tor/src/common/crypto_curve25519.c
Nick Mathewson 25c05cb747 Refactor strong os-RNG into its own function
Previously, we only used the strong OS entropy source as part of
seeding OpenSSL's RNG.  But with curve25519, we'll have occasion to
want to generate some keys using extremely-good entopy, as well as the
means to do so.  So let's!

This patch refactors the OS-entropy wrapper into its own
crypto_strongest_rand() function, and makes our new
curve25519_secret_key_generate function try it as appropriate.
2013-01-02 14:11:13 -05:00

98 lines
3.2 KiB
C

/* Copyright (c) 2012, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/* Wrapper code for a curve25519 implementation. */
#define CRYPTO_CURVE25519_PRIVATE
#include "orconfig.h"
#include "crypto.h"
#include "crypto_curve25519.h"
#include "util.h"
/* ==============================
Part 1: wrap a suitable curve25519 implementation as curve25519_impl
============================== */
#ifdef USE_CURVE25519_DONNA
int curve25519_donna(uint8_t *mypublic,
const uint8_t *secret, const uint8_t *basepoint);
#endif
#ifdef USE_CURVE25519_NACL
#include <crypto_scalarmult_curve25519.h>
#endif
int
curve25519_impl(uint8_t *output, const uint8_t *secret,
const uint8_t *basepoint)
{
#ifdef USE_CURVE25519_DONNA
return curve25519_donna(output, secret, basepoint);
#elif defined(USE_CURVE25519_NACL)
return crypto_scalarmult_curve25519(output, secret, basepoint);
#else
#error "No implementation of curve25519 is available."
#endif
}
/* ==============================
Part 2: Wrap curve25519_impl with some convenience types and functions.
============================== */
/**
* Return true iff a curve25519_public_key_t seems valid. (It's not necessary
* to see if the point is on the curve, since the twist is also secure, but we
* do need to make sure that it isn't the point at infinity.) */
int
curve25519_public_key_is_ok(const curve25519_public_key_t *key)
{
static const uint8_t zero[] =
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
return tor_memneq(key->public_key, zero, CURVE25519_PUBKEY_LEN);
}
/** Generate a new keypair and return the secret key. If <b>extra_strong</b>
* is true, this key is possibly going to get used more than once, so
* use a better-than-usual RNG. */
void
curve25519_secret_key_generate(curve25519_secret_key_t *key_out,
int extra_strong)
{
uint8_t k_tmp[CURVE25519_SECKEY_LEN];
crypto_rand((char*)key_out->secret_key, CURVE25519_SECKEY_LEN);
if (extra_strong && !crypto_strongest_rand(k_tmp, CURVE25519_SECKEY_LEN)) {
/* If they asked for extra-strong entropy and we have some, use it as an
* HMAC key to improve not-so-good entopy rather than using it directly,
* just in case the extra-strong entropy is less amazing than we hoped. */
crypto_hmac_sha256((char *)key_out->secret_key,
(const char *)k_tmp, sizeof(k_tmp),
(const char *)key_out->secret_key, CURVE25519_SECKEY_LEN);
}
memwipe(k_tmp, 0, sizeof(k_tmp));
key_out->secret_key[0] &= 248;
key_out->secret_key[31] &= 127;
key_out->secret_key[31] |= 64;
}
void
curve25519_public_key_generate(curve25519_public_key_t *key_out,
const curve25519_secret_key_t *seckey)
{
static const uint8_t basepoint[32] = {9};
curve25519_impl(key_out->public_key, seckey->secret_key, basepoint);
}
/** Perform the curve25519 ECDH handshake with <b>skey</b> and <b>pkey</b>,
* writing CURVE25519_OUTPUT_LEN bytes of output into <b>output</b>. */
void
curve25519_handshake(uint8_t *output,
const curve25519_secret_key_t *skey,
const curve25519_public_key_t *pkey)
{
curve25519_impl(output, skey->secret_key, pkey->public_key);
}