|
'Forward' relay cell (same direction as CREATE):
|
|
Use Kf as key; encrypt.
|
|
'Back' relay cell (opposite direction from CREATE):
|
|
Use Kb as key; decrypt.
|
|
|
|
The OR then decides whether it recognizes the relay cell, by
|
|
inspecting the payload as described in section 5.1 below. If the OR
|
|
recognizes the cell, it processes the contents of the relay cell.
|
|
Otherwise, it passes the decrypted relay cell along the circuit if
|
|
the circuit continues. If the OR at the end of the circuit
|
|
encounters an unrecognized relay cell, an error has occurred: the OR
|
|
sends a DESTROY cell to tear down the circuit.
|
|
|
|
When a relay cell arrives at an OP, it the OP encrypts the length and
|
|
payload fields with AES/CTR as follows:
|
|
OP receives data cell:
|
|
For I=N...1,
|
|
Encrypt with Kb_I. If the payload is recognized (see
|
|
section 5.1), then stop and process the payload.
|
|
|
|
For more information, see section 5 below.
|
|
|
|
5. Application connections and stream management
|
|
|
|
5.1. Relay cells
|
|
|
|
Within a circuit, the OP and the exit node use the contents of
|
|
RELAY packets to tunnel end-to-end commands and TCP connections
|
|
("Streams") across circuits. End-to-end commands can be initiated
|
|
by either edge; streams are initiated by the OP.
|
|
|
|
The payload of each unencrypted RELAY cell consists of:
|
|
Relay command [1 byte]
|
|
'Recognized' [2 bytes]
|
|
StreamID [2 bytes]
|
|
Digest [4 bytes]
|
|
Length [2 bytes]
|
|
Data [498 bytes]
|
|
|
|
The relay commands are:
|
|
1 -- RELAY_BEGIN
|
|
2 -- RELAY_DATA
|
|
3 -- RELAY_END
|
|
4 -- RELAY_CONNECTED
|
|
5 -- RELAY_SENDME
|
|
6 -- RELAY_EXTEND
|
|
7 -- RELAY_EXTENDED
|
|
8 -- RELAY_TRUNCATE
|
|
9 -- RELAY_TRUNCATED
|
|
10 -- RELAY_DROP
|
|
|
|
The 'Recognized' field in any unencrypted relay payload is always set
|
|
to zero; the 'digest' field is computed as the first four bytes of a
|
|
SHA-1 digest of the rest of the RELAY cell's payload, taken with the
|
|
digest field set to zero.
|
|
|
|
When the 'recognized' field of a RELAY cell is zero, and the digest
|
|
is correct, the cell is considered "recognized" for the purposes of
|
|
decryption (see section 4.5 above).
|
|
|
|
All RELAY cells pertaining to the same tunneled stream have the
|
|
same stream ID. StreamIDs are chosen randomly by the OP. RELAY
|
|
cells that affect the entire circuit rather than a particular
|
|
stream use a StreamID of zero.
|
|
|
|
The 'Length' field of a relay cell contains the number of bytes in
|
|
the relay payload which contain real payload data. The remainder of
|
|
the payload is padded with random bytes.
|
|
|
|
5.2. Opening streams and transferring data
|
|
|
|
To open a new anonymized TCP connection, the OP chooses an open
|
|
circuit to an exit that may be able to connect to the destination
|
|
address, selects an arbitrary StreamID not yet used on that circuit,
|
|
and constructs a RELAY_BEGIN cell with a payload encoding the address
|
|
and port of the destination host. The payload format is:
|
|
|
|
ADDRESS | ':' | PORT | [00]
|
|
|
|
where ADDRESS is be a DNS hostname, or an IPv4 address in
|
|
dotted-quad format; and where PORT is encoded in decimal.
|
|
|
|
[What is the [00] for? -NM]
|
|
|
|
Upon receiving this cell, the exit node resolves the address as
|
|
necessary, and opens a new TCP connection to the target port. If the
|
|
address cannot be resolved, or a connection can't be established, the
|
|
exit node replies with a RELAY_END cell. (See 5.4 below.)
|
|
Otherwise, the exit node replies with a RELAY_CONNECTED cell, whose
|
|
payload is the 4-byte IP address to which the connection was made.
|
|
|
|
The OP waits for a RELAY_CONNECTED cell before sending any data.
|
|
Once a connection has been established, the OP and exit node
|
|
package stream data in RELAY_DATA cells, and upon receiving such
|
|
cells, echo their contents to the corresponding TCP stream.
|
|
RELAY_DATA cells sent to unrecognized streams are dropped.
|
|
|
|
Relay RELAY_DROP cells are long-range dummies; upon receiving such
|
|
a cell, the OR or OP must drop it.
|
|
|
|
5.3. Closing streams
|
|
|
|
When an anonymized TCP connection is closed, or an edge node
|
|
encounters error on any stream, it sends a 'RELAY_END' cell along the
|
|
circuit (if possible) and closes the TCP connection immediately. If
|
|
an edge node receives a 'RELAY_END' cell for any stream, it closes
|
|
the TCP connection completely, and sends nothing more along the
|
|
circuit for that stream.
|
|
|
|
The payload of a RELAY_END cell begins with a single 'reason' byte to
|
|
describe why the stream is closing, plus optional data (depending on
|
|
the reason.) The values are:
|
|
|
|
1 -- REASON_MISC (catch-all for unlisted reasons)
|
|
2 -- REASON_RESOLVEFAILED (couldn't look up hostname)
|
|
3 -- REASON_CONNECTFAILED (couldn't connect to host/port)
|
|
4 -- REASON_EXITPOLICY (OR refuses to connect to host or port)
|
|
5 -- REASON_DESTROY (circuit is being destroyed [???-NM])
|
|
6 -- REASON_DONE (anonymized TCP connection was closed)
|
|
7 -- REASON_TIMEOUT (OR timed out while connecting [???-NM])
|
|
|
|
(With REASON_EXITPOLICY, the 4-byte IP address forms the optional
|
|
data; no other reason currently has extra data.)
|
|
|
|
|
|
*** [The rest of this section describes unimplemented functionality.]
|
|
|
|
Because TCP connections can be half-open, we follow an equivalent
|
|
to TCP's FIN/FIN-ACK/ACK protocol to close streams.
|
|
|
|
An exit connection can have a TCP stream in one of three states:
|
|
'OPEN', 'DONE_PACKAGING', and 'DONE_DELIVERING'. For the purposes
|
|
of modeling transitions, we treat 'CLOSED' as a fourth state,
|
|
although connections in this state are not, in fact, tracked by the
|
|
onion router.
|
|
|
|
A stream begins in the 'OPEN' state. Upon receiving a 'FIN' from
|
|
the corresponding TCP connection, the edge node sends a 'RELAY_FIN'
|
|
cell along the circuit and changes its state to 'DONE_PACKAGING'.
|
|
Upon receiving a 'RELAY_FIN' cell, an edge node sends a 'FIN' to
|
|
the corresponding TCP connection (e.g., by calling
|
|
shutdown(SHUT_WR)) and changing its state to 'DONE_DELIVERING'.
|
|
|
|
When a stream in already in 'DONE_DELIVERING' receives a 'FIN', it
|
|
also sends a 'RELAY_FIN' along the circuit, and changes its state
|
|
to 'CLOSED'. When a stream already in 'DONE_PACKAGING' receives a
|
|
'RELAY_FIN' cell, it sends a 'FIN' and changes its state to
|
|
'CLOSED'.
|
|
|
|
If an edge node encounters an error on any stream, it sends a
|
|
'RELAY_END' cell (if possible) and closes the stream immediately.
|
|
|
|
|
|
6. Flow control
|
|
|
|
6.1. Link throttling
|
|
|
|
Each node should do appropriate bandwidth throttling to keep its
|
|
user happy.
|
|
|
|
Communicants rely on TCP's default flow control to push back when they
|
|
stop reading.
|
|
|
|
6.2. Link padding
|
|
|
|
Currently nodes are not required to do any sort of link padding or
|
|
dummy traffic. Because strong attacks exist even with link padding,
|
|
and because link padding greatly increases the bandwidth requirements
|
|
for running a node, we plan to leave out link padding until this
|
|
tradeoff is better understood.
|
|
|
|
6.3. Circuit-level flow control
|
|
|
|
To control a circuit's bandwidth usage, each OR keeps track of
|
|
two 'windows', consisting of how many RELAY_DATA cells it is
|
|
allowed to package for transmission, and how many RELAY_DATA cells
|
|
it is willing to deliver to streams outside the network.
|
|
Each 'window' value is initially set to 1000 data cells
|
|
in each direction (cells that are not data cells do not affect
|
|
the window). When an OR is willing to deliver more cells, it sends a
|
|
RELAY_SENDME cell towards the OP, with Stream ID zero. When an OR
|
|
receives a RELAY_SENDME cell with stream ID zero, it increments its
|
|
packaging window.
|
|
|
|
Each of these cells increments the corresponding window by 100.
|
|
|
|
The OP behaves identically, except that it must track a packaging
|
|
window and a delivery window for every OR in the circuit.
|
|
|
|
An OR or OP sends cells to increment its delivery window when the
|
|
corresponding window value falls under some threshold (900).
|
|
|
|
If a packaging window reaches 0, the OR or OP stops reading from
|
|
TCP connections for all streams on the corresponding circuit, and
|
|
sends no more RELAY_DATA cells until receiving a RELAY_SENDME cell.
|
|
[this stuff is badly worded; copy in the tor-design section -RD]
|
|
|
|
6.4. Stream-level flow control
|
|
|
|
Edge nodes use RELAY_SENDME cells to implement end-to-end flow
|
|
control for individual connections across circuits. Similarly to
|
|
circuit-level flow control, edge nodes begin with a window of cells
|
|
(500) per stream, and increment the window by a fixed value (50)
|
|
upon receiving a RELAY_SENDME cell. Edge nodes initiate RELAY_SENDME
|
|
cells when both a) the window is <= 450, and b) there are less than
|
|
ten cell payloads remaining to be flushed at that edge.
|
|
|
|
|
|
7. Directories and routers
|
|
|
|
7.1. Extensible information format
|
|
|
|
Router descriptors and directories both obey the following lightweight
|
|
extensible information format.
|
|
|
|
The highest level object is a Document, which consists of one or more Items.
|
|
Every Item begins with a KeywordLine, followed by one or more Objects. A
|
|
KeywordLine begins with a Keyword, optionally followed by a space and more
|
|
non-newline characters, and ends with a newline. A Keyword is a sequence of
|
|
one or more characters in the set [A-Za-z0-9-]. An Object is a block of
|
|
encoded data in pseudo-Open-PGP-style armor. (cf. RFC 2440)
|
|
|
|
More formally:
|
|
|
|
Document ::= (Item | NL)+
|
|
Item ::= KeywordLine Object*
|
|
KeywordLine ::= Keyword NL | Keyword SP ArgumentsChar+ NL
|
|
Keyword = KeywordChar+
|
|
KeywordChar ::= 'A' ... 'Z' | 'a' ... 'z' | '0' ... '9' | '-'
|
|
ArgumentChar ::= any printing ASCII character except NL.
|
|
Object ::= BeginLine Base-64-encoded-data EndLine
|
|
BeginLine ::= "-----BEGIN " Keyword "-----" NL
|
|
EndLine ::= "-----END " Keyword "-----" NL
|
|
|
|
The BeginLine and EndLine of an Object must use the same keyword.
|
|
|
|
When interpreting a Document, software MUST reject any document containing a
|
|
KeywordLine that starts with a keyword it doesn't recognize.
|
|
|
|
7.1. Router descriptor format.
|
|
|
|
Every router descriptor MUST start with a "router" Item; MUST end with a
|
|
"router-signature" Item and an extra NL; and MUST contain exactly one
|
|
instance of each of the following Items: "published" "onion-key" "link-key"
|
|
"signing-key". Additionally, a router descriptor MAY contain any number of
|
|
"accept", "reject", and "opt" Items.
|
|
|
|
The items' formats are as follows:
|
|
"router" nickname address (ORPort SocksPort DirPort bandwidth)?
|
|
"ports" ORPort SocksPort DirPort
|
|
"bandwidth" bandwidth
|
|
"platform" string
|
|
"published" YYYY-MM-DD HH:MM:SS
|
|
"onion-key" NL a public key in PEM format
|
|
"link-key" NL a public key in PEM format
|
|
"signing-key" NL a public key in PEM format
|
|
"accept" string
|
|
"reject" string
|
|
"router-signature" NL "-----BEGIN SIGNATURE-----" NL Signature NL
|
|
"-----END SIGNATURE-----"
|
|
"opt" SP keyword string? NL,Object?
|
|
|
|
ORport ::= port where the router listens for routers/proxies (speaking cells)
|
|
SocksPort ::= where the router listens for applications (speaking socks)
|
|
DirPort ::= where the router listens for directory download requests
|
|
bandwidth ::= maximum bandwidth, in bytes/s
|
|
nickname ::= between 1 and 32 alphanumeric characters. case-insensitive.
|
|
|
|
Bandwidth and ports are required; if they are not included in the router
|
|
line, they must appear in "bandwidth" and "ports" lines.
|
|
|
|
"opt" is reserved for non-critical future extensions.
|
|
|
|
7.2. Directory format
|
|
|
|
A Directory begins with a "signed-directory" item, followed by one each of
|
|
the following, in any order: "recommended-software". It may include any
|
|
number of "opt" items. After these items, a directory includes any number
|
|
of router descriptors, and a singer "directory-signature" item.
|
|
|
|
"signed-directory"
|
|
"recommended-software" comma-separated-version-list
|
|
"directory-signature" NL Signature
|
|
|
|
Note: The router descriptor for the directory server must appear first.
|
|
The signature is computed by computing the SHA-1 hash of the
|
|
directory, from the characters "signed-directory", through the newline
|
|
after "directory-signature". This digest is then padded with PKCS.1,
|
|
and signed with the directory server's signing key.
|
|
|
|
If software encounters an unrecognized keyword in a single router descriptor,
|
|
it should reject only that router descriptor, and continue using the
|
|
others. If it encounters an unrecognized keyword in the directory header,
|
|
it should reject the entire directory.
|
|
|
|
7.3. Behavior of a directory server
|
|
|
|
lists nodes that are connected currently
|
|
speaks http on a socket, spits out directory on request
|
|
|
|
-----------
|
|
(for emacs)
|
|
Local Variables:
|
|
mode:text
|
|
indent-tabs-mode:nil
|
|
fill-column:77
|
|
End:
|