mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-30 23:53:32 +01:00
dcd33ef599
null. better safe than sorry. svn:r8767
1878 lines
48 KiB
C
1878 lines
48 KiB
C
/* Copyright (c) 2001 Matej Pfajfar.
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
const char crypto_c_id[] =
|
|
"$Id$";
|
|
|
|
/**
|
|
* \file crypto.c
|
|
* \brief Wrapper functions to present a consistent interface to
|
|
* public-key and symmetric cryptography operations from OpenSSL.
|
|
**/
|
|
|
|
#include "orconfig.h"
|
|
|
|
#ifdef MS_WINDOWS
|
|
#define WIN32_WINNT 0x400
|
|
#define _WIN32_WINNT 0x400
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#include <wincrypt.h>
|
|
#endif
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/opensslv.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/conf.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#ifdef HAVE_CTYPE_H
|
|
#include <ctype.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_FCNTL_H
|
|
#include <fcntl.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_FCNTL_H
|
|
#include <sys/fcntl.h>
|
|
#endif
|
|
|
|
#include "crypto.h"
|
|
#include "log.h"
|
|
#include "aes.h"
|
|
#include "util.h"
|
|
#include "container.h"
|
|
#include "compat.h"
|
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x00905000l
|
|
#error "We require openssl >= 0.9.5"
|
|
#endif
|
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x00907000l
|
|
#define NO_ENGINES
|
|
#else
|
|
#include <openssl/engine.h>
|
|
#endif
|
|
|
|
/** Macro: is k a valid RSA public or private key? */
|
|
#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
|
|
/** Macro: is k a valid RSA private key? */
|
|
#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p)
|
|
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
/** A number of prealloced mutexes for use by openssl. */
|
|
static tor_mutex_t **_openssl_mutexes = NULL;
|
|
/** How many mutexes have we allocated for use by openssl? */
|
|
static int _n_openssl_mutexes = 0;
|
|
#endif
|
|
|
|
/** A public key, or a public/private keypair. */
|
|
struct crypto_pk_env_t
|
|
{
|
|
int refs; /* reference counting so we don't have to copy keys */
|
|
RSA *key;
|
|
};
|
|
|
|
/** Key and stream information for a stream cipher. */
|
|
struct crypto_cipher_env_t
|
|
{
|
|
char key[CIPHER_KEY_LEN];
|
|
aes_cnt_cipher_t *cipher;
|
|
};
|
|
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
* while we're waiting for the second.*/
|
|
struct crypto_dh_env_t {
|
|
DH *dh;
|
|
};
|
|
|
|
/* Prototypes for functions only used by tortls.c */
|
|
crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa);
|
|
RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env);
|
|
EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private);
|
|
DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh);
|
|
|
|
static int setup_openssl_threading(void);
|
|
static int tor_check_dh_key(BIGNUM *bn);
|
|
|
|
/** Return the number of bytes added by padding method <b>padding</b>.
|
|
*/
|
|
static INLINE int
|
|
crypto_get_rsa_padding_overhead(int padding)
|
|
{
|
|
switch (padding)
|
|
{
|
|
case RSA_NO_PADDING: return 0;
|
|
case RSA_PKCS1_OAEP_PADDING: return 42;
|
|
case RSA_PKCS1_PADDING: return 11;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
|
|
*/
|
|
static INLINE int
|
|
crypto_get_rsa_padding(int padding)
|
|
{
|
|
switch (padding)
|
|
{
|
|
case PK_NO_PADDING: return RSA_NO_PADDING;
|
|
case PK_PKCS1_PADDING: return RSA_PKCS1_PADDING;
|
|
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
|
|
default: tor_assert(0); return -1;
|
|
}
|
|
}
|
|
|
|
/** Boolean: has OpenSSL's crypto been initialized? */
|
|
static int _crypto_global_initialized = 0;
|
|
|
|
/** Log all pending crypto errors at level <b>severity</b>. Use
|
|
* <b>doing</b> to describe our current activities.
|
|
*/
|
|
static void
|
|
crypto_log_errors(int severity, const char *doing)
|
|
{
|
|
unsigned int err;
|
|
const char *msg, *lib, *func;
|
|
while ((err = ERR_get_error()) != 0) {
|
|
msg = (const char*)ERR_reason_error_string(err);
|
|
lib = (const char*)ERR_lib_error_string(err);
|
|
func = (const char*)ERR_func_error_string(err);
|
|
if (!msg) msg = "(null)";
|
|
if (!lib) lib = "(null)";
|
|
if (!func) func = "(null)";
|
|
if (doing) {
|
|
log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
|
|
doing, msg, lib, func);
|
|
} else {
|
|
log(severity, LD_CRYPTO, "crypto error: %s (in %s:%s)", msg, lib, func);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NO_ENGINES
|
|
/** Log any OpenSSL engines we're using at NOTICE. */
|
|
static void
|
|
log_engine(const char *fn, ENGINE *e)
|
|
{
|
|
if (e) {
|
|
const char *name, *id;
|
|
name = ENGINE_get_name(e);
|
|
id = ENGINE_get_id(e);
|
|
log(LOG_NOTICE, LD_CRYPTO, "Using OpenSSL engine %s [%s] for %s",
|
|
name?name:"?", id?id:"?", fn);
|
|
} else {
|
|
log(LOG_INFO, LD_CRYPTO, "Using default implementation for %s", fn);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/** Initialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_global_init(int useAccel)
|
|
{
|
|
if (!_crypto_global_initialized) {
|
|
ERR_load_crypto_strings();
|
|
OpenSSL_add_all_algorithms();
|
|
_crypto_global_initialized = 1;
|
|
setup_openssl_threading();
|
|
/* XXX the below is a bug, since we can't know if we're supposed
|
|
* to be using hardware acceleration or not. we should arrange
|
|
* for this function to be called before init_keys. But make it
|
|
* not complain loudly, at least until we make acceleration work. */
|
|
if (useAccel < 0) {
|
|
log_info(LD_CRYPTO, "Initializing OpenSSL via tor_tls_init().");
|
|
}
|
|
#ifndef NO_ENGINES
|
|
if (useAccel > 0) {
|
|
log_info(LD_CRYPTO, "Initializing OpenSSL engine support.");
|
|
ENGINE_load_builtin_engines();
|
|
if (!ENGINE_register_all_complete())
|
|
return -1;
|
|
|
|
/* XXXX make sure this isn't leaking. */
|
|
log_engine("RSA", ENGINE_get_default_RSA());
|
|
log_engine("DH", ENGINE_get_default_DH());
|
|
log_engine("RAND", ENGINE_get_default_RAND());
|
|
log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
|
|
log_engine("3DES", ENGINE_get_cipher_engine(NID_des_ede3_ecb));
|
|
log_engine("AES", ENGINE_get_cipher_engine(NID_aes_128_ecb));
|
|
}
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Free crypto resources held by this thread. */
|
|
void
|
|
crypto_thread_cleanup(void)
|
|
{
|
|
ERR_remove_state(0);
|
|
}
|
|
|
|
/** Uninitialize the crypto library. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_global_cleanup(void)
|
|
{
|
|
EVP_cleanup();
|
|
ERR_remove_state(0);
|
|
ERR_free_strings();
|
|
#ifndef NO_ENGINES
|
|
ENGINE_cleanup();
|
|
CONF_modules_unload(1);
|
|
CRYPTO_cleanup_all_ex_data();
|
|
#endif
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
if (_n_openssl_mutexes) {
|
|
int n = _n_openssl_mutexes;
|
|
tor_mutex_t **ms = _openssl_mutexes;
|
|
int i;
|
|
_openssl_mutexes = NULL;
|
|
_n_openssl_mutexes = 0;
|
|
for (i=0;i<n;++i) {
|
|
tor_mutex_free(ms[i]);
|
|
}
|
|
tor_free(ms);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/** used by tortls.c: wrap an RSA* in a crypto_pk_env_t. */
|
|
crypto_pk_env_t *
|
|
_crypto_new_pk_env_rsa(RSA *rsa)
|
|
{
|
|
crypto_pk_env_t *env;
|
|
tor_assert(rsa);
|
|
env = tor_malloc(sizeof(crypto_pk_env_t));
|
|
env->refs = 1;
|
|
env->key = rsa;
|
|
return env;
|
|
}
|
|
|
|
/** used by tortls.c: return the RSA* from a crypto_pk_env_t. */
|
|
RSA *
|
|
_crypto_pk_env_get_rsa(crypto_pk_env_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_env_t. Iff
|
|
* private is set, include the private-key portion of the key. */
|
|
EVP_PKEY *
|
|
_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env, int private)
|
|
{
|
|
RSA *key = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
tor_assert(env->key);
|
|
if (private) {
|
|
if (!(key = RSAPrivateKey_dup(env->key)))
|
|
goto error;
|
|
} else {
|
|
if (!(key = RSAPublicKey_dup(env->key)))
|
|
goto error;
|
|
}
|
|
if (!(pkey = EVP_PKEY_new()))
|
|
goto error;
|
|
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
|
goto error;
|
|
return pkey;
|
|
error:
|
|
if (pkey)
|
|
EVP_PKEY_free(pkey);
|
|
if (key)
|
|
RSA_free(key);
|
|
return NULL;
|
|
}
|
|
|
|
/** Used by tortls.c: Get the DH* from a crypto_dh_env_t.
|
|
*/
|
|
DH *
|
|
_crypto_dh_env_get_dh(crypto_dh_env_t *dh)
|
|
{
|
|
return dh->dh;
|
|
}
|
|
|
|
/** Allocate and return storage for a public key. The key itself will not yet
|
|
* be set.
|
|
*/
|
|
crypto_pk_env_t *
|
|
crypto_new_pk_env(void)
|
|
{
|
|
RSA *rsa;
|
|
|
|
rsa = RSA_new();
|
|
if (!rsa) return NULL;
|
|
return _crypto_new_pk_env_rsa(rsa);
|
|
}
|
|
|
|
/** Release a reference to an asymmetric key; when all the references
|
|
* are released, free the key.
|
|
*/
|
|
void
|
|
crypto_free_pk_env(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
if (--env->refs > 0)
|
|
return;
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
tor_free(env);
|
|
}
|
|
|
|
/** Create a new symmetric cipher for a given key and encryption flag
|
|
* (1=encrypt, 0=decrypt). Return the crypto object on success; NULL
|
|
* on failure.
|
|
*/
|
|
crypto_cipher_env_t *
|
|
crypto_create_init_cipher(const char *key, int encrypt_mode)
|
|
{
|
|
int r;
|
|
crypto_cipher_env_t *crypto = NULL;
|
|
|
|
if (! (crypto = crypto_new_cipher_env())) {
|
|
log_warn(LD_CRYPTO, "Unable to allocate crypto object");
|
|
return NULL;
|
|
}
|
|
|
|
if (crypto_cipher_set_key(crypto, key)) {
|
|
crypto_log_errors(LOG_WARN, "setting symmetric key");
|
|
goto error;
|
|
}
|
|
|
|
if (encrypt_mode)
|
|
r = crypto_cipher_encrypt_init_cipher(crypto);
|
|
else
|
|
r = crypto_cipher_decrypt_init_cipher(crypto);
|
|
|
|
if (r)
|
|
goto error;
|
|
return crypto;
|
|
|
|
error:
|
|
if (crypto)
|
|
crypto_free_cipher_env(crypto);
|
|
return NULL;
|
|
}
|
|
|
|
/** Allocate and return a new symmetric cipher.
|
|
*/
|
|
crypto_cipher_env_t *
|
|
crypto_new_cipher_env(void)
|
|
{
|
|
crypto_cipher_env_t *env;
|
|
|
|
env = tor_malloc_zero(sizeof(crypto_cipher_env_t));
|
|
env->cipher = aes_new_cipher();
|
|
return env;
|
|
}
|
|
|
|
/** Free a symmetric cipher.
|
|
*/
|
|
void
|
|
crypto_free_cipher_env(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
tor_assert(env->cipher);
|
|
aes_free_cipher(env->cipher);
|
|
tor_free(env);
|
|
}
|
|
|
|
/* public key crypto */
|
|
|
|
/** Generate a new public/private keypair in <b>env</b>. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_generate_key(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = RSA_generate_key(PK_BYTES*8,65537, NULL, NULL);
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "generating RSA key");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Read a PEM-encoded private key from the string <b>s</b> into <b>env</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
crypto_pk_read_private_key_from_string(crypto_pk_env_t *env,
|
|
const char *s)
|
|
{
|
|
BIO *b;
|
|
|
|
tor_assert(env);
|
|
tor_assert(s);
|
|
|
|
/* Create a read-only memory BIO, backed by the nul-terminated string 's' */
|
|
b = BIO_new_mem_buf((char*)s, -1);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
|
|
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,NULL,NULL);
|
|
|
|
BIO_free(b);
|
|
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "Error parsing private key");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Read a PEM-encoded private key from the file named by
|
|
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env,
|
|
const char *keyfile)
|
|
{
|
|
char *contents;
|
|
int r;
|
|
|
|
/* Read the file into a string. */
|
|
contents = read_file_to_str(keyfile, 0, NULL);
|
|
if (!contents) {
|
|
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
|
return -1;
|
|
}
|
|
|
|
/* Try to parse it. */
|
|
r = crypto_pk_read_private_key_from_string(env, contents);
|
|
tor_free(contents);
|
|
if (r)
|
|
return -1; /* read_private_key_from_string already warned, so we don't.*/
|
|
|
|
/* Make sure it's valid. */
|
|
if (crypto_pk_check_key(env) <= 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
|
* newly allocated string. On success, set *<b>dest</b> to the new
|
|
* string, *<b>len</b> to the string's length, and return 0. On
|
|
* failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest,
|
|
size_t *len)
|
|
{
|
|
BUF_MEM *buf;
|
|
BIO *b;
|
|
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
tor_assert(dest);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
/* Now you can treat b as if it were a file. Just use the
|
|
* PEM_*_bio_* functions instead of the non-bio variants.
|
|
*/
|
|
if (!PEM_write_bio_RSAPublicKey(b, env->key)) {
|
|
crypto_log_errors(LOG_WARN, "writing public key to string");
|
|
return -1;
|
|
}
|
|
|
|
BIO_get_mem_ptr(b, &buf);
|
|
(void)BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
|
|
BIO_free(b);
|
|
|
|
tor_assert(buf->length >= 0);
|
|
*dest = tor_malloc(buf->length+1);
|
|
memcpy(*dest, buf->data, buf->length);
|
|
(*dest)[buf->length] = 0; /* nul terminate it */
|
|
*len = buf->length;
|
|
BUF_MEM_free(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
|
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
|
* failure.
|
|
*/
|
|
int
|
|
crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src,
|
|
size_t len)
|
|
{
|
|
BIO *b;
|
|
|
|
tor_assert(env);
|
|
tor_assert(src);
|
|
|
|
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
|
BIO_write(b, src, len);
|
|
|
|
if (env->key)
|
|
RSA_free(env->key);
|
|
env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
|
|
BIO_free(b);
|
|
if (!env->key) {
|
|
crypto_log_errors(LOG_WARN, "reading public key from string");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Write the private key from 'env' into the file named by 'fname',
|
|
* PEM-encoded. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
|
|
const char *fname)
|
|
{
|
|
BIO *bio;
|
|
char *cp;
|
|
long len;
|
|
char *s;
|
|
int r;
|
|
|
|
tor_assert(PRIVATE_KEY_OK(env));
|
|
|
|
if (!(bio = BIO_new(BIO_s_mem())))
|
|
return -1;
|
|
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
|
== 0) {
|
|
crypto_log_errors(LOG_WARN, "writing private key");
|
|
BIO_free(bio);
|
|
return -1;
|
|
}
|
|
len = BIO_get_mem_data(bio, &cp);
|
|
tor_assert(len >= 0);
|
|
s = tor_malloc(len+1);
|
|
memcpy(s, cp, len);
|
|
s[len]='\0';
|
|
r = write_str_to_file(fname, s, 0);
|
|
BIO_free(bio);
|
|
tor_free(s);
|
|
return r;
|
|
}
|
|
|
|
/** Return true iff <b>env</b> has a valid key.
|
|
*/
|
|
int
|
|
crypto_pk_check_key(crypto_pk_env_t *env)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
|
|
r = RSA_check_key(env->key);
|
|
if (r <= 0)
|
|
crypto_log_errors(LOG_WARN,"checking RSA key");
|
|
return r;
|
|
}
|
|
|
|
/** Compare the public-key components of a and b. Return -1 if a\<b, 0
|
|
* if a==b, and 1 if a\>b.
|
|
*/
|
|
int
|
|
crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b)
|
|
{
|
|
int result;
|
|
|
|
if (!a || !b)
|
|
return -1;
|
|
|
|
if (!a->key || !b->key)
|
|
return -1;
|
|
|
|
tor_assert(PUBLIC_KEY_OK(a));
|
|
tor_assert(PUBLIC_KEY_OK(b));
|
|
result = BN_cmp((a->key)->n, (b->key)->n);
|
|
if (result)
|
|
return result;
|
|
return BN_cmp((a->key)->e, (b->key)->e);
|
|
}
|
|
|
|
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
|
|
size_t
|
|
crypto_pk_keysize(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
return (size_t) RSA_size(env->key);
|
|
}
|
|
|
|
/** Increase the reference count of <b>env</b>, and return it.
|
|
*/
|
|
crypto_pk_env_t *
|
|
crypto_pk_dup_key(crypto_pk_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->key);
|
|
|
|
env->refs++;
|
|
return env;
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
|
|
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
* write the result to <b>to</b>, and return the number of bytes
|
|
* written. On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_public_encrypt(crypto_pk_env_t *env, char *to,
|
|
const char *from, size_t fromlen, int padding)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
|
|
r = RSA_public_encrypt(fromlen, (unsigned char*)from, (unsigned char*)to,
|
|
env->key, crypto_get_rsa_padding(padding));
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "performing RSA encryption");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
|
|
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
* write the result to <b>to</b>, and return the number of bytes
|
|
* written. On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_private_decrypt(crypto_pk_env_t *env, char *to,
|
|
const char *from, size_t fromlen,
|
|
int padding, int warnOnFailure)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
tor_assert(env->key);
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
r = RSA_private_decrypt(fromlen, (unsigned char*)from, (unsigned char*)to,
|
|
env->key, crypto_get_rsa_padding(padding));
|
|
|
|
if (r<0) {
|
|
crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
|
|
"performing RSA decryption");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
|
|
* public key in <b>env</b>, using PKCS1 padding. On success, write the
|
|
* signed data to <b>to</b>, and return the number of bytes written.
|
|
* On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_pk_public_checksig(crypto_pk_env_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
r = RSA_public_decrypt(fromlen, (unsigned char*)from, (unsigned char*)to,
|
|
env->key, RSA_PKCS1_PADDING);
|
|
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "checking RSA signature");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Check a siglen-byte long signature at <b>sig</b> against
|
|
* <b>datalen</b> bytes of data at <b>data</b>, using the public key
|
|
* in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
|
|
* SHA1(data). Else return -1.
|
|
*/
|
|
int
|
|
crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const char *data,
|
|
int datalen, const char *sig, int siglen)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
char buf[PK_BYTES+1];
|
|
int r;
|
|
|
|
tor_assert(env);
|
|
tor_assert(data);
|
|
tor_assert(sig);
|
|
|
|
if (crypto_digest(digest,data,datalen)<0) {
|
|
log_warn(LD_BUG, "couldn't compute digest");
|
|
return -1;
|
|
}
|
|
r = crypto_pk_public_checksig(env,buf,sig,siglen);
|
|
if (r != DIGEST_LEN) {
|
|
log_warn(LD_CRYPTO, "Invalid signature");
|
|
return -1;
|
|
}
|
|
if (memcmp(buf, digest, DIGEST_LEN)) {
|
|
log_warn(LD_CRYPTO, "Signature mismatched with digest.");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
|
|
* <b>env</b>, using PKCS1 padding. On success, write the signature to
|
|
* <b>to</b>, and return the number of bytes written. On failure, return
|
|
* -1.
|
|
*/
|
|
int
|
|
crypto_pk_private_sign(crypto_pk_env_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
int r;
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
if (!env->key->p)
|
|
/* Not a private key */
|
|
return -1;
|
|
|
|
r = RSA_private_encrypt(fromlen, (unsigned char*)from, (unsigned char*)to,
|
|
env->key, RSA_PKCS1_PADDING);
|
|
if (r<0) {
|
|
crypto_log_errors(LOG_WARN, "generating RSA signature");
|
|
return -1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
|
|
* <b>from</b>; sign the data with the private key in <b>env</b>, and
|
|
* store it in <b>to</b>. Return the number of bytes written on
|
|
* success, and -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_private_sign_digest(crypto_pk_env_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
if (crypto_digest(digest,from,fromlen)<0)
|
|
return -1;
|
|
return crypto_pk_private_sign(env,to,digest,DIGEST_LEN);
|
|
}
|
|
|
|
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
|
|
* bytes of data from <b>from</b>, with padding type 'padding',
|
|
* storing the results on <b>to</b>.
|
|
*
|
|
* If no padding is used, the public key must be at least as large as
|
|
* <b>from</b>.
|
|
*
|
|
* Returns the number of bytes written on success, -1 on failure.
|
|
*
|
|
* The encrypted data consists of:
|
|
* - The source data, padded and encrypted with the public key, if the
|
|
* padded source data is no longer than the public key, and <b>force</b>
|
|
* is false, OR
|
|
* - The beginning of the source data prefixed with a 16-byte symmetric key,
|
|
* padded and encrypted with the public key; followed by the rest of
|
|
* the source data encrypted in AES-CTR mode with the symmetric key.
|
|
*/
|
|
int
|
|
crypto_pk_public_hybrid_encrypt(crypto_pk_env_t *env,
|
|
char *to,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int force)
|
|
{
|
|
int overhead, outlen, r, symlen;
|
|
size_t pkeylen;
|
|
crypto_cipher_env_t *cipher = NULL;
|
|
char buf[PK_BYTES+1];
|
|
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
|
|
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (padding == PK_NO_PADDING && fromlen < pkeylen)
|
|
return -1;
|
|
|
|
if (!force && fromlen+overhead <= pkeylen) {
|
|
/* It all fits in a single encrypt. */
|
|
return crypto_pk_public_encrypt(env,to,from,fromlen,padding);
|
|
}
|
|
cipher = crypto_new_cipher_env();
|
|
if (!cipher) return -1;
|
|
if (crypto_cipher_generate_key(cipher)<0)
|
|
goto err;
|
|
/* You can't just run around RSA-encrypting any bitstream: if it's
|
|
* greater than the RSA key, then OpenSSL will happily encrypt, and
|
|
* later decrypt to the wrong value. So we set the first bit of
|
|
* 'cipher->key' to 0 if we aren't padding. This means that our
|
|
* symmetric key is really only 127 bits.
|
|
*/
|
|
if (padding == PK_NO_PADDING)
|
|
cipher->key[0] &= 0x7f;
|
|
if (crypto_cipher_encrypt_init_cipher(cipher)<0)
|
|
goto err;
|
|
memcpy(buf, cipher->key, CIPHER_KEY_LEN);
|
|
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
/* Length of symmetrically encrypted data. */
|
|
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
|
|
|
|
outlen = crypto_pk_public_encrypt(env,to,buf,pkeylen-overhead,padding);
|
|
if (outlen!=(int)pkeylen) {
|
|
goto err;
|
|
}
|
|
r = crypto_cipher_encrypt(cipher, to+outlen,
|
|
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);
|
|
|
|
if (r<0) goto err;
|
|
memset(buf, 0, sizeof(buf));
|
|
crypto_free_cipher_env(cipher);
|
|
return outlen + symlen;
|
|
err:
|
|
memset(buf, 0, sizeof(buf));
|
|
if (cipher) crypto_free_cipher_env(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** Invert crypto_pk_public_hybrid_encrypt. */
|
|
int
|
|
crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env,
|
|
char *to,
|
|
const char *from,
|
|
size_t fromlen,
|
|
int padding, int warnOnFailure)
|
|
{
|
|
int outlen, r;
|
|
size_t pkeylen;
|
|
crypto_cipher_env_t *cipher = NULL;
|
|
char buf[PK_BYTES+1];
|
|
|
|
pkeylen = crypto_pk_keysize(env);
|
|
|
|
if (fromlen <= pkeylen) {
|
|
return crypto_pk_private_decrypt(env,to,from,fromlen,padding,
|
|
warnOnFailure);
|
|
}
|
|
outlen = crypto_pk_private_decrypt(env,buf,from,pkeylen,padding,
|
|
warnOnFailure);
|
|
if (outlen<0) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
|
|
"Error decrypting public-key data");
|
|
return -1;
|
|
}
|
|
if (outlen < CIPHER_KEY_LEN) {
|
|
log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
|
|
"No room for a symmetric key");
|
|
return -1;
|
|
}
|
|
cipher = crypto_create_init_cipher(buf, 0);
|
|
if (!cipher) {
|
|
return -1;
|
|
}
|
|
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
|
|
outlen -= CIPHER_KEY_LEN;
|
|
r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
|
|
if (r<0)
|
|
goto err;
|
|
memset(buf,0,sizeof(buf));
|
|
crypto_free_cipher_env(cipher);
|
|
return outlen + (fromlen-pkeylen);
|
|
err:
|
|
memset(buf,0,sizeof(buf));
|
|
if (cipher) crypto_free_cipher_env(cipher);
|
|
return -1;
|
|
}
|
|
|
|
/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
|
|
* Return -1 on error, or the number of characters used on success.
|
|
*/
|
|
int
|
|
crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
|
|
{
|
|
int len;
|
|
unsigned char *buf, *cp;
|
|
len = i2d_RSAPublicKey(pk->key, NULL);
|
|
if (len < 0 || len > dest_len)
|
|
return -1;
|
|
cp = buf = tor_malloc(len+1);
|
|
len = i2d_RSAPublicKey(pk->key, &cp);
|
|
if (len < 0) {
|
|
crypto_log_errors(LOG_WARN,"encoding public key");
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
/* We don't encode directly into 'dest', because that would be illegal
|
|
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
|
*/
|
|
memcpy(dest,buf,len);
|
|
tor_free(buf);
|
|
return len;
|
|
}
|
|
|
|
/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
|
|
* success and NULL on failure.
|
|
*/
|
|
crypto_pk_env_t *
|
|
crypto_pk_asn1_decode(const char *str, size_t len)
|
|
{
|
|
RSA *rsa;
|
|
unsigned char *buf;
|
|
/* This ifdef suppresses a type warning. Take out the first case once
|
|
* everybody is using openssl 0.9.7 or later.
|
|
*/
|
|
#if OPENSSL_VERSION_NUMBER < 0x00907000l
|
|
unsigned char *cp;
|
|
#else
|
|
const unsigned char *cp;
|
|
#endif
|
|
cp = buf = tor_malloc(len);
|
|
memcpy(buf,str,len);
|
|
rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
|
tor_free(buf);
|
|
if (!rsa) {
|
|
crypto_log_errors(LOG_WARN,"decoding public key");
|
|
return NULL;
|
|
}
|
|
return _crypto_new_pk_env_rsa(rsa);
|
|
}
|
|
|
|
/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
|
|
* public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_pk_get_digest(crypto_pk_env_t *pk, char *digest_out)
|
|
{
|
|
unsigned char *buf, *bufp;
|
|
int len;
|
|
|
|
len = i2d_RSAPublicKey(pk->key, NULL);
|
|
if (len < 0)
|
|
return -1;
|
|
buf = bufp = tor_malloc(len+1);
|
|
len = i2d_RSAPublicKey(pk->key, &bufp);
|
|
if (len < 0) {
|
|
crypto_log_errors(LOG_WARN,"encoding public key");
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
if (crypto_digest(digest_out, (char*)buf, len) < 0) {
|
|
tor_free(buf);
|
|
return -1;
|
|
}
|
|
tor_free(buf);
|
|
return 0;
|
|
}
|
|
|
|
/** Given a private or public key <b>pk</b>, put a fingerprint of the
|
|
* public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
|
|
* space). Return 0 on success, -1 on failure.
|
|
*
|
|
* Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
|
|
* of the public key, converted to hexadecimal, in upper case, with a
|
|
* space after every four digits.
|
|
*
|
|
* If <b>add_space</b> is false, omit the spaces.
|
|
*/
|
|
int
|
|
crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out, int add_space)
|
|
{
|
|
char digest[DIGEST_LEN];
|
|
char hexdigest[HEX_DIGEST_LEN+1];
|
|
if (crypto_pk_get_digest(pk, digest)) {
|
|
return -1;
|
|
}
|
|
base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
|
|
if (add_space) {
|
|
if (tor_strpartition(fp_out, FINGERPRINT_LEN+1, hexdigest, " ", 4,
|
|
NEVER_TERMINATE)<0)
|
|
return -1;
|
|
} else {
|
|
strcpy(fp_out, hexdigest);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Return true iff <b>s</b> is in the correct format for a fingerprint.
|
|
*/
|
|
int
|
|
crypto_pk_check_fingerprint_syntax(const char *s)
|
|
{
|
|
int i;
|
|
for (i = 0; i < FINGERPRINT_LEN; ++i) {
|
|
if ((i%5) == 4) {
|
|
if (!TOR_ISSPACE(s[i])) return 0;
|
|
} else {
|
|
if (!TOR_ISXDIGIT(s[i])) return 0;
|
|
}
|
|
}
|
|
if (s[FINGERPRINT_LEN]) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* symmetric crypto */
|
|
|
|
/** Generate a new random key for the symmetric cipher in <b>env</b>.
|
|
* Return 0 on success, -1 on failure. Does not initialize the cipher.
|
|
*/
|
|
int
|
|
crypto_cipher_generate_key(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
return crypto_rand(env->key, CIPHER_KEY_LEN);
|
|
}
|
|
|
|
/** Set the symmetric key for the cipher in <b>env</b> to the first
|
|
* CIPHER_KEY_LEN bytes of <b>key</b>. Does not initialize the cipher.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_cipher_set_key(crypto_cipher_env_t *env, const char *key)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(key);
|
|
|
|
if (!env->key)
|
|
return -1;
|
|
|
|
memcpy(env->key, key, CIPHER_KEY_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Return a pointer to the key set for the cipher in <b>env</b>.
|
|
*/
|
|
const char *
|
|
crypto_cipher_get_key(crypto_cipher_env_t *env)
|
|
{
|
|
return env->key;
|
|
}
|
|
|
|
/** Initialize the cipher in <b>env</b> for encryption. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
|
|
return 0;
|
|
}
|
|
|
|
/** Initialize the cipher in <b>env</b> for decryption. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
|
|
{
|
|
tor_assert(env);
|
|
|
|
aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8);
|
|
return 0;
|
|
}
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_encrypt(crypto_cipher_env_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(env->cipher);
|
|
tor_assert(from);
|
|
tor_assert(fromlen);
|
|
tor_assert(to);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|
|
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
|
|
* On failure, return -1.
|
|
*/
|
|
int
|
|
crypto_cipher_decrypt(crypto_cipher_env_t *env, char *to,
|
|
const char *from, size_t fromlen)
|
|
{
|
|
tor_assert(env);
|
|
tor_assert(from);
|
|
tor_assert(to);
|
|
|
|
aes_crypt(env->cipher, from, fromlen, to);
|
|
return 0;
|
|
}
|
|
|
|
/* SHA-1 */
|
|
|
|
/** Compute the SHA1 digest of <b>len</b> bytes in data stored in
|
|
* <b>m</b>. Write the DIGEST_LEN byte result into <b>digest</b>.
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_digest(char *digest, const char *m, size_t len)
|
|
{
|
|
tor_assert(m);
|
|
tor_assert(digest);
|
|
return (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
|
|
}
|
|
|
|
/** Intermediate information about the digest of a stream of data. */
|
|
struct crypto_digest_env_t {
|
|
SHA_CTX d;
|
|
};
|
|
|
|
/** Allocate and return a new digest object.
|
|
*/
|
|
crypto_digest_env_t *
|
|
crypto_new_digest_env(void)
|
|
{
|
|
crypto_digest_env_t *r;
|
|
r = tor_malloc(sizeof(crypto_digest_env_t));
|
|
SHA1_Init(&r->d);
|
|
return r;
|
|
}
|
|
|
|
/** Deallocate a digest object.
|
|
*/
|
|
void
|
|
crypto_free_digest_env(crypto_digest_env_t *digest)
|
|
{
|
|
tor_free(digest);
|
|
}
|
|
|
|
/** Add <b>len</b> bytes from <b>data</b> to the digest object.
|
|
*/
|
|
void
|
|
crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
|
|
size_t len)
|
|
{
|
|
tor_assert(digest);
|
|
tor_assert(data);
|
|
/* Using the SHA1_*() calls directly means we don't support doing
|
|
* sha1 in hardware. But so far the delay of getting the question
|
|
* to the hardware, and hearing the answer, is likely higher than
|
|
* just doing it ourselves. Hashes are fast.
|
|
*/
|
|
SHA1_Update(&digest->d, (void*)data, len);
|
|
}
|
|
|
|
/** Compute the hash of the data that has been passed to the digest
|
|
* object; write the first out_len bytes of the result to <b>out</b>.
|
|
* <b>out_len</b> must be \<= DIGEST_LEN.
|
|
*/
|
|
void
|
|
crypto_digest_get_digest(crypto_digest_env_t *digest,
|
|
char *out, size_t out_len)
|
|
{
|
|
static unsigned char r[DIGEST_LEN];
|
|
SHA_CTX tmpctx;
|
|
tor_assert(digest);
|
|
tor_assert(out);
|
|
tor_assert(out_len <= DIGEST_LEN);
|
|
/* memcpy into a temporary ctx, since SHA1_Final clears the context */
|
|
memcpy(&tmpctx, &digest->d, sizeof(SHA_CTX));
|
|
SHA1_Final(r, &tmpctx);
|
|
memcpy(out, r, out_len);
|
|
}
|
|
|
|
/** Allocate and return a new digest object with the same state as
|
|
* <b>digest</b>
|
|
*/
|
|
crypto_digest_env_t *
|
|
crypto_digest_dup(const crypto_digest_env_t *digest)
|
|
{
|
|
crypto_digest_env_t *r;
|
|
tor_assert(digest);
|
|
r = tor_malloc(sizeof(crypto_digest_env_t));
|
|
memcpy(r,digest,sizeof(crypto_digest_env_t));
|
|
return r;
|
|
}
|
|
|
|
/** Replace the state of the digest object <b>into</b> with the state
|
|
* of the digest object <b>from</b>.
|
|
*/
|
|
void
|
|
crypto_digest_assign(crypto_digest_env_t *into,
|
|
const crypto_digest_env_t *from)
|
|
{
|
|
tor_assert(into);
|
|
tor_assert(from);
|
|
memcpy(into,from,sizeof(crypto_digest_env_t));
|
|
}
|
|
|
|
/* DH */
|
|
|
|
/** Shared P parameter for our DH key exchanged. */
|
|
static BIGNUM *dh_param_p = NULL;
|
|
/** Shared G parameter for our DH key exchanges. */
|
|
static BIGNUM *dh_param_g = NULL;
|
|
|
|
/** Initialize dh_param_p and dh_param_g if they are not already
|
|
* set. */
|
|
static void
|
|
init_dh_param(void)
|
|
{
|
|
BIGNUM *p, *g;
|
|
int r;
|
|
if (dh_param_p && dh_param_g)
|
|
return;
|
|
|
|
p = BN_new();
|
|
g = BN_new();
|
|
tor_assert(p);
|
|
tor_assert(g);
|
|
|
|
/* This is from rfc2409, section 6.2. It's a safe prime, and
|
|
supposedly it equals:
|
|
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
|
|
*/
|
|
r = BN_hex2bn(&p,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
|
|
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
|
|
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
|
|
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
|
|
"49286651ECE65381FFFFFFFFFFFFFFFF");
|
|
tor_assert(r);
|
|
|
|
r = BN_set_word(g, 2);
|
|
tor_assert(r);
|
|
dh_param_p = p;
|
|
dh_param_g = g;
|
|
}
|
|
|
|
#define DH_PRIVATE_KEY_BITS 320
|
|
|
|
/** Allocate and return a new DH object for a key exchange.
|
|
*/
|
|
crypto_dh_env_t *
|
|
crypto_dh_new(void)
|
|
{
|
|
crypto_dh_env_t *res = NULL;
|
|
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
|
|
res = tor_malloc_zero(sizeof(crypto_dh_env_t));
|
|
|
|
if (!(res->dh = DH_new()))
|
|
goto err;
|
|
|
|
if (!(res->dh->p = BN_dup(dh_param_p)))
|
|
goto err;
|
|
|
|
if (!(res->dh->g = BN_dup(dh_param_g)))
|
|
goto err;
|
|
|
|
res->dh->length = DH_PRIVATE_KEY_BITS;
|
|
|
|
return res;
|
|
err:
|
|
crypto_log_errors(LOG_WARN, "creating DH object");
|
|
if (res && res->dh) DH_free(res->dh); /* frees p and g too */
|
|
if (res) tor_free(res);
|
|
return NULL;
|
|
}
|
|
|
|
/** Return the length of the DH key in <b>dh</b>, in bytes.
|
|
*/
|
|
int
|
|
crypto_dh_get_bytes(crypto_dh_env_t *dh)
|
|
{
|
|
tor_assert(dh);
|
|
return DH_size(dh->dh);
|
|
}
|
|
|
|
/** Generate \<x,g^x\> for our part of the key exchange. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_dh_generate_public(crypto_dh_env_t *dh)
|
|
{
|
|
again:
|
|
if (!DH_generate_key(dh->dh)) {
|
|
crypto_log_errors(LOG_WARN, "generating DH key");
|
|
return -1;
|
|
}
|
|
if (tor_check_dh_key(dh->dh->pub_key)<0) {
|
|
log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
|
|
"the-universe chances really do happen. Trying again.");
|
|
/* Free and clear the keys, so openssl will actually try again. */
|
|
BN_free(dh->dh->pub_key);
|
|
BN_free(dh->dh->priv_key);
|
|
dh->dh->pub_key = dh->dh->priv_key = NULL;
|
|
goto again;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Generate g^x as necessary, and write the g^x for the key exchange
|
|
* as a <b>pubkey_len</b>-byte value into <b>pubkey</b>. Return 0 on
|
|
* success, -1 on failure. <b>pubkey_len</b> must be \>= DH_BYTES.
|
|
*/
|
|
int
|
|
crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, size_t pubkey_len)
|
|
{
|
|
int bytes;
|
|
tor_assert(dh);
|
|
if (!dh->dh->pub_key) {
|
|
if (crypto_dh_generate_public(dh)<0)
|
|
return -1;
|
|
}
|
|
|
|
tor_assert(dh->dh->pub_key);
|
|
bytes = BN_num_bytes(dh->dh->pub_key);
|
|
tor_assert(bytes >= 0);
|
|
if (pubkey_len < (size_t)bytes) {
|
|
log_warn(LD_CRYPTO,
|
|
"Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)",
|
|
(int) pubkey_len, bytes);
|
|
return -1;
|
|
}
|
|
|
|
memset(pubkey, 0, pubkey_len);
|
|
BN_bn2bin(dh->dh->pub_key, (unsigned char*)(pubkey+(pubkey_len-bytes)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Check for bad diffie-hellman public keys (g^x). Return 0 if the key is
|
|
* okay (in the subgroup [2,p-2]), or -1 if it's bad.
|
|
* See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
|
|
*/
|
|
static int
|
|
tor_check_dh_key(BIGNUM *bn)
|
|
{
|
|
BIGNUM *x;
|
|
char *s;
|
|
tor_assert(bn);
|
|
x = BN_new();
|
|
tor_assert(x);
|
|
if (!dh_param_p)
|
|
init_dh_param();
|
|
BN_set_word(x, 1);
|
|
if (BN_cmp(bn,x)<=0) {
|
|
log_warn(LD_CRYPTO, "DH key must be at least 2.");
|
|
goto err;
|
|
}
|
|
BN_copy(x,dh_param_p);
|
|
BN_sub_word(x, 1);
|
|
if (BN_cmp(bn,x)>=0) {
|
|
log_warn(LD_CRYPTO, "DH key must be at most p-2.");
|
|
goto err;
|
|
}
|
|
BN_free(x);
|
|
return 0;
|
|
err:
|
|
BN_free(x);
|
|
s = BN_bn2hex(bn);
|
|
log_warn(LD_CRYPTO, "Rejecting insecure DH key [%s]", s);
|
|
OPENSSL_free(s);
|
|
return -1;
|
|
}
|
|
|
|
#undef MIN
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
/** Given a DH key exchange object, and our peer's value of g^y (as a
|
|
* <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
|
|
* <b>secret_bytes_out</b> bytes of shared key material and write them
|
|
* to <b>secret_out</b>. Return the number of bytes generated on success,
|
|
* or -1 on failure.
|
|
*
|
|
* (We generate key material by computing
|
|
* SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
|
|
* where || is concatenation.)
|
|
*/
|
|
int
|
|
crypto_dh_compute_secret(crypto_dh_env_t *dh,
|
|
const char *pubkey, size_t pubkey_len,
|
|
char *secret_out, size_t secret_bytes_out)
|
|
{
|
|
char *secret_tmp = NULL;
|
|
BIGNUM *pubkey_bn = NULL;
|
|
size_t secret_len=0;
|
|
int result=0;
|
|
tor_assert(dh);
|
|
tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
|
|
|
|
if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey, pubkey_len, NULL)))
|
|
goto error;
|
|
if (tor_check_dh_key(pubkey_bn)<0) {
|
|
/* Check for invalid public keys. */
|
|
log_warn(LD_CRYPTO,"Rejected invalid g^x");
|
|
goto error;
|
|
}
|
|
secret_tmp = tor_malloc(crypto_dh_get_bytes(dh));
|
|
result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh);
|
|
if (result < 0) {
|
|
log_warn(LD_CRYPTO,"DH_compute_key() failed.");
|
|
goto error;
|
|
}
|
|
secret_len = result;
|
|
/* sometimes secret_len might be less than 128, e.g., 127. that's ok. */
|
|
/* Actually, http://www.faqs.org/rfcs/rfc2631.html says:
|
|
* Leading zeros MUST be preserved, so that ZZ occupies as many
|
|
* octets as p. For instance, if p is 1024 bits, ZZ should be 128
|
|
* bytes long.
|
|
* What are the security implications here?
|
|
*/
|
|
if (crypto_expand_key_material(secret_tmp, secret_len,
|
|
secret_out, secret_bytes_out)<0)
|
|
goto error;
|
|
secret_len = secret_bytes_out;
|
|
|
|
goto done;
|
|
error:
|
|
result = -1;
|
|
done:
|
|
crypto_log_errors(LOG_WARN, "completing DH handshake");
|
|
if (pubkey_bn)
|
|
BN_free(pubkey_bn);
|
|
tor_free(secret_tmp);
|
|
if (result < 0)
|
|
return result;
|
|
else
|
|
return secret_len;
|
|
}
|
|
|
|
/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
|
|
* ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
|
|
* <b>key_out</b> by taking the first key_out_len bytes of
|
|
* H(K | [00]) | H(K | [01]) | ....
|
|
*
|
|
* Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_expand_key_material(const char *key_in, size_t key_in_len,
|
|
char *key_out, size_t key_out_len)
|
|
{
|
|
int i;
|
|
char *cp, *tmp = tor_malloc(key_in_len+1);
|
|
char digest[DIGEST_LEN];
|
|
|
|
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
|
|
tor_assert(key_out_len <= DIGEST_LEN*256);
|
|
|
|
memcpy(tmp, key_in, key_in_len);
|
|
for (cp = key_out, i=0; key_out_len; ++i, cp += DIGEST_LEN) {
|
|
tmp[key_in_len] = i;
|
|
if (crypto_digest(digest, tmp, key_in_len+1))
|
|
goto err;
|
|
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len));
|
|
if (key_out_len < DIGEST_LEN)
|
|
break;
|
|
key_out_len -= DIGEST_LEN;
|
|
}
|
|
memset(tmp, 0, key_in_len+1);
|
|
tor_free(tmp);
|
|
return 0;
|
|
|
|
err:
|
|
memset(tmp, 0, key_in_len+1);
|
|
tor_free(tmp);
|
|
return -1;
|
|
}
|
|
|
|
/** Free a DH key exchange object.
|
|
*/
|
|
void
|
|
crypto_dh_free(crypto_dh_env_t *dh)
|
|
{
|
|
tor_assert(dh);
|
|
tor_assert(dh->dh);
|
|
DH_free(dh->dh);
|
|
tor_free(dh);
|
|
}
|
|
|
|
/* random numbers */
|
|
|
|
/* This is how much entropy OpenSSL likes to add right now, so maybe it will
|
|
* work for us too. */
|
|
#define ADD_ENTROPY 32
|
|
|
|
/* Use RAND_poll if openssl is 0.9.6 release or later. (The "f" means
|
|
"release".) */
|
|
//#define USE_RAND_POLL (OPENSSL_VERSION_NUMBER >= 0x0090600fl)
|
|
#define USE_RAND_POLL 0
|
|
/* XXX Somehow setting USE_RAND_POLL on causes stack smashes. We're
|
|
* not sure where. This was the big bug with Tor 0.1.1.9-alpha. */
|
|
|
|
/** Seed OpenSSL's random number generator with bytes from the
|
|
* operating system. Return 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_seed_rng(void)
|
|
{
|
|
char buf[ADD_ENTROPY];
|
|
int rand_poll_status;
|
|
|
|
/* local variables */
|
|
#ifdef MS_WINDOWS
|
|
static int provider_set = 0;
|
|
static HCRYPTPROV provider;
|
|
#else
|
|
static const char *filenames[] = {
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
};
|
|
int fd;
|
|
int i, n;
|
|
#endif
|
|
|
|
#if USE_RAND_POLL
|
|
/* OpenSSL 0.9.6 adds a RAND_poll function that knows about more kinds of
|
|
* entropy than we do. We'll try calling that, *and* calling our own entropy
|
|
* functions. If one succeeds, we'll accept the RNG as seeded. */
|
|
rand_poll_status = RAND_poll();
|
|
if (rand_poll_status == 0)
|
|
log_warn(LD_CRYPTO, "RAND_poll() failed.");
|
|
#else
|
|
rand_poll_status = 0;
|
|
#endif
|
|
|
|
#ifdef MS_WINDOWS
|
|
if (!provider_set) {
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
CRYPT_VERIFYCONTEXT)) {
|
|
if (GetLastError() != NTE_BAD_KEYSET) {
|
|
log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
|
|
return rand_poll_status ? 0 : -1;
|
|
}
|
|
}
|
|
provider_set = 1;
|
|
}
|
|
if (!CryptGenRandom(provider, sizeof(buf), buf)) {
|
|
log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI.");
|
|
return rand_poll_status ? 0 : -1;
|
|
}
|
|
RAND_seed(buf, sizeof(buf));
|
|
return 0;
|
|
#else
|
|
for (i = 0; filenames[i]; ++i) {
|
|
fd = open(filenames[i], O_RDONLY, 0);
|
|
if (fd<0) continue;
|
|
log_info(LD_CRYPTO, "Seeding RNG from \"%s\"", filenames[i]);
|
|
n = read_all(fd, buf, sizeof(buf), 0);
|
|
close(fd);
|
|
if (n != sizeof(buf)) {
|
|
log_warn(LD_CRYPTO,
|
|
"Error reading from entropy source (read only %d bytes).", n);
|
|
return -1;
|
|
}
|
|
RAND_seed(buf, sizeof(buf));
|
|
return 0;
|
|
}
|
|
|
|
log_warn(LD_CRYPTO, "Cannot seed RNG -- no entropy source found.");
|
|
return rand_poll_status ? 0 : -1;
|
|
#endif
|
|
}
|
|
|
|
/** Write n bytes of strong random data to <b>to</b>. Return 0 on
|
|
* success, -1 on failure.
|
|
*/
|
|
int
|
|
crypto_rand(char *to, size_t n)
|
|
{
|
|
int r;
|
|
tor_assert(to);
|
|
r = RAND_bytes((unsigned char*)to, n);
|
|
if (r == 0)
|
|
crypto_log_errors(LOG_WARN, "generating random data");
|
|
return (r == 1) ? 0 : -1;
|
|
}
|
|
|
|
/** Return a pseudorandom integer, chosen uniformly from the values
|
|
* between 0 and max-1. */
|
|
int
|
|
crypto_rand_int(unsigned int max)
|
|
{
|
|
unsigned int val;
|
|
unsigned int cutoff;
|
|
tor_assert(max < UINT_MAX);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a pseudorandom integer, chosen uniformly from the values
|
|
* between 0 and max-1. */
|
|
uint64_t
|
|
crypto_rand_uint64(uint64_t max)
|
|
{
|
|
uint64_t val;
|
|
uint64_t cutoff;
|
|
tor_assert(max < UINT64_MAX);
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
* range.
|
|
*/
|
|
cutoff = UINT64_MAX - (UINT64_MAX%max);
|
|
while (1) {
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
if (val < cutoff)
|
|
return val % max;
|
|
}
|
|
}
|
|
|
|
/** Return a randomly chosen element of sl; or NULL if sl is empty.
|
|
*/
|
|
void *
|
|
smartlist_choose(const smartlist_t *sl)
|
|
{
|
|
size_t len;
|
|
len = smartlist_len(sl);
|
|
if (len)
|
|
return smartlist_get(sl,crypto_rand_int(len));
|
|
return NULL; /* no elements to choose from */
|
|
}
|
|
|
|
/** Base-64 encode <b>srclen</b> bytes of data from <b>src</b>. Write
|
|
* the result into <b>dest</b>, if it will fit within <b>destlen</b>
|
|
* bytes. Return the number of bytes written on success; -1 if
|
|
* destlen is too short, or other failure.
|
|
*/
|
|
int
|
|
base64_encode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
|
|
/* 48 bytes of input -> 64 bytes of output plus newline.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/48)+1)*66)
|
|
return -1;
|
|
if (destlen > SIZE_T_CEILING)
|
|
return -1;
|
|
|
|
EVP_EncodeInit(&ctx);
|
|
EVP_EncodeUpdate(&ctx, (unsigned char*)dest, &len,
|
|
(unsigned char*)src, srclen);
|
|
EVP_EncodeFinal(&ctx, (unsigned char*)(dest+len), &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
|
|
/** Base-64 decode <b>srclen</b> bytes of data from <b>src</b>. Write
|
|
* the result into <b>dest</b>, if it will fit within <b>destlen</b>
|
|
* bytes. Return the number of bytes written on success; -1 if
|
|
* destlen is too short, or other failure.
|
|
*
|
|
* NOTE: destlen should be a little longer than the amount of data it
|
|
* will contain, since we check for sufficient space conservatively.
|
|
* Here, "a little" is around 64-ish bytes.
|
|
*/
|
|
int
|
|
base64_decode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
EVP_ENCODE_CTX ctx;
|
|
int len, ret;
|
|
/* 64 bytes of input -> *up to* 48 bytes of output.
|
|
Plus one more byte, in case I'm wrong.
|
|
*/
|
|
if (destlen < ((srclen/64)+1)*49)
|
|
return -1;
|
|
if (destlen > SIZE_T_CEILING)
|
|
return -1;
|
|
|
|
EVP_DecodeInit(&ctx);
|
|
EVP_DecodeUpdate(&ctx, (unsigned char*)dest, &len,
|
|
(unsigned char*)src, srclen);
|
|
EVP_DecodeFinal(&ctx, (unsigned char*)dest, &ret);
|
|
ret += len;
|
|
return ret;
|
|
}
|
|
|
|
/** Base-64 encode DIGEST_LINE bytes from <b>digest</b>, remove the trailing =
|
|
* and newline characters, and store the nul-terminated result in the first
|
|
* BASE64_DIGEST_LEN+1 bytes of <b>d64</b>. */
|
|
int
|
|
digest_to_base64(char *d64, const char *digest)
|
|
{
|
|
char buf[256];
|
|
base64_encode(buf, sizeof(buf), digest, DIGEST_LEN);
|
|
buf[BASE64_DIGEST_LEN] = '\0';
|
|
memcpy(d64, buf, BASE64_DIGEST_LEN+1);
|
|
return 0;
|
|
}
|
|
|
|
/** Given a base-64 encoded, nul-terminated digest in <b>d64</b> (without
|
|
* trailing newline or = characters), decode it and store the result in the
|
|
* first DIGEST_LEN bytes at <b>digest</b>. */
|
|
int
|
|
digest_from_base64(char *digest, const char *d64)
|
|
{
|
|
char buf_in[BASE64_DIGEST_LEN+3];
|
|
char buf[256];
|
|
if (strlen(d64) != BASE64_DIGEST_LEN)
|
|
return -1;
|
|
memcpy(buf_in, d64, BASE64_DIGEST_LEN);
|
|
memcpy(buf_in+BASE64_DIGEST_LEN, "=\n\0", 3);
|
|
if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST_LEN)
|
|
return -1;
|
|
memcpy(digest, buf, DIGEST_LEN);
|
|
return 0;
|
|
}
|
|
|
|
/** Implements base32 encoding as in rfc3548. Limitation: Requires
|
|
* that srclen*8 is a multiple of 5.
|
|
*/
|
|
void
|
|
base32_encode(char *dest, size_t destlen, const char *src, size_t srclen)
|
|
{
|
|
unsigned int nbits, i, bit, v, u;
|
|
nbits = srclen * 8;
|
|
|
|
tor_assert((nbits%5) == 0); /* We need an even multiple of 5 bits. */
|
|
tor_assert((nbits/5)+1 <= destlen); /* We need enough space. */
|
|
tor_assert(destlen < SIZE_T_CEILING);
|
|
|
|
for (i=0,bit=0; bit < nbits; ++i, bit+=5) {
|
|
/* set v to the 16-bit value starting at src[bits/8], 0-padded. */
|
|
v = ((uint8_t)src[bit/8]) << 8;
|
|
if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1];
|
|
/* set u to the 5-bit value at the bit'th bit of src. */
|
|
u = (v >> (11-(bit%8))) & 0x1F;
|
|
dest[i] = BASE32_CHARS[u];
|
|
}
|
|
dest[i] = '\0';
|
|
}
|
|
|
|
/** Implement RFC2440-style iterated-salted S2K conversion: convert the
|
|
* <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
|
|
* <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
|
|
* are a salt; the 9th byte describes how much iteration to do.
|
|
* Does not support <b>key_out_len</b> > DIGEST_LEN.
|
|
*/
|
|
void
|
|
secret_to_key(char *key_out, size_t key_out_len, const char *secret,
|
|
size_t secret_len, const char *s2k_specifier)
|
|
{
|
|
crypto_digest_env_t *d;
|
|
uint8_t c;
|
|
size_t count;
|
|
char *tmp;
|
|
tor_assert(key_out_len < SIZE_T_CEILING);
|
|
|
|
#define EXPBIAS 6
|
|
c = s2k_specifier[8];
|
|
count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
|
|
#undef EXPBIAS
|
|
|
|
tor_assert(key_out_len <= DIGEST_LEN);
|
|
|
|
d = crypto_new_digest_env();
|
|
tmp = tor_malloc(8+secret_len);
|
|
memcpy(tmp,s2k_specifier,8);
|
|
memcpy(tmp+8,secret,secret_len);
|
|
secret_len += 8;
|
|
while (count) {
|
|
if (count >= secret_len) {
|
|
crypto_digest_add_bytes(d, tmp, secret_len);
|
|
count -= secret_len;
|
|
} else {
|
|
crypto_digest_add_bytes(d, tmp, count);
|
|
count = 0;
|
|
}
|
|
}
|
|
crypto_digest_get_digest(d, key_out, key_out_len);
|
|
tor_free(tmp);
|
|
crypto_free_digest_env(d);
|
|
}
|
|
|
|
#ifdef TOR_IS_MULTITHREADED
|
|
/** Helper: openssl uses this callback to manipulate mutexes. */
|
|
static void
|
|
_openssl_locking_cb(int mode, int n, const char *file, int line)
|
|
{
|
|
(void)file;
|
|
(void)line;
|
|
if (!_openssl_mutexes)
|
|
/* This is not a really good fix for the
|
|
* "release-freed-lock-from-separate-thread-on-shutdown" problem, but
|
|
* it can't hurt. */
|
|
return;
|
|
if (mode & CRYPTO_LOCK)
|
|
tor_mutex_acquire(_openssl_mutexes[n]);
|
|
else
|
|
tor_mutex_release(_openssl_mutexes[n]);
|
|
}
|
|
|
|
/** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being
|
|
* multithreaded. */
|
|
static int
|
|
setup_openssl_threading(void)
|
|
{
|
|
int i;
|
|
int n = CRYPTO_num_locks();
|
|
_n_openssl_mutexes = n;
|
|
_openssl_mutexes = tor_malloc(n*sizeof(tor_mutex_t *));
|
|
for (i=0; i < n; ++i)
|
|
_openssl_mutexes[i] = tor_mutex_new();
|
|
CRYPTO_set_locking_callback(_openssl_locking_cb);
|
|
CRYPTO_set_id_callback(tor_get_thread_id);
|
|
return 0;
|
|
}
|
|
#else
|
|
static int
|
|
setup_openssl_threading(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|