mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-14 07:03:44 +01:00
37192bd25e
but don't use tor_assert inside log.c, to avoid loops svn:r1696
1241 lines
29 KiB
C
1241 lines
29 KiB
C
/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
|
|
#include "orconfig.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/opensslv.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/dh.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#ifdef HAVE_CTYPE_H
|
|
#include <ctype.h>
|
|
#endif
|
|
|
|
#include "crypto.h"
|
|
#include "log.h"
|
|
#include "aes.h"
|
|
#include "util.h"
|
|
|
|
#ifdef MS_WINDOWS
|
|
#include <wincrypt.h>
|
|
#endif
|
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x00905000l
|
|
#error "We require openssl >= 0.9.5"
|
|
#elif OPENSSL_VERSION_NUMBER < 0x00906000l
|
|
#define OPENSSL_095
|
|
#endif
|
|
|
|
/*
|
|
* Certain functions that return a success code in OpenSSL 0.9.6 return void
|
|
* (and don't indicate errors) in OpenSSL version 0.9.5.
|
|
*
|
|
* [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.]
|
|
*/
|
|
#ifdef OPENSSL_095
|
|
#define RETURN_SSL_OUTCOME(exp) (exp); return 0
|
|
#else
|
|
#define RETURN_SSL_OUTCOME(exp) return !(exp)
|
|
#endif
|
|
|
|
#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
|
|
#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p)
|
|
|
|
struct crypto_pk_env_t
|
|
{
|
|
int refs; /* reference counting; so we don't have to copy keys */
|
|
RSA *key;
|
|
};
|
|
|
|
struct crypto_cipher_env_t
|
|
{
|
|
unsigned char key[CIPHER_KEY_LEN];
|
|
unsigned char iv[CIPHER_IV_LEN];
|
|
aes_cnt_cipher_t *cipher;
|
|
};
|
|
|
|
struct crypto_dh_env_t {
|
|
DH *dh;
|
|
};
|
|
|
|
static INLINE int
|
|
crypto_get_rsa_padding_overhead(int padding) {
|
|
switch(padding)
|
|
{
|
|
case RSA_NO_PADDING: return 0;
|
|
case RSA_PKCS1_OAEP_PADDING: return 42;
|
|
case RSA_PKCS1_PADDING: return 11;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
static INLINE int
|
|
crypto_get_rsa_padding(int padding) {
|
|
switch(padding)
|
|
{
|
|
case PK_NO_PADDING: return RSA_NO_PADDING;
|
|
case PK_PKCS1_PADDING: return RSA_PKCS1_PADDING;
|
|
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
static int _crypto_global_initialized = 0;
|
|
|
|
int crypto_global_init()
|
|
{
|
|
if (!_crypto_global_initialized) {
|
|
ERR_load_crypto_strings();
|
|
_crypto_global_initialized = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int crypto_global_cleanup()
|
|
{
|
|
ERR_free_strings();
|
|
return 0;
|
|
}
|
|
|
|
/* used by tortls.c */
|
|
crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa)
|
|
{
|
|
crypto_pk_env_t *env;
|
|
tor_assert(rsa);
|
|
env = tor_malloc(sizeof(crypto_pk_env_t));
|
|
env->refs = 1;
|
|
env->key = rsa;
|
|
return env;
|
|
}
|
|
|
|
/* used by tortls.c */
|
|
RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
/* used by tortls.c */
|
|
EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private)
|
|
{
|
|
RSA *key = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
tor_assert(env->key);
|
|
if (private) {
|
|
if (!(key = RSAPrivateKey_dup(env->key)))
|
|
goto error;
|
|
} else {
|
|
if (!(key = RSAPublicKey_dup(env->key)))
|
|
goto error;
|
|
}
|
|
if (!(pkey = EVP_PKEY_new()))
|
|
goto error;
|
|
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
|
goto error;
|
|
return pkey;
|
|
error:
|
|
if (pkey)
|
|
EVP_PKEY_free(pkey);
|
|
if (key)
|
|
RSA_free(key);
|
|
return NULL;
|
|
}
|
|
|
|
DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh)
|
|
{
|
|
return dh->dh;
|
|
}
|
|
|
|
crypto_pk_env_t *crypto_new_pk_env(void)
|
|
{
|
|
RSA *rsa;
|
|
|
|
rsa = RSA_new();
|
|
if (!rsa) return NULL;
|
|
return _crypto_new_pk_env_rsa(rsa);
|
|
}
|
|
|
|
void crypto_free_pk_env(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
if(--env->refs > 0)
|
|
return;
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
free(env);
|
|
}
|
|
|
|
|
|
/* Create a new crypto_cipher_env_t for a given onion cipher type, key,
|
|
* iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object
|
|
* on success; NULL on failure.
|
|
*/
|
|
crypto_cipher_env_t *
|
|
crypto_create_init_cipher(const char *key, const char *iv, int encrypt_mode)
|
|
{
|
|
int r;
|
|
crypto_cipher_env_t *crypto = NULL;
|
|
|
|
if (! (crypto = crypto_new_cipher_env())) {
|
|
log_fn(LOG_WARN, "Unable to allocate crypto object");
|
|
return NULL;
|
|
}
|
|
|
|
if (crypto_cipher_set_key(crypto, key)) {
|
|
log_fn(LOG_WARN, "Unable to set key: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
|
|
if (crypto_cipher_set_iv(crypto, iv)) {
|
|
log_fn(LOG_WARN, "Unable to set iv: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
|
|
if (encrypt_mode)
|
|
r = crypto_cipher_encrypt_init_cipher(crypto);
|
|
else
|
|
r = crypto_cipher_decrypt_init_cipher(crypto);
|
|
|
|
if (r) {
|
|
log_fn(LOG_WARN, "Unable to initialize cipher: %s", crypto_perror());
|
|
goto error;
|
|
}
|
|
return crypto;
|
|
|
|
error:
|
|
if (crypto)
|
|
crypto_free_cipher_env(crypto);
|
|
return NULL;
|
|
}
|
|
|
|
crypto_cipher_env_t *crypto_new_cipher_env()
|
|
{
|
|
crypto_cipher_env_t *env;
|
|
|
|
env = tor_malloc_zero(sizeof(crypto_cipher_env_t));
|
|
env->cipher = aes_new_cipher();
|
|
return env;
|
|
}
|
|
|
|
void crypto_free_cipher_env(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
tor_assert(env->cipher);
|
|
aes_free_cipher(env->cipher);
|
|
tor_free(env);
|
|
}
|
|
|
|
/* public key crypto */
|
|
int crypto_pk_generate_key(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = RSA_generate_key(PK_BITS,65537, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src)
|
|
{
|
|
tor_assert(env && src);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = PEM_read_RSAPrivateKey(src, NULL, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile)
|
|
{
|
|
FILE *f_pr;
|
|
|
|
tor_assert(env && keyfile);
|
|
|
|
if(strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) != strlen(keyfile)) {
|
|
/* filename contains nonlegal characters */
|
|
return -1;
|
|
}
|
|
|
|
/* open the keyfile */
|
|
f_pr=fopen(keyfile,"rb");
|
|
if (!f_pr)
|
|
return -1;
|
|
|
|
/* read the private key */
|
|
if(crypto_pk_read_private_key_from_file(env, f_pr) < 0) {
|
|
log_fn(LOG_WARN,"Error reading private key : %s",crypto_perror());
|
|
fclose(f_pr);
|
|
return -1;
|
|
}
|
|
fclose(f_pr);
|
|
|
|
/* check the private key */
|
|
switch(crypto_pk_check_key(env)) {
|
|
case 0:
|
|
log_fn(LOG_WARN,"Private key read but is invalid : %s.", crypto_perror());
|
|
return -1;
|
|
case -1:
|
|
log_fn(LOG_WARN,"Private key read but validity checking failed : %s",crypto_perror());
|
|
return -1;
|
|
/* case 1: fall through */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src)
|
|
{
|
|
tor_assert(env && src);
|
|
|
|
if(env->key)
|
|
RSA_free(env->key);
|
|
env->key = PEM_read_RSAPublicKey(src, NULL, NULL, NULL);
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
|
|
BUF_MEM *buf;
|
|
BIO *b;
|
|
|
|
tor_assert(env && env->key && dest);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
/* Now you can treat b as if it were a file. Just use the
|
|
* PEM_*_bio_* functions instead of the non-bio variants.
|
|
*/
|
|
if(!PEM_write_bio_RSAPublicKey(b, env->key))
|
|
return -1;
|
|
|
|
BIO_get_mem_ptr(b, &buf);
|
|
BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
|
|
BIO_free(b);
|
|
|
|
*dest = tor_malloc(buf->length+1);
|
|
memcpy(*dest, buf->data, buf->length);
|
|
(*dest)[buf->length] = 0; /* null terminate it */
|
|
*len = buf->length;
|
|
BUF_MEM_free(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) {
|
|
BIO *b;
|
|
|
|
tor_assert(env && src);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
BIO_write(b, src, len);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
|
|
BIO_free(b);
|
|
if(!env->key)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
|
|
const char *fname)
|
|
{
|
|
BIO *bio;
|
|
char *cp;
|
|
long len;
|
|
char *s;
|
|
int r;
|
|
|
|
tor_assert(PRIVATE_KEY_OK(env));
|
|
|
|
if (!(bio = BIO_new(BIO_s_mem())))
|
|
return -1;
|
|
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
|
== 0) {
|
|
BIO_free(bio);
|
|
return -1;
|
|
}
|
|
len = BIO_get_mem_data(bio, &cp);
|
|
s = tor_malloc(len+1);
|
|
strncpy(s, cp, len);
|
|
s[len] = '\0';
|
|
r = write_str_to_file(fname, s);
|
|
BIO_free(bio);
|
|
free(s);
|
|
return r;
|
|
}
|
|
|
|
int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest)
|
|
{
|
|
tor_assert(env && dest);
|
|
|
|
if (!env->key)
|
|
return -1;
|
|
if (PEM_write_RSAPrivateKey(dest, env->key, NULL, NULL, 0,0, NULL) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest)
|
|
{
|
|
tor_assert(env && dest);
|
|
|
|
if (!env->key)
|
|
return -1;
|
|
if (PEM_write_RSAPublicKey(dest, env->key) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_pk_check_key(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
return RSA_check_key(env->key);
|
|
}
|
|
|
|
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
|
|
int result;
|
|
|
|
if (!a || !b)
|
|
return -1;
|
|
|
|
if (!a->key || !b->key)
|
|
return -1;
|
|
|
|
tor_assert(PUBLIC_KEY_OK(a));
|
|
tor_assert(PUBLIC_KEY_OK(b));
|
|
result = BN_cmp((a->key)->n, (b->key)->n);
|
|
if (result)
|
|
return result;
|
|
return BN_cmp((a->key)->e, (b->key)->e);
|
|
}
|
|
|
|
/* return the size of the public key modulus in 'env', in bytes. */
|
|
int crypto_pk_keysize(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env && env->key);
|
|
|
|
return RSA_size(env->key);
|
|
}
|
|
|
|
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
|
|
tor_assert(env && env->key);
|
|
|
|
env->refs++;
|
|
return env;
|
|
}
|
|
|
|
int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
|
|
{
|
|
tor_assert(env && from && to);
|
|
|
|
return RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key,
|
|
crypto_get_rsa_padding(padding));
|
|
}
|
|
|
|
int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
|
|
{
|
|
tor_assert(env && from && to && env->key);
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
return RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key,
|
|
crypto_get_rsa_padding(padding));
|
|
}
|
|
|
|
int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
|
|
{
|
|
tor_assert(env && from && to);
|
|
return RSA_public_decrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING);
|
|
}
|
|
|
|
int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
|
|
{
|
|
tor_assert(env && from && to);
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
return RSA_private_encrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING);
|
|
}
|
|
|
|
/* Return 0 if sig is a correct signature for SHA1(data). Else return -1.
|
|
*/
|
|
int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
char buf[PK_BYTES+1];
|
|
int r;
|
|
|
|
tor_assert(env && data && sig);
|
|
|
|
if (crypto_digest(data,datalen,digest)<0) {
|
|
log_fn(LOG_WARN, "couldn't compute digest");
|
|
return -1;
|
|
}
|
|
r = crypto_pk_public_checksig(env,sig,siglen,buf);
|
|
if (r != DIGEST_LEN) {
|
|
log_fn(LOG_WARN, "Invalid signature");
|
|
return -1;
|
|
}
|
|
if (memcmp(buf, digest, DIGEST_LEN)) {
|
|
log_fn(LOG_WARN, "Signature mismatched with digest.");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fill 'to' with a signature of SHA1(from).
|
|
*/
|
|
int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
if (crypto_digest(from,fromlen,digest)<0)
|
|
return 0;
|
|
return crypto_pk_private_sign(env,digest,DIGEST_LEN,to);
|
|
}
|
|
|
|
|
|
/* Perform a hybrid (public/secret) encryption on 'fromlen' bytes of data
|
|
* from 'from', with padding type 'padding', storing the results on 'to'.
|
|
*
|
|
* If no padding is used, the public key must be at least as large as
|
|
* 'from'.
|
|
*
|
|
* Returns the number of bytes written on success, -1 on failure.
|
|
*
|
|
* The encrypted data consists of:
|
|
*
|
|
* The source data, padded and encrypted with the public key, if the
|
|
* padded source data is no longer than the public key, and "force"
|
|
* is false.
|
|
* OR
|
|
* The beginning of the source data prefixed with a 16-byte symmetric key,
|
|
* padded and encrypted with the public key; followed by the rest of
|
|
* the source data encrypted in AES-CTR mode with the symmetric key.
|
|
*
|
|
*/
|
|
int crypto_pk_public_hybrid_encrypt(crypto_pk_env_t *env,
|
|
const unsigned char *from,
|
|
int fromlen, unsigned char *to,
|
|
int padding, int force)
|
|
{
|
|
int overhead, pkeylen, outlen, r, symlen;
|
|
crypto_cipher_env_t *cipher = NULL;
|
|
char buf[PK_BYTES+1];
|
|
|
|
tor_assert(env && from && to);
|
|
|
|
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (padding == PK_NO_PADDING && fromlen < pkeylen)
|
|
return -1;
|
|
|
|
if (!force && fromlen+overhead <= pkeylen) {
|
|
/* It all fits in a single encrypt. */
|
|
return crypto_pk_public_encrypt(env,from,fromlen,to,padding);
|
|
}
|
|
cipher = crypto_new_cipher_env();
|
|
if (!cipher) return -1;
|
|
if (crypto_cipher_generate_key(cipher)<0)
|
|
goto err;
|
|
/* You can't just run around RSA-encrypting any bitstream: if it's
|
|
* greater than the RSA key, then OpenSSL will happily encrypt, and
|
|
* later decrypt to the wrong value. So we set the first bit of
|
|
* 'cipher->key' to 0 if we aren't padding. This means that our
|
|
* symmetric key is really only 127 bits.
|
|
*/
|
|
if (padding == PK_NO_PADDING)
|
|
cipher->key[0] &= 0x7f;
|
|
if (crypto_cipher_encrypt_init_cipher(cipher)<0)
|
|
goto err;
|
|
memcpy(buf, cipher->key, CIPHER_KEY_LEN);
|
|
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
/* Length of symmetrically encrypted data. */
|
|
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
outlen = crypto_pk_public_encrypt(env,buf,pkeylen-overhead,to,padding);
|
|
if (outlen!=pkeylen) {
|
|
goto err;
|
|
}
|
|
r = crypto_cipher_encrypt(cipher,
|
|
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen,
|
|
to+outlen);
|
|
|
|
if (r<0) goto err;
|
|
memset(buf, 0, sizeof(buf));
|
|
crypto_free_cipher_env(cipher);
|
|
return outlen + symlen;
|
|
err:
|
|
memset(buf, 0, sizeof(buf));
|
|
if (cipher) crypto_free_cipher_env(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/* Invert crypto_pk_public_hybrid_encrypt. */
|
|
int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env,
|
|
const unsigned char *from,
|
|
int fromlen, unsigned char *to,
|
|
int padding)
|
|
{
|
|
int overhead, pkeylen, outlen, r;
|
|
crypto_cipher_env_t *cipher = NULL;
|
|
char buf[PK_BYTES+1];
|
|
|
|
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (fromlen <= pkeylen) {
|
|
return crypto_pk_private_decrypt(env,from,fromlen,to,padding);
|
|
}
|
|
outlen = crypto_pk_private_decrypt(env,from,pkeylen,buf,padding);
|
|
if (outlen<0) {
|
|
/* this is only log-levelinfo, because when we're decrypting
|
|
* onions, we try several keys to see which will work */
|
|
log_fn(LOG_INFO, "Error decrypting public-key data");
|
|
return -1;
|
|
}
|
|
if (outlen < CIPHER_KEY_LEN) {
|
|
log_fn(LOG_WARN, "No room for a symmetric key");
|
|
return -1;
|
|
}
|
|
cipher = crypto_create_init_cipher(buf, NULL, 0);
|
|
if (!cipher) {
|
|
return -1;
|
|
}
|
|
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
|
|
outlen -= CIPHER_KEY_LEN;
|
|
r = crypto_cipher_decrypt(cipher, from+pkeylen, fromlen-pkeylen,
|
|
to+outlen);
|
|
if (r<0)
|
|
goto err;
|
|
memset(buf,0,sizeof(buf));
|
|
crypto_free_cipher_env(cipher);
|
|
return outlen + (fromlen-pkeylen);
|
|
err:
|
|
memset(buf,0,sizeof(buf));
|
|
if (cipher) crypto_free_cipher_env(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/* Encode the public portion of 'pk' into 'dest'. Return -1 on error,
|
|
* or the number of characters used on success.
|
|
*/
|
|
int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
|
|
{
|
|
int len;
|
|
unsigned char *buf, *cp;
|
|
len = i2d_RSAPublicKey(pk->key, NULL);
|
|
if (len < 0 || len > dest_len)
|
|
return -1;
|
|
cp = buf = tor_malloc(len+1);
|
|
len = i2d_RSAPublicKey(pk->key, &cp);
|
|
if (len < 0) {
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
/* We don't encode directly into 'dest', because that would be illegal
|
|
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
|
*/
|
|
memcpy(dest,buf,len);
|
|
tor_free(buf);
|
|
return len;
|
|
}
|
|
|
|
/* Decode an ASN1-encoded public key from str.
|
|
*/
|
|
crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len)
|
|
{
|
|
RSA *rsa;
|
|
unsigned char *buf;
|
|
/* This ifdef suppresses a type warning. Take out the first case once
|
|
* everybody is using openssl 0.9.7 or later.
|
|
*/
|
|
#if OPENSSL_VERSION_NUMBER < 0x00907000l
|
|
unsigned char *cp;
|
|
#else
|
|
const unsigned char *cp;
|
|
#endif
|
|
cp = buf = tor_malloc(len);
|
|
memcpy(buf,str,len);
|
|
rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
|
tor_free(buf);
|
|
if (!rsa)
|
|
return NULL; /* XXXX log openssl error */
|
|
return _crypto_new_pk_env_rsa(rsa);
|
|
}
|
|
|
|
/* Given a private or public key pk, put a SHA1 hash of the public key into
|
|
* digest_out (must have DIGEST_LEN bytes of space).
|
|
*/
|
|
int crypto_pk_get_digest(crypto_pk_env_t *pk, char *digest_out)
|
|
{
|
|
unsigned char *buf, *bufp;
|
|
int len;
|
|
|
|
len = i2d_RSAPublicKey(pk->key, NULL);
|
|
if (len < 0)
|
|
return -1;
|
|
buf = bufp = tor_malloc(len+1);
|
|
len = i2d_RSAPublicKey(pk->key, &bufp);
|
|
if (len < 0) {
|
|
free(buf);
|
|
return -1;
|
|
}
|
|
if (crypto_digest(buf, len, digest_out) < 0) {
|
|
free(buf);
|
|
return -1;
|
|
}
|
|
free(buf);
|
|
return 0;
|
|
}
|
|
|
|
/* Given a private or public key pk, put a fingerprint of the
|
|
* public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of
|
|
* space).
|
|
*/
|
|
int
|
|
crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out)
|
|
{
|
|
unsigned char *bufp;
|
|
unsigned char digest[DIGEST_LEN];
|
|
unsigned char buf[FINGERPRINT_LEN+1];
|
|
int i;
|
|
if (crypto_pk_get_digest(pk, digest)) {
|
|
return -1;
|
|
}
|
|
bufp = buf;
|
|
for (i = 0; i < DIGEST_LEN; ++i) {
|
|
sprintf(bufp,"%02X",digest[i]);
|
|
bufp += 2;
|
|
if (i%2 && i != 19) {
|
|
*bufp++ = ' ';
|
|
}
|
|
}
|
|
*bufp = '\0';
|
|
tor_assert(strlen(buf) == FINGERPRINT_LEN);
|
|
tor_assert(crypto_pk_check_fingerprint_syntax(buf));
|
|
strcpy(fp_out, buf);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_pk_check_fingerprint_syntax(const char *s)
|
|
{
|
|
int i;
|
|
for (i = 0; i < FINGERPRINT_LEN; ++i) {
|
|
if ((i%5) == 4) {
|
|
if (!isspace((int)s[i])) return 0;
|
|
} else {
|
|
if (!isxdigit((int)s[i])) return 0;
|
|
}
|
|
}
|
|
if (s[FINGERPRINT_LEN]) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* symmetric crypto */
|
|
int crypto_cipher_generate_key(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
return crypto_rand(CIPHER_KEY_LEN, env->key);
|
|
}
|
|
|
|
int crypto_cipher_set_iv(crypto_cipher_env_t *env, const unsigned char *iv)
|
|
{
|
|
tor_assert(env && (CIPHER_IV_LEN==0 || iv));
|
|
|
|
if (!CIPHER_IV_LEN)
|
|
return 0;
|
|
|
|
if (!env->iv)
|
|
return -1;
|
|
|
|
memcpy(env->iv, iv, CIPHER_IV_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
|
|
{
|
|
tor_assert(env && key);
|
|
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
memcpy(env->key, key, CIPHER_KEY_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
|
|
{
|
|
tor_assert(env && env->cipher && from && fromlen && to);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
|
|
{
|
|
tor_assert(env && from && to);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_cipher_rewind(crypto_cipher_env_t *env, long delta)
|
|
{
|
|
return crypto_cipher_advance(env, -delta);
|
|
}
|
|
|
|
int
|
|
crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
|
|
{
|
|
aes_adjust_counter(env->cipher, delta);
|
|
return 0;
|
|
}
|
|
|
|
/* SHA-1 */
|
|
int crypto_digest(const unsigned char *m, int len, unsigned char *digest)
|
|
{
|
|
tor_assert(m && digest);
|
|
return (SHA1(m,len,digest) == NULL);
|
|
}
|
|
|
|
struct crypto_digest_env_t {
|
|
SHA_CTX d;
|
|
};
|
|
|
|
crypto_digest_env_t *
|
|
crypto_new_digest_env(void)
|
|
{
|
|
crypto_digest_env_t *r;
|
|
r = tor_malloc(sizeof(crypto_digest_env_t));
|
|
SHA1_Init(&r->d);
|
|
return r;
|
|
}
|
|
|
|
void
|
|
crypto_free_digest_env(crypto_digest_env_t *digest) {
|
|
tor_free(digest);
|
|
}
|
|
|
|
void
|
|
crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
|
|
size_t len)
|
|
{
|
|
tor_assert(digest);
|
|
tor_assert(data);
|
|
SHA1_Update(&digest->d, (void*)data, len);
|
|
}
|
|
|
|
void crypto_digest_get_digest(crypto_digest_env_t *digest,
|
|
char *out, size_t out_len)
|
|
{
|
|
static char r[DIGEST_LEN];
|
|
tor_assert(digest && out);
|
|
tor_assert(out_len <= DIGEST_LEN);
|
|
SHA1_Final(r, &digest->d);
|
|
memcpy(out, r, out_len);
|
|
}
|
|
|
|
crypto_digest_env_t *
|
|
crypto_digest_dup(const crypto_digest_env_t *digest)
|
|
{
|
|
crypto_digest_env_t *r;
|
|
tor_assert(digest);
|
|
r = tor_malloc(sizeof(crypto_digest_env_t));
|
|
memcpy(r,digest,sizeof(crypto_digest_env_t));
|
|
return r;
|
|
}
|
|
|
|
void
|
|
crypto_digest_assign(crypto_digest_env_t *into,
|
|
const crypto_digest_env_t *from)
|
|
{
|
|
tor_assert(into && from);
|
|
memcpy(into,from,sizeof(crypto_digest_env_t));
|
|
}
|
|
|
|
/* DH */
|
|
static BIGNUM *dh_param_p = NULL;
|
|
static BIGNUM *dh_param_g = NULL;
|
|
|
|
static void init_dh_param() {
|
|
BIGNUM *p, *g;
|
|
int r;
|
|
if (dh_param_p && dh_param_g)
|
|
return;
|
|
|
|
p = BN_new();
|
|
g = BN_new();
|
|
tor_assert(p && g);
|
|
|
|
#if 0
|
|
/* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe
|
|
prime, and supposedly it equals:
|
|
2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
|
|
*/
|
|
r = BN_hex2bn(&p,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
|
|
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
|
|
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
|
|
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
|
|
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
|
|
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
|
|
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
|
|
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF");
|
|
#endif
|
|
|
|
/* This is from rfc2409, section 6.2. It's a safe prime, and
|
|
supposedly it equals:
|
|
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
|
|
*/
|
|
/* See also rfc 3536 */
|
|
r = BN_hex2bn(&p,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF");
|
|
tor_assert(r);
|
|
|
|
r = BN_set_word(g, 2);
|
|
tor_assert(r);
|
|
dh_param_p = p;
|
|
dh_param_g = g;
|
|
}
|
|
|
|
crypto_dh_env_t *crypto_dh_new()
|
|
{
|
|
crypto_dh_env_t *res = NULL;
|
|
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
|
|
res = tor_malloc(sizeof(crypto_dh_env_t));
|
|
res->dh = NULL;
|
|
|
|
if (!(res->dh = DH_new()))
|
|
goto err;
|
|
|
|
if (!(res->dh->p = BN_dup(dh_param_p)))
|
|
goto err;
|
|
|
|
if (!(res->dh->g = BN_dup(dh_param_g)))
|
|
goto err;
|
|
|
|
return res;
|
|
err:
|
|
if (res && res->dh) DH_free(res->dh); /* frees p and g too */
|
|
if (res) free(res);
|
|
return NULL;
|
|
}
|
|
int crypto_dh_get_bytes(crypto_dh_env_t *dh)
|
|
{
|
|
tor_assert(dh);
|
|
return DH_size(dh->dh);
|
|
}
|
|
int crypto_dh_generate_public(crypto_dh_env_t *dh)
|
|
{
|
|
if (!DH_generate_key(dh->dh))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
|
|
{
|
|
int bytes;
|
|
tor_assert(dh);
|
|
if (!dh->dh->pub_key) {
|
|
if (!DH_generate_key(dh->dh))
|
|
return -1;
|
|
}
|
|
|
|
tor_assert(dh->dh->pub_key);
|
|
bytes = BN_num_bytes(dh->dh->pub_key);
|
|
if (pubkey_len < bytes)
|
|
return -1;
|
|
|
|
memset(pubkey, 0, pubkey_len);
|
|
BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef MIN
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
int crypto_dh_compute_secret(crypto_dh_env_t *dh,
|
|
const char *pubkey, int pubkey_len,
|
|
char *secret_out, int secret_bytes_out)
|
|
{
|
|
unsigned char hash[DIGEST_LEN];
|
|
unsigned char *secret_tmp = NULL;
|
|
BIGNUM *pubkey_bn = NULL;
|
|
int secret_len;
|
|
int i;
|
|
tor_assert(dh);
|
|
tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
|
|
|
|
if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL)))
|
|
goto error;
|
|
secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1);
|
|
secret_len = DH_compute_key(secret_tmp, pubkey_bn, dh->dh);
|
|
/* sometimes secret_len might be less than 128, e.g., 127. that's ok. */
|
|
for (i = 0; i < secret_bytes_out; i += DIGEST_LEN) {
|
|
secret_tmp[secret_len] = (unsigned char) i/DIGEST_LEN;
|
|
if (crypto_digest(secret_tmp, secret_len+1, hash))
|
|
goto error;
|
|
memcpy(secret_out+i, hash, MIN(DIGEST_LEN, secret_bytes_out-i));
|
|
}
|
|
secret_len = secret_bytes_out;
|
|
|
|
goto done;
|
|
error:
|
|
secret_len = -1;
|
|
done:
|
|
if (pubkey_bn)
|
|
BN_free(pubkey_bn);
|
|
tor_free(secret_tmp);
|
|
return secret_len;
|
|
}
|
|
void crypto_dh_free(crypto_dh_env_t *dh)
|
|
{
|
|
tor_assert(dh && dh->dh);
|
|
DH_free(dh->dh);
|
|
free(dh);
|
|
}
|
|
|
|
/* random numbers */
|
|
#ifdef MS_WINDOWS
|
|
int crypto_seed_rng()
|
|
{
|
|
static int provider_set = 0;
|
|
static HCRYPTPROV provider;
|
|
char buf[DIGEST_LEN+1];
|
|
|
|
if (!provider_set) {
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, 0)) {
|
|
if (GetLastError() != NTE_BAD_KEYSET) {
|
|
log_fn(LOG_ERR,"Can't get CryptoAPI provider [1]");
|
|
return -1;
|
|
}
|
|
/* Yes, we need to try it twice. */
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
CRYPT_NEWKEYSET)) {
|
|
log_fn(LOG_ERR,"Can't get CryptoAPI provider [2]");
|
|
return -1;
|
|
}
|
|
}
|
|
provider_set = 1;
|
|
}
|
|
if (!CryptGenRandom(provider, DIGEST_LEN, buf)) {
|
|
log_fn(LOG_ERR,"Can't get entropy from CryptoAPI.");
|
|
return -1;
|
|
}
|
|
RAND_seed(buf, DIGEST_LEN);
|
|
/* And add the current screen state to the entopy pool for
|
|
* good measure. */
|
|
RAND_screen();
|
|
return 0;
|
|
}
|
|
#else
|
|
int crypto_seed_rng()
|
|
{
|
|
static char *filenames[] = {
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
};
|
|
int i, n;
|
|
char buf[DIGEST_LEN+1];
|
|
FILE *f;
|
|
|
|
for (i = 0; filenames[i]; ++i) {
|
|
f = fopen(filenames[i], "rb");
|
|
if (!f) continue;
|
|
log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]);
|
|
n = fread(buf, 1, DIGEST_LEN, f);
|
|
fclose(f);
|
|
if (n != DIGEST_LEN) {
|
|
log_fn(LOG_WARN, "Error reading from entropy source");
|
|
return -1;
|
|
}
|
|
RAND_seed(buf, DIGEST_LEN);
|
|
return 0;
|
|
}
|
|
|
|
log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found.");
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
int crypto_rand(unsigned int n, unsigned char *to)
|
|
{
|
|
tor_assert(to);
|
|
return (RAND_bytes(to, n) != 1);
|
|
}
|
|
|
|
void crypto_pseudo_rand(unsigned int n, unsigned char *to)
|
|
{
|
|
tor_assert(to);
|
|
if (RAND_pseudo_bytes(to, n) == -1) {
|
|
log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly.");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* return a pseudo random number between 0 and max-1 */
|
|
int crypto_pseudo_rand_int(unsigned int max) {
|
|
unsigned int val;
|
|
unsigned int cutoff;
|
|
tor_assert(max < UINT_MAX);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
while(1) {
|
|
crypto_pseudo_rand(sizeof(val), (unsigned char*) &val);
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/* errors */
|
|
const char *crypto_perror()
|
|
{
|
|
return (const char *)ERR_reason_error_string(ERR_get_error());
|
|
}
|
|
|
|
int
|
|
base64_encode(char *dest, int destlen, const char *src, int srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
|
|
/* 48 bytes of input -> 64 bytes of output plus newline.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/48)+1)*66)
|
|
return -1;
|
|
|
|
EVP_EncodeInit(&ctx);
|
|
EVP_EncodeUpdate(&ctx, dest, &len, (char*) src, srclen);
|
|
EVP_EncodeFinal(&ctx, dest+len, &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
int
|
|
base64_decode(char *dest, int destlen, const char *src, int srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
/* 64 bytes of input -> *up to* 48 bytes of output.
|
|
Plus one more byte, in caes I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/64)+1)*49)
|
|
return -1;
|
|
|
|
EVP_DecodeInit(&ctx);
|
|
EVP_DecodeUpdate(&ctx, dest, &len, (char*) src, srclen);
|
|
EVP_DecodeFinal(&ctx, dest, &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
|
|
/* Implement base32 encoding as in rfc3548. Limitation: Requires that
|
|
* srclen is a multiple of 5.
|
|
*/
|
|
int
|
|
base32_encode(char *dest, int destlen, const char *src, int srclen)
|
|
{
|
|
int nbits, i, bit, v, u;
|
|
nbits = srclen * 8;
|
|
|
|
if ((nbits%5) != 0)
|
|
/* We need an even multiple of 5 bits. */
|
|
return -1;
|
|
if ((nbits/5)+1 > destlen)
|
|
/* Not enough space. */
|
|
return -1;
|
|
|
|
for (i=0,bit=0; bit < nbits; ++i, bit+=5) {
|
|
/* set v to the 16-bit value starting at src[bits/8], 0-padded. */
|
|
v = ((uint8_t)src[bit/8]) << 8;
|
|
if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1];
|
|
/* set u to the 5-bit value at the bit'th bit of src. */
|
|
u = (v >> (11-(bit%8))) & 0x1F;
|
|
dest[i] = BASE32_CHARS[u];
|
|
}
|
|
dest[i] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Local Variables:
|
|
mode:c
|
|
indent-tabs-mode:nil
|
|
c-basic-offset:2
|
|
End:
|
|
*/
|