mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-29 00:43:28 +01:00
333 lines
9.2 KiB
C
333 lines
9.2 KiB
C
/* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
* Copyright (c) 2007-2020, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
|
|
#include "orconfig.h"
|
|
#define CRYPTO_RAND_PRIVATE
|
|
#include "core/or/or.h"
|
|
#include "test/test.h"
|
|
#include "lib/crypt_ops/aes.h"
|
|
#include "lib/crypt_ops/crypto_format.h"
|
|
#include "lib/crypt_ops/crypto_rand.h"
|
|
|
|
/** Run unit tests for our random number generation function and its wrappers.
|
|
*/
|
|
static void
|
|
test_crypto_rng(void *arg)
|
|
{
|
|
int i, j, allok;
|
|
char data1[100], data2[100];
|
|
double d;
|
|
char *h=NULL;
|
|
|
|
/* Try out RNG. */
|
|
(void)arg;
|
|
tt_assert(! crypto_seed_rng());
|
|
crypto_rand(data1, 100);
|
|
crypto_rand(data2, 100);
|
|
tt_mem_op(data1,OP_NE, data2,100);
|
|
allok = 1;
|
|
for (i = 0; i < 100; ++i) {
|
|
uint64_t big;
|
|
char *host;
|
|
j = crypto_rand_int(100);
|
|
if (j < 0 || j >= 100)
|
|
allok = 0;
|
|
big = crypto_rand_uint64(UINT64_C(1)<<40);
|
|
if (big >= (UINT64_C(1)<<40))
|
|
allok = 0;
|
|
big = crypto_rand_uint64(UINT64_C(5));
|
|
if (big >= 5)
|
|
allok = 0;
|
|
d = crypto_rand_double();
|
|
tt_assert(d >= 0);
|
|
tt_assert(d < 1.0);
|
|
host = crypto_random_hostname(3,8,"www.",".onion");
|
|
if (strcmpstart(host,"www.") ||
|
|
strcmpend(host,".onion") ||
|
|
strlen(host) < 13 ||
|
|
strlen(host) > 18)
|
|
allok = 0;
|
|
tor_free(host);
|
|
}
|
|
|
|
/* Make sure crypto_random_hostname clips its inputs properly. */
|
|
h = crypto_random_hostname(20000, 9000, "www.", ".onion");
|
|
tt_assert(! strcmpstart(h,"www."));
|
|
tt_assert(! strcmpend(h,".onion"));
|
|
tt_int_op(63+4+6, OP_EQ, strlen(h));
|
|
|
|
tt_assert(allok);
|
|
done:
|
|
tor_free(h);
|
|
}
|
|
|
|
static void
|
|
test_crypto_rng_range(void *arg)
|
|
{
|
|
int got_smallest = 0, got_largest = 0;
|
|
int i;
|
|
|
|
(void)arg;
|
|
for (i = 0; i < 1000; ++i) {
|
|
int x = crypto_rand_int_range(5,9);
|
|
tt_int_op(x, OP_GE, 5);
|
|
tt_int_op(x, OP_LT, 9);
|
|
if (x == 5)
|
|
got_smallest = 1;
|
|
if (x == 8)
|
|
got_largest = 1;
|
|
}
|
|
/* These fail with probability 1/10^603. */
|
|
tt_assert(got_smallest);
|
|
tt_assert(got_largest);
|
|
|
|
got_smallest = got_largest = 0;
|
|
const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
|
|
for (i = 0; i < 1000; ++i) {
|
|
uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
|
|
tt_u64_op(x, OP_GE, ten_billion);
|
|
tt_u64_op(x, OP_LT, ten_billion+10);
|
|
if (x == ten_billion)
|
|
got_smallest = 1;
|
|
if (x == ten_billion+9)
|
|
got_largest = 1;
|
|
}
|
|
|
|
tt_assert(got_smallest);
|
|
tt_assert(got_largest);
|
|
|
|
const time_t now = time(NULL);
|
|
for (i = 0; i < 2000; ++i) {
|
|
time_t x = crypto_rand_time_range(now, now+60);
|
|
tt_i64_op(x, OP_GE, now);
|
|
tt_i64_op(x, OP_LT, now+60);
|
|
if (x == now)
|
|
got_smallest = 1;
|
|
if (x == now+59)
|
|
got_largest = 1;
|
|
}
|
|
|
|
tt_assert(got_smallest);
|
|
tt_assert(got_largest);
|
|
done:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_crypto_rng_strongest(void *arg)
|
|
{
|
|
const char *how = arg;
|
|
int broken = 0;
|
|
|
|
if (how == NULL) {
|
|
;
|
|
} else if (!strcmp(how, "nosyscall")) {
|
|
break_strongest_rng_syscall = 1;
|
|
} else if (!strcmp(how, "nofallback")) {
|
|
break_strongest_rng_fallback = 1;
|
|
} else if (!strcmp(how, "broken")) {
|
|
broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
|
|
}
|
|
|
|
#define N 128
|
|
uint8_t combine_and[N];
|
|
uint8_t combine_or[N];
|
|
int i, j;
|
|
|
|
memset(combine_and, 0xff, N);
|
|
memset(combine_or, 0, N);
|
|
|
|
for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
|
|
uint8_t output[N];
|
|
memset(output, 0, N);
|
|
if (how == NULL) {
|
|
/* this one can't fail. */
|
|
crypto_strongest_rand(output, sizeof(output));
|
|
} else {
|
|
int r = crypto_strongest_rand_raw(output, sizeof(output));
|
|
if (r == -1) {
|
|
if (broken) {
|
|
goto done; /* we're fine. */
|
|
}
|
|
/* This function is allowed to break, but only if it always breaks. */
|
|
tt_int_op(i, OP_EQ, 0);
|
|
tt_skip();
|
|
} else {
|
|
tt_assert(! broken);
|
|
}
|
|
}
|
|
for (j = 0; j < N; ++j) {
|
|
combine_and[j] &= output[j];
|
|
combine_or[j] |= output[j];
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < N; ++j) {
|
|
tt_int_op(combine_and[j], OP_EQ, 0);
|
|
tt_int_op(combine_or[j], OP_EQ, 0xff);
|
|
}
|
|
done:
|
|
;
|
|
#undef N
|
|
}
|
|
|
|
static void
|
|
test_crypto_rng_fast(void *arg)
|
|
{
|
|
(void)arg;
|
|
crypto_fast_rng_t *rng = crypto_fast_rng_new();
|
|
tt_assert(rng);
|
|
|
|
/* Rudimentary black-block test to make sure that our prng outputs
|
|
* have all bits sometimes on and all bits sometimes off. */
|
|
uint64_t m1 = 0, m2 = ~(uint64_t)0;
|
|
const int N = 128;
|
|
|
|
for (int i=0; i < N; ++i) {
|
|
uint64_t v;
|
|
crypto_fast_rng_getbytes(rng, (void*)&v, sizeof(v));
|
|
m1 |= v;
|
|
m2 &= v;
|
|
}
|
|
|
|
tt_u64_op(m1, OP_EQ, ~(uint64_t)0);
|
|
tt_u64_op(m2, OP_EQ, 0);
|
|
|
|
/* Check range functions. */
|
|
int counts[5];
|
|
memset(counts, 0, sizeof(counts));
|
|
for (int i=0; i < N; ++i) {
|
|
unsigned u = crypto_fast_rng_get_uint(rng, 5);
|
|
tt_int_op(u, OP_GE, 0);
|
|
tt_int_op(u, OP_LT, 5);
|
|
counts[u]++;
|
|
|
|
uint64_t u64 = crypto_fast_rng_get_uint64(rng, UINT64_C(1)<<40);
|
|
tt_u64_op(u64, OP_GE, 0);
|
|
tt_u64_op(u64, OP_LT, UINT64_C(1)<<40);
|
|
|
|
double d = crypto_fast_rng_get_double(rng);
|
|
tt_assert(d >= 0.0);
|
|
tt_assert(d < 1.0);
|
|
}
|
|
|
|
/* All values should have come up once. */
|
|
for (int i=0; i<5; ++i) {
|
|
tt_int_op(counts[i], OP_GT, 0);
|
|
}
|
|
|
|
/* per-thread rand_fast shouldn't crash or leak. */
|
|
crypto_fast_rng_t *t_rng = get_thread_fast_rng();
|
|
for (int i = 0; i < N; ++i) {
|
|
uint64_t u64 = crypto_fast_rng_get_uint64(t_rng, UINT64_C(1)<<40);
|
|
tt_u64_op(u64, OP_GE, 0);
|
|
tt_u64_op(u64, OP_LT, UINT64_C(1)<<40);
|
|
}
|
|
|
|
done:
|
|
crypto_fast_rng_free(rng);
|
|
}
|
|
|
|
static void
|
|
test_crypto_rng_fast_whitebox(void *arg)
|
|
{
|
|
(void)arg;
|
|
const size_t buflen = crypto_fast_rng_get_bytes_used_per_stream();
|
|
char *buf = tor_malloc_zero(buflen);
|
|
char *buf2 = tor_malloc_zero(buflen);
|
|
char *buf3 = NULL, *buf4 = NULL;
|
|
|
|
crypto_cipher_t *cipher = NULL, *cipher2 = NULL;
|
|
uint8_t seed[CRYPTO_FAST_RNG_SEED_LEN];
|
|
memset(seed, 0, sizeof(seed));
|
|
|
|
/* Start with a prng with zero key and zero IV. */
|
|
crypto_fast_rng_t *rng = crypto_fast_rng_new_from_seed(seed);
|
|
tt_assert(rng);
|
|
|
|
/* We'll use a stream cipher to keep in sync */
|
|
cipher = crypto_cipher_new_with_iv_and_bits(seed, seed+32, 256);
|
|
|
|
/* The first 48 bytes are used for the next seed -- let's make sure we have
|
|
* them.
|
|
*/
|
|
memset(seed, 0, sizeof(seed));
|
|
crypto_cipher_crypt_inplace(cipher, (char*)seed, sizeof(seed));
|
|
|
|
/* if we get 128 bytes, they should match the bytes from the aes256-counter
|
|
* stream, starting at position 48.
|
|
*/
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 128);
|
|
memset(buf2, 0, 128);
|
|
crypto_cipher_crypt_inplace(cipher, buf2, 128);
|
|
tt_mem_op(buf, OP_EQ, buf2, 128);
|
|
|
|
/* Try that again, with an odd number of bytes. */
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 199);
|
|
memset(buf2, 0, 199);
|
|
crypto_cipher_crypt_inplace(cipher, buf2, 199);
|
|
tt_mem_op(buf, OP_EQ, buf2, 199);
|
|
|
|
/* Make sure that refilling works as expected: skip all but the last 5 bytes
|
|
* of this steam. */
|
|
size_t skip = buflen - (199+128) - 5;
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, skip);
|
|
crypto_cipher_crypt_inplace(cipher, buf2, skip);
|
|
|
|
/* Now get the next 128 bytes. The first 5 will come from this stream, and
|
|
* the next 5 will come from the stream keyed by the new value of 'seed'. */
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 128);
|
|
memset(buf2, 0, 128);
|
|
crypto_cipher_crypt_inplace(cipher, buf2, 5);
|
|
crypto_cipher_free(cipher);
|
|
cipher = crypto_cipher_new_with_iv_and_bits(seed, seed+32, 256);
|
|
memset(seed, 0, sizeof(seed));
|
|
crypto_cipher_crypt_inplace(cipher, (char*)seed, sizeof(seed));
|
|
crypto_cipher_crypt_inplace(cipher, buf2+5, 128-5);
|
|
tt_mem_op(buf, OP_EQ, buf2, 128);
|
|
|
|
/* And check the next 7 bytes to make sure we didn't discard anything. */
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 7);
|
|
memset(buf2, 0, 7);
|
|
crypto_cipher_crypt_inplace(cipher, buf2, 7);
|
|
tt_mem_op(buf, OP_EQ, buf2, 7);
|
|
|
|
/* Now try the optimization for long outputs. */
|
|
buf3 = tor_malloc(65536);
|
|
crypto_fast_rng_getbytes(rng, (uint8_t*)buf3, 65536);
|
|
|
|
buf4 = tor_malloc_zero(65536);
|
|
uint8_t seed2[CRYPTO_FAST_RNG_SEED_LEN];
|
|
memset(seed2, 0, sizeof(seed2));
|
|
crypto_cipher_crypt_inplace(cipher, (char*)seed2, sizeof(seed2));
|
|
cipher2 = crypto_cipher_new_with_iv_and_bits(seed2, seed2+32, 256);
|
|
crypto_cipher_crypt_inplace(cipher2, buf4, 65536);
|
|
tt_mem_op(buf3, OP_EQ, buf4, 65536);
|
|
|
|
done:
|
|
crypto_fast_rng_free(rng);
|
|
crypto_cipher_free(cipher);
|
|
crypto_cipher_free(cipher2);
|
|
tor_free(buf);
|
|
tor_free(buf2);
|
|
tor_free(buf3);
|
|
tor_free(buf4);
|
|
}
|
|
|
|
struct testcase_t crypto_rng_tests[] = {
|
|
{ "rng", test_crypto_rng, 0, NULL, NULL },
|
|
{ "rng_range", test_crypto_rng_range, 0, NULL, NULL },
|
|
{ "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
|
|
{ "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
|
|
&passthrough_setup, (void*)"nosyscall" },
|
|
{ "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
|
|
&passthrough_setup, (void*)"nofallback" },
|
|
{ "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
|
|
&passthrough_setup, (void*)"broken" },
|
|
{ "fast", test_crypto_rng_fast, 0, NULL, NULL },
|
|
{ "fast_whitebox", test_crypto_rng_fast_whitebox, 0, NULL, NULL },
|
|
END_OF_TESTCASES
|
|
};
|