mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-12 06:03:43 +01:00
3e9140e79a
* ADD includes for "torint.h" and "container.h" to crypto_digest.h. * ADD includes for "crypto_digest.h" to a couple places in which crypto_digest_t was then missing. * FIXES part of #24658: https://bugs.torproject.org/24658#comment:30
547 lines
16 KiB
C
547 lines
16 KiB
C
/* Copyright (c) 2001, Matej Pfajfar.
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2017, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
/**
|
|
* \file crypto_digest.c
|
|
* \brief Block of functions related with digest and xof utilities and
|
|
* operations.
|
|
**/
|
|
|
|
#include "crypto_digest.h"
|
|
|
|
#include "crypto.h" /* common functions */
|
|
#include "crypto_rsa.h"
|
|
|
|
DISABLE_GCC_WARNING(redundant-decls)
|
|
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/sha.h>
|
|
|
|
ENABLE_GCC_WARNING(redundant-decls)
|
|
|
|
#include "container.h"
|
|
|
|
/* Crypto digest functions */
|
|
|
|
/** Compute the SHA1 digest of the <b>len</b> bytes on data stored in
|
|
* <b>m</b>. Write the DIGEST_LEN byte result into <b>digest</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_digest(char *digest, const char *m, size_t len)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
if (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
|
|
* using the algorithm <b>algorithm</b>. Write the DIGEST_LEN256-byte result
|
|
* into <b>digest</b>. Return 0 on success, -1 on failure. */
|
|
int
|
|
crypto_digest256(char *digest, const char *m, size_t len,
|
|
digest_algorithm_t algorithm)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
|
|
|
|
int ret = 0;
|
|
if (algorithm == DIGEST_SHA256)
|
|
ret = (SHA256((const uint8_t*)m,len,(uint8_t*)digest) != NULL);
|
|
else
|
|
ret = (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len)
|
|
> -1);
|
|
|
|
if (!ret)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
|
|
* using the algorithm <b>algorithm</b>. Write the DIGEST_LEN512-byte result
|
|
* into <b>digest</b>. Return 0 on success, -1 on failure. */
|
|
int
|
|
crypto_digest512(char *digest, const char *m, size_t len,
|
|
digest_algorithm_t algorithm)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
|
|
|
|
int ret = 0;
|
|
if (algorithm == DIGEST_SHA512)
|
|
ret = (SHA512((const unsigned char*)m,len,(unsigned char*)digest)
|
|
!= NULL);
|
|
else
|
|
ret = (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len)
|
|
> -1);
|
|
|
|
if (!ret)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the
|
|
* <b>len</b> bytes in <b>m</b> that we know how to compute. Return 0 on
|
|
* success, -1 on failure. */
|
|
int
|
|
crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len)
|
|
{
|
|
tor_assert(ds_out);
|
|
memset(ds_out, 0, sizeof(*ds_out));
|
|
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
|
|
return -1;
|
|
if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Return the name of an algorithm, as used in directory documents. */
|
|
const char *
|
|
crypto_digest_algorithm_get_name(digest_algorithm_t alg)
|
|
{
|
|
switch (alg) {
|
|
case DIGEST_SHA1:
|
|
return "sha1";
|
|
case DIGEST_SHA256:
|
|
return "sha256";
|
|
case DIGEST_SHA512:
|
|
return "sha512";
|
|
case DIGEST_SHA3_256:
|
|
return "sha3-256";
|
|
case DIGEST_SHA3_512:
|
|
return "sha3-512";
|
|
// LCOV_EXCL_START
|
|
default:
|
|
tor_fragile_assert();
|
|
return "??unknown_digest??";
|
|
// LCOV_EXCL_STOP
|
|
}
|
|
}
|
|
|
|
/** Given the name of a digest algorithm, return its integer value, or -1 if
|
|
* the name is not recognized. */
|
|
int
|
|
crypto_digest_algorithm_parse_name(const char *name)
|
|
{
|
|
if (!strcmp(name, "sha1"))
|
|
return DIGEST_SHA1;
|
|
else if (!strcmp(name, "sha256"))
|
|
return DIGEST_SHA256;
|
|
else if (!strcmp(name, "sha512"))
|
|
return DIGEST_SHA512;
|
|
else if (!strcmp(name, "sha3-256"))
|
|
return DIGEST_SHA3_256;
|
|
else if (!strcmp(name, "sha3-512"))
|
|
return DIGEST_SHA3_512;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/** Given an algorithm, return the digest length in bytes. */
|
|
size_t
|
|
crypto_digest_algorithm_get_length(digest_algorithm_t alg)
|
|
{
|
|
switch (alg) {
|
|
case DIGEST_SHA1:
|
|
return DIGEST_LEN;
|
|
case DIGEST_SHA256:
|
|
return DIGEST256_LEN;
|
|
case DIGEST_SHA512:
|
|
return DIGEST512_LEN;
|
|
case DIGEST_SHA3_256:
|
|
return DIGEST256_LEN;
|
|
case DIGEST_SHA3_512:
|
|
return DIGEST512_LEN;
|
|
default:
|
|
tor_assert(0); // LCOV_EXCL_LINE
|
|
return 0; /* Unreachable */ // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
/** Intermediate information about the digest of a stream of data. */
|
|
struct crypto_digest_t {
|
|
digest_algorithm_t algorithm; /**< Which algorithm is in use? */
|
|
/** State for the digest we're using. Only one member of the
|
|
* union is usable, depending on the value of <b>algorithm</b>. Note also
|
|
* that space for other members might not even be allocated!
|
|
*/
|
|
union {
|
|
SHA_CTX sha1; /**< state for SHA1 */
|
|
SHA256_CTX sha2; /**< state for SHA256 */
|
|
SHA512_CTX sha512; /**< state for SHA512 */
|
|
keccak_state sha3; /**< state for SHA3-[256,512] */
|
|
} d;
|
|
};
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
|
|
digest_algorithm_t
|
|
crypto_digest_get_algorithm(crypto_digest_t *digest)
|
|
{
|
|
tor_assert(digest);
|
|
|
|
return digest->algorithm;
|
|
}
|
|
|
|
#endif /* defined(TOR_UNIT_TESTS) */
|
|
|
|
/**
|
|
* Return the number of bytes we need to malloc in order to get a
|
|
* crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe
|
|
* when we free one.
|
|
*/
|
|
static size_t
|
|
crypto_digest_alloc_bytes(digest_algorithm_t alg)
|
|
{
|
|
/* Helper: returns the number of bytes in the 'f' field of 'st' */
|
|
#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f ))
|
|
/* Gives the length of crypto_digest_t through the end of the field 'd' */
|
|
#define END_OF_FIELD(f) (offsetof(crypto_digest_t, f) + \
|
|
STRUCT_FIELD_SIZE(crypto_digest_t, f))
|
|
switch (alg) {
|
|
case DIGEST_SHA1:
|
|
return END_OF_FIELD(d.sha1);
|
|
case DIGEST_SHA256:
|
|
return END_OF_FIELD(d.sha2);
|
|
case DIGEST_SHA512:
|
|
return END_OF_FIELD(d.sha512);
|
|
case DIGEST_SHA3_256:
|
|
case DIGEST_SHA3_512:
|
|
return END_OF_FIELD(d.sha3);
|
|
default:
|
|
tor_assert(0); // LCOV_EXCL_LINE
|
|
return 0; // LCOV_EXCL_LINE
|
|
}
|
|
#undef END_OF_FIELD
|
|
#undef STRUCT_FIELD_SIZE
|
|
}
|
|
|
|
/**
|
|
* Internal function: create and return a new digest object for 'algorithm'.
|
|
* Does not typecheck the algorithm.
|
|
*/
|
|
static crypto_digest_t *
|
|
crypto_digest_new_internal(digest_algorithm_t algorithm)
|
|
{
|
|
crypto_digest_t *r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
|
|
r->algorithm = algorithm;
|
|
|
|
switch (algorithm)
|
|
{
|
|
case DIGEST_SHA1:
|
|
SHA1_Init(&r->d.sha1);
|
|
break;
|
|
case DIGEST_SHA256:
|
|
SHA256_Init(&r->d.sha2);
|
|
break;
|
|
case DIGEST_SHA512:
|
|
SHA512_Init(&r->d.sha512);
|
|
break;
|
|
case DIGEST_SHA3_256:
|
|
keccak_digest_init(&r->d.sha3, 256);
|
|
break;
|
|
case DIGEST_SHA3_512:
|
|
keccak_digest_init(&r->d.sha3, 512);
|
|
break;
|
|
default:
|
|
tor_assert_unreached();
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/** Allocate and return a new digest object to compute SHA1 digests.
|
|
*/
|
|
crypto_digest_t *
|
|
crypto_digest_new(void)
|
|
{
|
|
return crypto_digest_new_internal(DIGEST_SHA1);
|
|
}
|
|
|
|
/** Allocate and return a new digest object to compute 256-bit digests
|
|
* using <b>algorithm</b>. */
|
|
crypto_digest_t *
|
|
crypto_digest256_new(digest_algorithm_t algorithm)
|
|
{
|
|
tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
|
|
return crypto_digest_new_internal(algorithm);
|
|
}
|
|
|
|
/** Allocate and return a new digest object to compute 512-bit digests
|
|
* using <b>algorithm</b>. */
|
|
crypto_digest_t *
|
|
crypto_digest512_new(digest_algorithm_t algorithm)
|
|
{
|
|
tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
|
|
return crypto_digest_new_internal(algorithm);
|
|
}
|
|
|
|
/** Deallocate a digest object.
|
|
*/
|
|
void
|
|
crypto_digest_free_(crypto_digest_t *digest)
|
|
{
|
|
if (!digest)
|
|
return;
|
|
size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
|
|
memwipe(digest, 0, bytes);
|
|
tor_free(digest);
|
|
}
|
|
|
|
/** Add <b>len</b> bytes from <b>data</b> to the digest object.
|
|
*/
|
|
void
|
|
crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
|
|
size_t len)
|
|
{
|
|
tor_assert(digest);
|
|
tor_assert(data);
|
|
/* Using the SHA*_*() calls directly means we don't support doing
|
|
* SHA in hardware. But so far the delay of getting the question
|
|
* to the hardware, and hearing the answer, is likely higher than
|
|
* just doing it ourselves. Hashes are fast.
|
|
*/
|
|
switch (digest->algorithm) {
|
|
case DIGEST_SHA1:
|
|
SHA1_Update(&digest->d.sha1, (void*)data, len);
|
|
break;
|
|
case DIGEST_SHA256:
|
|
SHA256_Update(&digest->d.sha2, (void*)data, len);
|
|
break;
|
|
case DIGEST_SHA512:
|
|
SHA512_Update(&digest->d.sha512, (void*)data, len);
|
|
break;
|
|
case DIGEST_SHA3_256: /* FALLSTHROUGH */
|
|
case DIGEST_SHA3_512:
|
|
keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len);
|
|
break;
|
|
default:
|
|
/* LCOV_EXCL_START */
|
|
tor_fragile_assert();
|
|
break;
|
|
/* LCOV_EXCL_STOP */
|
|
}
|
|
}
|
|
|
|
/** Compute the hash of the data that has been passed to the digest
|
|
* object; write the first out_len bytes of the result to <b>out</b>.
|
|
* <b>out_len</b> must be \<= DIGEST512_LEN.
|
|
*/
|
|
void
|
|
crypto_digest_get_digest(crypto_digest_t *digest,
|
|
char *out, size_t out_len)
|
|
{
|
|
unsigned char r[DIGEST512_LEN];
|
|
crypto_digest_t tmpenv;
|
|
tor_assert(digest);
|
|
tor_assert(out);
|
|
tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm));
|
|
|
|
/* The SHA-3 code handles copying into a temporary ctx, and also can handle
|
|
* short output buffers by truncating appropriately. */
|
|
if (digest->algorithm == DIGEST_SHA3_256 ||
|
|
digest->algorithm == DIGEST_SHA3_512) {
|
|
keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len);
|
|
return;
|
|
}
|
|
|
|
const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
|
|
/* memcpy into a temporary ctx, since SHA*_Final clears the context */
|
|
memcpy(&tmpenv, digest, alloc_bytes);
|
|
switch (digest->algorithm) {
|
|
case DIGEST_SHA1:
|
|
SHA1_Final(r, &tmpenv.d.sha1);
|
|
break;
|
|
case DIGEST_SHA256:
|
|
SHA256_Final(r, &tmpenv.d.sha2);
|
|
break;
|
|
case DIGEST_SHA512:
|
|
SHA512_Final(r, &tmpenv.d.sha512);
|
|
break;
|
|
//LCOV_EXCL_START
|
|
case DIGEST_SHA3_256: /* FALLSTHROUGH */
|
|
case DIGEST_SHA3_512:
|
|
default:
|
|
log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm);
|
|
/* This is fatal, because it should never happen. */
|
|
tor_assert_unreached();
|
|
break;
|
|
//LCOV_EXCL_STOP
|
|
}
|
|
memcpy(out, r, out_len);
|
|
memwipe(r, 0, sizeof(r));
|
|
}
|
|
|
|
/** Allocate and return a new digest object with the same state as
|
|
* <b>digest</b>
|
|
*/
|
|
crypto_digest_t *
|
|
crypto_digest_dup(const crypto_digest_t *digest)
|
|
{
|
|
tor_assert(digest);
|
|
const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
|
|
return tor_memdup(digest, alloc_bytes);
|
|
}
|
|
|
|
/** Replace the state of the digest object <b>into</b> with the state
|
|
* of the digest object <b>from</b>. Requires that 'into' and 'from'
|
|
* have the same digest type.
|
|
*/
|
|
void
|
|
crypto_digest_assign(crypto_digest_t *into,
|
|
const crypto_digest_t *from)
|
|
{
|
|
tor_assert(into);
|
|
tor_assert(from);
|
|
tor_assert(into->algorithm == from->algorithm);
|
|
const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm);
|
|
memcpy(into,from,alloc_bytes);
|
|
}
|
|
|
|
/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
|
|
* at <b>digest_out</b> to the hash of the concatenation of those strings,
|
|
* plus the optional string <b>append</b>, computed with the algorithm
|
|
* <b>alg</b>.
|
|
* <b>out_len</b> must be \<= DIGEST512_LEN. */
|
|
void
|
|
crypto_digest_smartlist(char *digest_out, size_t len_out,
|
|
const smartlist_t *lst,
|
|
const char *append,
|
|
digest_algorithm_t alg)
|
|
{
|
|
crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg);
|
|
}
|
|
|
|
/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
|
|
* at <b>digest_out</b> to the hash of the concatenation of: the
|
|
* optional string <b>prepend</b>, those strings,
|
|
* and the optional string <b>append</b>, computed with the algorithm
|
|
* <b>alg</b>.
|
|
* <b>len_out</b> must be \<= DIGEST512_LEN. */
|
|
void
|
|
crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
|
|
const char *prepend,
|
|
const smartlist_t *lst,
|
|
const char *append,
|
|
digest_algorithm_t alg)
|
|
{
|
|
crypto_digest_t *d = crypto_digest_new_internal(alg);
|
|
if (prepend)
|
|
crypto_digest_add_bytes(d, prepend, strlen(prepend));
|
|
SMARTLIST_FOREACH(lst, const char *, cp,
|
|
crypto_digest_add_bytes(d, cp, strlen(cp)));
|
|
if (append)
|
|
crypto_digest_add_bytes(d, append, strlen(append));
|
|
crypto_digest_get_digest(d, digest_out, len_out);
|
|
crypto_digest_free(d);
|
|
}
|
|
|
|
/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
|
|
* the <b>key</b> of length <b>key_len</b>. Store the DIGEST256_LEN-byte
|
|
* result in <b>hmac_out</b>. Asserts on failure.
|
|
*/
|
|
void
|
|
crypto_hmac_sha256(char *hmac_out,
|
|
const char *key, size_t key_len,
|
|
const char *msg, size_t msg_len)
|
|
{
|
|
unsigned char *rv = NULL;
|
|
/* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
|
|
tor_assert(key_len < INT_MAX);
|
|
tor_assert(msg_len < INT_MAX);
|
|
tor_assert(hmac_out);
|
|
rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
|
|
(unsigned char*)hmac_out, NULL);
|
|
tor_assert(rv);
|
|
}
|
|
|
|
/** Compute a MAC using SHA3-256 of <b>msg_len</b> bytes in <b>msg</b> using a
|
|
* <b>key</b> of length <b>key_len</b> and a <b>salt</b> of length
|
|
* <b>salt_len</b>. Store the result of <b>len_out</b> bytes in in
|
|
* <b>mac_out</b>. This function can't fail. */
|
|
void
|
|
crypto_mac_sha3_256(uint8_t *mac_out, size_t len_out,
|
|
const uint8_t *key, size_t key_len,
|
|
const uint8_t *msg, size_t msg_len)
|
|
{
|
|
crypto_digest_t *digest;
|
|
|
|
const uint64_t key_len_netorder = tor_htonll(key_len);
|
|
|
|
tor_assert(mac_out);
|
|
tor_assert(key);
|
|
tor_assert(msg);
|
|
|
|
digest = crypto_digest256_new(DIGEST_SHA3_256);
|
|
|
|
/* Order matters here that is any subsystem using this function should
|
|
* expect this very precise ordering in the MAC construction. */
|
|
crypto_digest_add_bytes(digest, (const char *) &key_len_netorder,
|
|
sizeof(key_len_netorder));
|
|
crypto_digest_add_bytes(digest, (const char *) key, key_len);
|
|
crypto_digest_add_bytes(digest, (const char *) msg, msg_len);
|
|
crypto_digest_get_digest(digest, (char *) mac_out, len_out);
|
|
crypto_digest_free(digest);
|
|
}
|
|
|
|
/* xof functions */
|
|
|
|
/** Internal state for a eXtendable-Output Function (XOF). */
|
|
struct crypto_xof_t {
|
|
keccak_state s;
|
|
};
|
|
|
|
/** Allocate a new XOF object backed by SHAKE-256. The security level
|
|
* provided is a function of the length of the output used. Read and
|
|
* understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
|
|
* Functions" before using this construct.
|
|
*/
|
|
crypto_xof_t *
|
|
crypto_xof_new(void)
|
|
{
|
|
crypto_xof_t *xof;
|
|
xof = tor_malloc(sizeof(crypto_xof_t));
|
|
keccak_xof_init(&xof->s, 256);
|
|
return xof;
|
|
}
|
|
|
|
/** Absorb bytes into a XOF object. Must not be called after a call to
|
|
* crypto_xof_squeeze_bytes() for the same instance, and will assert
|
|
* if attempted.
|
|
*/
|
|
void
|
|
crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
|
|
{
|
|
int i = keccak_xof_absorb(&xof->s, data, len);
|
|
tor_assert(i == 0);
|
|
}
|
|
|
|
/** Squeeze bytes out of a XOF object. Calling this routine will render
|
|
* the XOF instance ineligible to absorb further data.
|
|
*/
|
|
void
|
|
crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
|
|
{
|
|
int i = keccak_xof_squeeze(&xof->s, out, len);
|
|
tor_assert(i == 0);
|
|
}
|
|
|
|
/** Cleanse and deallocate a XOF object. */
|
|
void
|
|
crypto_xof_free_(crypto_xof_t *xof)
|
|
{
|
|
if (!xof)
|
|
return;
|
|
memwipe(xof, 0, sizeof(crypto_xof_t));
|
|
tor_free(xof);
|
|
}
|
|
|