tor/src/common/crypto.c
Roger Dingledine 37192bd25e use tor_assert and PUBLIC_KEY_OK
but don't use tor_assert inside log.c, to avoid loops


svn:r1696
2004-04-25 19:59:38 +00:00

1241 lines
29 KiB
C

/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */
/* See LICENSE for licensing information */
/* $Id$ */
#include "orconfig.h"
#include <string.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/opensslv.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/rsa.h>
#include <openssl/dh.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
#include "crypto.h"
#include "log.h"
#include "aes.h"
#include "util.h"
#ifdef MS_WINDOWS
#include <wincrypt.h>
#endif
#if OPENSSL_VERSION_NUMBER < 0x00905000l
#error "We require openssl >= 0.9.5"
#elif OPENSSL_VERSION_NUMBER < 0x00906000l
#define OPENSSL_095
#endif
/*
* Certain functions that return a success code in OpenSSL 0.9.6 return void
* (and don't indicate errors) in OpenSSL version 0.9.5.
*
* [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.]
*/
#ifdef OPENSSL_095
#define RETURN_SSL_OUTCOME(exp) (exp); return 0
#else
#define RETURN_SSL_OUTCOME(exp) return !(exp)
#endif
#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p)
struct crypto_pk_env_t
{
int refs; /* reference counting; so we don't have to copy keys */
RSA *key;
};
struct crypto_cipher_env_t
{
unsigned char key[CIPHER_KEY_LEN];
unsigned char iv[CIPHER_IV_LEN];
aes_cnt_cipher_t *cipher;
};
struct crypto_dh_env_t {
DH *dh;
};
static INLINE int
crypto_get_rsa_padding_overhead(int padding) {
switch(padding)
{
case RSA_NO_PADDING: return 0;
case RSA_PKCS1_OAEP_PADDING: return 42;
case RSA_PKCS1_PADDING: return 11;
default: tor_assert(0); return -1;
}
}
static INLINE int
crypto_get_rsa_padding(int padding) {
switch(padding)
{
case PK_NO_PADDING: return RSA_NO_PADDING;
case PK_PKCS1_PADDING: return RSA_PKCS1_PADDING;
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
default: tor_assert(0); return -1;
}
}
static int _crypto_global_initialized = 0;
int crypto_global_init()
{
if (!_crypto_global_initialized) {
ERR_load_crypto_strings();
_crypto_global_initialized = 1;
}
return 0;
}
int crypto_global_cleanup()
{
ERR_free_strings();
return 0;
}
/* used by tortls.c */
crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa)
{
crypto_pk_env_t *env;
tor_assert(rsa);
env = tor_malloc(sizeof(crypto_pk_env_t));
env->refs = 1;
env->key = rsa;
return env;
}
/* used by tortls.c */
RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env)
{
return env->key;
}
/* used by tortls.c */
EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private)
{
RSA *key = NULL;
EVP_PKEY *pkey = NULL;
tor_assert(env->key);
if (private) {
if (!(key = RSAPrivateKey_dup(env->key)))
goto error;
} else {
if (!(key = RSAPublicKey_dup(env->key)))
goto error;
}
if (!(pkey = EVP_PKEY_new()))
goto error;
if (!(EVP_PKEY_assign_RSA(pkey, key)))
goto error;
return pkey;
error:
if (pkey)
EVP_PKEY_free(pkey);
if (key)
RSA_free(key);
return NULL;
}
DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh)
{
return dh->dh;
}
crypto_pk_env_t *crypto_new_pk_env(void)
{
RSA *rsa;
rsa = RSA_new();
if (!rsa) return NULL;
return _crypto_new_pk_env_rsa(rsa);
}
void crypto_free_pk_env(crypto_pk_env_t *env)
{
tor_assert(env);
if(--env->refs > 0)
return;
if (env->key)
RSA_free(env->key);
free(env);
}
/* Create a new crypto_cipher_env_t for a given onion cipher type, key,
* iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object
* on success; NULL on failure.
*/
crypto_cipher_env_t *
crypto_create_init_cipher(const char *key, const char *iv, int encrypt_mode)
{
int r;
crypto_cipher_env_t *crypto = NULL;
if (! (crypto = crypto_new_cipher_env())) {
log_fn(LOG_WARN, "Unable to allocate crypto object");
return NULL;
}
if (crypto_cipher_set_key(crypto, key)) {
log_fn(LOG_WARN, "Unable to set key: %s", crypto_perror());
goto error;
}
if (crypto_cipher_set_iv(crypto, iv)) {
log_fn(LOG_WARN, "Unable to set iv: %s", crypto_perror());
goto error;
}
if (encrypt_mode)
r = crypto_cipher_encrypt_init_cipher(crypto);
else
r = crypto_cipher_decrypt_init_cipher(crypto);
if (r) {
log_fn(LOG_WARN, "Unable to initialize cipher: %s", crypto_perror());
goto error;
}
return crypto;
error:
if (crypto)
crypto_free_cipher_env(crypto);
return NULL;
}
crypto_cipher_env_t *crypto_new_cipher_env()
{
crypto_cipher_env_t *env;
env = tor_malloc_zero(sizeof(crypto_cipher_env_t));
env->cipher = aes_new_cipher();
return env;
}
void crypto_free_cipher_env(crypto_cipher_env_t *env)
{
tor_assert(env);
tor_assert(env->cipher);
aes_free_cipher(env->cipher);
tor_free(env);
}
/* public key crypto */
int crypto_pk_generate_key(crypto_pk_env_t *env)
{
tor_assert(env);
if (env->key)
RSA_free(env->key);
env->key = RSA_generate_key(PK_BITS,65537, NULL, NULL);
if (!env->key)
return -1;
return 0;
}
int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src)
{
tor_assert(env && src);
if (env->key)
RSA_free(env->key);
env->key = PEM_read_RSAPrivateKey(src, NULL, NULL, NULL);
if (!env->key)
return -1;
return 0;
}
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile)
{
FILE *f_pr;
tor_assert(env && keyfile);
if(strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) != strlen(keyfile)) {
/* filename contains nonlegal characters */
return -1;
}
/* open the keyfile */
f_pr=fopen(keyfile,"rb");
if (!f_pr)
return -1;
/* read the private key */
if(crypto_pk_read_private_key_from_file(env, f_pr) < 0) {
log_fn(LOG_WARN,"Error reading private key : %s",crypto_perror());
fclose(f_pr);
return -1;
}
fclose(f_pr);
/* check the private key */
switch(crypto_pk_check_key(env)) {
case 0:
log_fn(LOG_WARN,"Private key read but is invalid : %s.", crypto_perror());
return -1;
case -1:
log_fn(LOG_WARN,"Private key read but validity checking failed : %s",crypto_perror());
return -1;
/* case 1: fall through */
}
return 0;
}
int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src)
{
tor_assert(env && src);
if(env->key)
RSA_free(env->key);
env->key = PEM_read_RSAPublicKey(src, NULL, NULL, NULL);
if (!env->key)
return -1;
return 0;
}
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
BUF_MEM *buf;
BIO *b;
tor_assert(env && env->key && dest);
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
/* Now you can treat b as if it were a file. Just use the
* PEM_*_bio_* functions instead of the non-bio variants.
*/
if(!PEM_write_bio_RSAPublicKey(b, env->key))
return -1;
BIO_get_mem_ptr(b, &buf);
BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
BIO_free(b);
*dest = tor_malloc(buf->length+1);
memcpy(*dest, buf->data, buf->length);
(*dest)[buf->length] = 0; /* null terminate it */
*len = buf->length;
BUF_MEM_free(buf);
return 0;
}
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) {
BIO *b;
tor_assert(env && src);
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
BIO_write(b, src, len);
if (env->key)
RSA_free(env->key);
env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
BIO_free(b);
if(!env->key)
return -1;
return 0;
}
int
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
const char *fname)
{
BIO *bio;
char *cp;
long len;
char *s;
int r;
tor_assert(PRIVATE_KEY_OK(env));
if (!(bio = BIO_new(BIO_s_mem())))
return -1;
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
== 0) {
BIO_free(bio);
return -1;
}
len = BIO_get_mem_data(bio, &cp);
s = tor_malloc(len+1);
strncpy(s, cp, len);
s[len] = '\0';
r = write_str_to_file(fname, s);
BIO_free(bio);
free(s);
return r;
}
int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest)
{
tor_assert(env && dest);
if (!env->key)
return -1;
if (PEM_write_RSAPrivateKey(dest, env->key, NULL, NULL, 0,0, NULL) == 0)
return -1;
return 0;
}
int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest)
{
tor_assert(env && dest);
if (!env->key)
return -1;
if (PEM_write_RSAPublicKey(dest, env->key) == 0)
return -1;
return 0;
}
int crypto_pk_check_key(crypto_pk_env_t *env)
{
tor_assert(env);
return RSA_check_key(env->key);
}
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
int result;
if (!a || !b)
return -1;
if (!a->key || !b->key)
return -1;
tor_assert(PUBLIC_KEY_OK(a));
tor_assert(PUBLIC_KEY_OK(b));
result = BN_cmp((a->key)->n, (b->key)->n);
if (result)
return result;
return BN_cmp((a->key)->e, (b->key)->e);
}
/* return the size of the public key modulus in 'env', in bytes. */
int crypto_pk_keysize(crypto_pk_env_t *env)
{
tor_assert(env && env->key);
return RSA_size(env->key);
}
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
tor_assert(env && env->key);
env->refs++;
return env;
}
int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{
tor_assert(env && from && to);
return RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding));
}
int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{
tor_assert(env && from && to && env->key);
if (!env->key->p)
/* Not a private key */
return -1;
return RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding));
}
int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
tor_assert(env && from && to);
return RSA_public_decrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING);
}
int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
tor_assert(env && from && to);
if (!env->key->p)
/* Not a private key */
return -1;
return RSA_private_encrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING);
}
/* Return 0 if sig is a correct signature for SHA1(data). Else return -1.
*/
int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen)
{
char digest[DIGEST_LEN];
char buf[PK_BYTES+1];
int r;
tor_assert(env && data && sig);
if (crypto_digest(data,datalen,digest)<0) {
log_fn(LOG_WARN, "couldn't compute digest");
return -1;
}
r = crypto_pk_public_checksig(env,sig,siglen,buf);
if (r != DIGEST_LEN) {
log_fn(LOG_WARN, "Invalid signature");
return -1;
}
if (memcmp(buf, digest, DIGEST_LEN)) {
log_fn(LOG_WARN, "Signature mismatched with digest.");
return -1;
}
return 0;
}
/* Fill 'to' with a signature of SHA1(from).
*/
int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
char digest[DIGEST_LEN];
if (crypto_digest(from,fromlen,digest)<0)
return 0;
return crypto_pk_private_sign(env,digest,DIGEST_LEN,to);
}
/* Perform a hybrid (public/secret) encryption on 'fromlen' bytes of data
* from 'from', with padding type 'padding', storing the results on 'to'.
*
* If no padding is used, the public key must be at least as large as
* 'from'.
*
* Returns the number of bytes written on success, -1 on failure.
*
* The encrypted data consists of:
*
* The source data, padded and encrypted with the public key, if the
* padded source data is no longer than the public key, and "force"
* is false.
* OR
* The beginning of the source data prefixed with a 16-byte symmetric key,
* padded and encrypted with the public key; followed by the rest of
* the source data encrypted in AES-CTR mode with the symmetric key.
*
*/
int crypto_pk_public_hybrid_encrypt(crypto_pk_env_t *env,
const unsigned char *from,
int fromlen, unsigned char *to,
int padding, int force)
{
int overhead, pkeylen, outlen, r, symlen;
crypto_cipher_env_t *cipher = NULL;
char buf[PK_BYTES+1];
tor_assert(env && from && to);
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
pkeylen = crypto_pk_keysize(env);
if (padding == PK_NO_PADDING && fromlen < pkeylen)
return -1;
if (!force && fromlen+overhead <= pkeylen) {
/* It all fits in a single encrypt. */
return crypto_pk_public_encrypt(env,from,fromlen,to,padding);
}
cipher = crypto_new_cipher_env();
if (!cipher) return -1;
if (crypto_cipher_generate_key(cipher)<0)
goto err;
/* You can't just run around RSA-encrypting any bitstream: if it's
* greater than the RSA key, then OpenSSL will happily encrypt, and
* later decrypt to the wrong value. So we set the first bit of
* 'cipher->key' to 0 if we aren't padding. This means that our
* symmetric key is really only 127 bits.
*/
if (padding == PK_NO_PADDING)
cipher->key[0] &= 0x7f;
if (crypto_cipher_encrypt_init_cipher(cipher)<0)
goto err;
memcpy(buf, cipher->key, CIPHER_KEY_LEN);
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
/* Length of symmetrically encrypted data. */
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
outlen = crypto_pk_public_encrypt(env,buf,pkeylen-overhead,to,padding);
if (outlen!=pkeylen) {
goto err;
}
r = crypto_cipher_encrypt(cipher,
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen,
to+outlen);
if (r<0) goto err;
memset(buf, 0, sizeof(buf));
crypto_free_cipher_env(cipher);
return outlen + symlen;
err:
memset(buf, 0, sizeof(buf));
if (cipher) crypto_free_cipher_env(cipher);
return -1;
}
/* Invert crypto_pk_public_hybrid_encrypt. */
int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env,
const unsigned char *from,
int fromlen, unsigned char *to,
int padding)
{
int overhead, pkeylen, outlen, r;
crypto_cipher_env_t *cipher = NULL;
char buf[PK_BYTES+1];
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
pkeylen = crypto_pk_keysize(env);
if (fromlen <= pkeylen) {
return crypto_pk_private_decrypt(env,from,fromlen,to,padding);
}
outlen = crypto_pk_private_decrypt(env,from,pkeylen,buf,padding);
if (outlen<0) {
/* this is only log-levelinfo, because when we're decrypting
* onions, we try several keys to see which will work */
log_fn(LOG_INFO, "Error decrypting public-key data");
return -1;
}
if (outlen < CIPHER_KEY_LEN) {
log_fn(LOG_WARN, "No room for a symmetric key");
return -1;
}
cipher = crypto_create_init_cipher(buf, NULL, 0);
if (!cipher) {
return -1;
}
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
outlen -= CIPHER_KEY_LEN;
r = crypto_cipher_decrypt(cipher, from+pkeylen, fromlen-pkeylen,
to+outlen);
if (r<0)
goto err;
memset(buf,0,sizeof(buf));
crypto_free_cipher_env(cipher);
return outlen + (fromlen-pkeylen);
err:
memset(buf,0,sizeof(buf));
if (cipher) crypto_free_cipher_env(cipher);
return -1;
}
/* Encode the public portion of 'pk' into 'dest'. Return -1 on error,
* or the number of characters used on success.
*/
int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
{
int len;
unsigned char *buf, *cp;
len = i2d_RSAPublicKey(pk->key, NULL);
if (len < 0 || len > dest_len)
return -1;
cp = buf = tor_malloc(len+1);
len = i2d_RSAPublicKey(pk->key, &cp);
if (len < 0) {
tor_free(buf);
return -1;
}
/* We don't encode directly into 'dest', because that would be illegal
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
*/
memcpy(dest,buf,len);
tor_free(buf);
return len;
}
/* Decode an ASN1-encoded public key from str.
*/
crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len)
{
RSA *rsa;
unsigned char *buf;
/* This ifdef suppresses a type warning. Take out the first case once
* everybody is using openssl 0.9.7 or later.
*/
#if OPENSSL_VERSION_NUMBER < 0x00907000l
unsigned char *cp;
#else
const unsigned char *cp;
#endif
cp = buf = tor_malloc(len);
memcpy(buf,str,len);
rsa = d2i_RSAPublicKey(NULL, &cp, len);
tor_free(buf);
if (!rsa)
return NULL; /* XXXX log openssl error */
return _crypto_new_pk_env_rsa(rsa);
}
/* Given a private or public key pk, put a SHA1 hash of the public key into
* digest_out (must have DIGEST_LEN bytes of space).
*/
int crypto_pk_get_digest(crypto_pk_env_t *pk, char *digest_out)
{
unsigned char *buf, *bufp;
int len;
len = i2d_RSAPublicKey(pk->key, NULL);
if (len < 0)
return -1;
buf = bufp = tor_malloc(len+1);
len = i2d_RSAPublicKey(pk->key, &bufp);
if (len < 0) {
free(buf);
return -1;
}
if (crypto_digest(buf, len, digest_out) < 0) {
free(buf);
return -1;
}
free(buf);
return 0;
}
/* Given a private or public key pk, put a fingerprint of the
* public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of
* space).
*/
int
crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out)
{
unsigned char *bufp;
unsigned char digest[DIGEST_LEN];
unsigned char buf[FINGERPRINT_LEN+1];
int i;
if (crypto_pk_get_digest(pk, digest)) {
return -1;
}
bufp = buf;
for (i = 0; i < DIGEST_LEN; ++i) {
sprintf(bufp,"%02X",digest[i]);
bufp += 2;
if (i%2 && i != 19) {
*bufp++ = ' ';
}
}
*bufp = '\0';
tor_assert(strlen(buf) == FINGERPRINT_LEN);
tor_assert(crypto_pk_check_fingerprint_syntax(buf));
strcpy(fp_out, buf);
return 0;
}
int
crypto_pk_check_fingerprint_syntax(const char *s)
{
int i;
for (i = 0; i < FINGERPRINT_LEN; ++i) {
if ((i%5) == 4) {
if (!isspace((int)s[i])) return 0;
} else {
if (!isxdigit((int)s[i])) return 0;
}
}
if (s[FINGERPRINT_LEN]) return 0;
return 1;
}
/* symmetric crypto */
int crypto_cipher_generate_key(crypto_cipher_env_t *env)
{
tor_assert(env);
return crypto_rand(CIPHER_KEY_LEN, env->key);
}
int crypto_cipher_set_iv(crypto_cipher_env_t *env, const unsigned char *iv)
{
tor_assert(env && (CIPHER_IV_LEN==0 || iv));
if (!CIPHER_IV_LEN)
return 0;
if (!env->iv)
return -1;
memcpy(env->iv, iv, CIPHER_IV_LEN);
return 0;
}
int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
{
tor_assert(env && key);
if (!env->key)
return -1;
memcpy(env->key, key, CIPHER_KEY_LEN);
return 0;
}
const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env)
{
return env->key;
}
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
{
tor_assert(env);
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
return 0;
}
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
{
tor_assert(env);
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
return 0;
}
int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{
tor_assert(env && env->cipher && from && fromlen && to);
aes_crypt(env->cipher, from, fromlen, to);
return 0;
}
int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{
tor_assert(env && from && to);
aes_crypt(env->cipher, from, fromlen, to);
return 0;
}
int
crypto_cipher_rewind(crypto_cipher_env_t *env, long delta)
{
return crypto_cipher_advance(env, -delta);
}
int
crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
{
aes_adjust_counter(env->cipher, delta);
return 0;
}
/* SHA-1 */
int crypto_digest(const unsigned char *m, int len, unsigned char *digest)
{
tor_assert(m && digest);
return (SHA1(m,len,digest) == NULL);
}
struct crypto_digest_env_t {
SHA_CTX d;
};
crypto_digest_env_t *
crypto_new_digest_env(void)
{
crypto_digest_env_t *r;
r = tor_malloc(sizeof(crypto_digest_env_t));
SHA1_Init(&r->d);
return r;
}
void
crypto_free_digest_env(crypto_digest_env_t *digest) {
tor_free(digest);
}
void
crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
size_t len)
{
tor_assert(digest);
tor_assert(data);
SHA1_Update(&digest->d, (void*)data, len);
}
void crypto_digest_get_digest(crypto_digest_env_t *digest,
char *out, size_t out_len)
{
static char r[DIGEST_LEN];
tor_assert(digest && out);
tor_assert(out_len <= DIGEST_LEN);
SHA1_Final(r, &digest->d);
memcpy(out, r, out_len);
}
crypto_digest_env_t *
crypto_digest_dup(const crypto_digest_env_t *digest)
{
crypto_digest_env_t *r;
tor_assert(digest);
r = tor_malloc(sizeof(crypto_digest_env_t));
memcpy(r,digest,sizeof(crypto_digest_env_t));
return r;
}
void
crypto_digest_assign(crypto_digest_env_t *into,
const crypto_digest_env_t *from)
{
tor_assert(into && from);
memcpy(into,from,sizeof(crypto_digest_env_t));
}
/* DH */
static BIGNUM *dh_param_p = NULL;
static BIGNUM *dh_param_g = NULL;
static void init_dh_param() {
BIGNUM *p, *g;
int r;
if (dh_param_p && dh_param_g)
return;
p = BN_new();
g = BN_new();
tor_assert(p && g);
#if 0
/* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe
prime, and supposedly it equals:
2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
*/
r = BN_hex2bn(&p,
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF");
#endif
/* This is from rfc2409, section 6.2. It's a safe prime, and
supposedly it equals:
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
*/
/* See also rfc 3536 */
r = BN_hex2bn(&p,
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE65381FFFFFFFFFFFFFFFF");
tor_assert(r);
r = BN_set_word(g, 2);
tor_assert(r);
dh_param_p = p;
dh_param_g = g;
}
crypto_dh_env_t *crypto_dh_new()
{
crypto_dh_env_t *res = NULL;
if (!dh_param_p)
init_dh_param();
res = tor_malloc(sizeof(crypto_dh_env_t));
res->dh = NULL;
if (!(res->dh = DH_new()))
goto err;
if (!(res->dh->p = BN_dup(dh_param_p)))
goto err;
if (!(res->dh->g = BN_dup(dh_param_g)))
goto err;
return res;
err:
if (res && res->dh) DH_free(res->dh); /* frees p and g too */
if (res) free(res);
return NULL;
}
int crypto_dh_get_bytes(crypto_dh_env_t *dh)
{
tor_assert(dh);
return DH_size(dh->dh);
}
int crypto_dh_generate_public(crypto_dh_env_t *dh)
{
if (!DH_generate_key(dh->dh))
return -1;
return 0;
}
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
{
int bytes;
tor_assert(dh);
if (!dh->dh->pub_key) {
if (!DH_generate_key(dh->dh))
return -1;
}
tor_assert(dh->dh->pub_key);
bytes = BN_num_bytes(dh->dh->pub_key);
if (pubkey_len < bytes)
return -1;
memset(pubkey, 0, pubkey_len);
BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes));
return 0;
}
#undef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
int crypto_dh_compute_secret(crypto_dh_env_t *dh,
const char *pubkey, int pubkey_len,
char *secret_out, int secret_bytes_out)
{
unsigned char hash[DIGEST_LEN];
unsigned char *secret_tmp = NULL;
BIGNUM *pubkey_bn = NULL;
int secret_len;
int i;
tor_assert(dh);
tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL)))
goto error;
secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1);
secret_len = DH_compute_key(secret_tmp, pubkey_bn, dh->dh);
/* sometimes secret_len might be less than 128, e.g., 127. that's ok. */
for (i = 0; i < secret_bytes_out; i += DIGEST_LEN) {
secret_tmp[secret_len] = (unsigned char) i/DIGEST_LEN;
if (crypto_digest(secret_tmp, secret_len+1, hash))
goto error;
memcpy(secret_out+i, hash, MIN(DIGEST_LEN, secret_bytes_out-i));
}
secret_len = secret_bytes_out;
goto done;
error:
secret_len = -1;
done:
if (pubkey_bn)
BN_free(pubkey_bn);
tor_free(secret_tmp);
return secret_len;
}
void crypto_dh_free(crypto_dh_env_t *dh)
{
tor_assert(dh && dh->dh);
DH_free(dh->dh);
free(dh);
}
/* random numbers */
#ifdef MS_WINDOWS
int crypto_seed_rng()
{
static int provider_set = 0;
static HCRYPTPROV provider;
char buf[DIGEST_LEN+1];
if (!provider_set) {
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, 0)) {
if (GetLastError() != NTE_BAD_KEYSET) {
log_fn(LOG_ERR,"Can't get CryptoAPI provider [1]");
return -1;
}
/* Yes, we need to try it twice. */
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
CRYPT_NEWKEYSET)) {
log_fn(LOG_ERR,"Can't get CryptoAPI provider [2]");
return -1;
}
}
provider_set = 1;
}
if (!CryptGenRandom(provider, DIGEST_LEN, buf)) {
log_fn(LOG_ERR,"Can't get entropy from CryptoAPI.");
return -1;
}
RAND_seed(buf, DIGEST_LEN);
/* And add the current screen state to the entopy pool for
* good measure. */
RAND_screen();
return 0;
}
#else
int crypto_seed_rng()
{
static char *filenames[] = {
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
};
int i, n;
char buf[DIGEST_LEN+1];
FILE *f;
for (i = 0; filenames[i]; ++i) {
f = fopen(filenames[i], "rb");
if (!f) continue;
log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]);
n = fread(buf, 1, DIGEST_LEN, f);
fclose(f);
if (n != DIGEST_LEN) {
log_fn(LOG_WARN, "Error reading from entropy source");
return -1;
}
RAND_seed(buf, DIGEST_LEN);
return 0;
}
log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found.");
return -1;
}
#endif
int crypto_rand(unsigned int n, unsigned char *to)
{
tor_assert(to);
return (RAND_bytes(to, n) != 1);
}
void crypto_pseudo_rand(unsigned int n, unsigned char *to)
{
tor_assert(to);
if (RAND_pseudo_bytes(to, n) == -1) {
log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly.");
exit(1);
}
}
/* return a pseudo random number between 0 and max-1 */
int crypto_pseudo_rand_int(unsigned int max) {
unsigned int val;
unsigned int cutoff;
tor_assert(max < UINT_MAX);
tor_assert(max > 0); /* don't div by 0 */
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
* distribution with clipping at the upper end of unsigned int's
* range.
*/
cutoff = UINT_MAX - (UINT_MAX%max);
while(1) {
crypto_pseudo_rand(sizeof(val), (unsigned char*) &val);
if (val < cutoff)
return val % max;
}
}
/* errors */
const char *crypto_perror()
{
return (const char *)ERR_reason_error_string(ERR_get_error());
}
int
base64_encode(char *dest, int destlen, const char *src, int srclen)
{
EVP_ENCODE_CTX ctx;
int len, ret;
/* 48 bytes of input -> 64 bytes of output plus newline.
Plus one more byte, in case I'm wrong.
*/
if (destlen < ((srclen/48)+1)*66)
return -1;
EVP_EncodeInit(&ctx);
EVP_EncodeUpdate(&ctx, dest, &len, (char*) src, srclen);
EVP_EncodeFinal(&ctx, dest+len, &ret);
ret += len;
return ret;
}
int
base64_decode(char *dest, int destlen, const char *src, int srclen)
{
EVP_ENCODE_CTX ctx;
int len, ret;
/* 64 bytes of input -> *up to* 48 bytes of output.
Plus one more byte, in caes I'm wrong.
*/
if (destlen < ((srclen/64)+1)*49)
return -1;
EVP_DecodeInit(&ctx);
EVP_DecodeUpdate(&ctx, dest, &len, (char*) src, srclen);
EVP_DecodeFinal(&ctx, dest, &ret);
ret += len;
return ret;
}
/* Implement base32 encoding as in rfc3548. Limitation: Requires that
* srclen is a multiple of 5.
*/
int
base32_encode(char *dest, int destlen, const char *src, int srclen)
{
int nbits, i, bit, v, u;
nbits = srclen * 8;
if ((nbits%5) != 0)
/* We need an even multiple of 5 bits. */
return -1;
if ((nbits/5)+1 > destlen)
/* Not enough space. */
return -1;
for (i=0,bit=0; bit < nbits; ++i, bit+=5) {
/* set v to the 16-bit value starting at src[bits/8], 0-padded. */
v = ((uint8_t)src[bit/8]) << 8;
if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1];
/* set u to the 5-bit value at the bit'th bit of src. */
u = (v >> (11-(bit%8))) & 0x1F;
dest[i] = BASE32_CHARS[u];
}
dest[i] = '\0';
return 0;
}
/*
Local Variables:
mode:c
indent-tabs-mode:nil
c-basic-offset:2
End:
*/