mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-24 12:23:32 +01:00
0430b4c5a0
svn:r2163
1989 lines
98 KiB
TeX
1989 lines
98 KiB
TeX
\documentclass[twocolumn]{article}
|
|
\usepackage{usenix}
|
|
|
|
%\documentclass[times,10pt,twocolumn]{article}
|
|
%\usepackage{latex8}
|
|
%\usepackage{times}
|
|
\usepackage{url}
|
|
\usepackage{graphics}
|
|
\usepackage{amsmath}
|
|
\usepackage{epsfig}
|
|
|
|
\pagestyle{empty}
|
|
|
|
\renewcommand\url{\begingroup \def\UrlLeft{<}\def\UrlRight{>}\urlstyle{tt}\Url}
|
|
\newcommand\emailaddr{\begingroup \def\UrlLeft{<}\def\UrlRight{>}\urlstyle{tt}\Url}
|
|
|
|
\newcommand{\workingnote}[1]{} % The version that hides the note.
|
|
%\newcommand{\workingnote}[1]{(**#1)} % The version that makes the note visible.
|
|
|
|
% If an URL ends up with '%'s in it, that's because the line *in the .bib/.tex
|
|
% file* is too long, so break it there (it doesn't matter if the next line is
|
|
% indented with spaces). -DH
|
|
|
|
%\newif\ifpdf
|
|
%\ifx\pdfoutput\undefined
|
|
% \pdffalse
|
|
%\else
|
|
% \pdfoutput=1
|
|
% \pdftrue
|
|
%\fi
|
|
|
|
\newenvironment{tightlist}{\begin{list}{$\bullet$}{
|
|
\setlength{\itemsep}{0mm}
|
|
\setlength{\parsep}{0mm}
|
|
% \setlength{\labelsep}{0mm}
|
|
% \setlength{\labelwidth}{0mm}
|
|
% \setlength{\topsep}{0mm}
|
|
}}{\end{list}}
|
|
|
|
% Cut down on whitespace above and below figures displayed at head/foot of
|
|
% page.
|
|
\setlength{\textfloatsep}{3mm}
|
|
% Cut down on whitespace above and below figures displayed in middle of page
|
|
\setlength{\intextsep}{3mm}
|
|
|
|
\begin{document}
|
|
|
|
%% Use dvipdfm instead. --DH
|
|
%\ifpdf
|
|
% \pdfcompresslevel=9
|
|
% \pdfpagewidth=\the\paperwidth
|
|
% \pdfpageheight=\the\paperheight
|
|
%\fi
|
|
|
|
\title{Tor: The Second-Generation Onion Router} %\\DRAFT VERSION}
|
|
% Putting the 'Private' back in 'Virtual Private Network'
|
|
|
|
\author{Roger Dingledine \\ The Free Haven Project \\ arma@freehaven.net \and
|
|
Nick Mathewson \\ The Free Haven Project \\ nickm@freehaven.net \and
|
|
Paul Syverson \\ Naval Research Lab \\ syverson@itd.nrl.navy.mil}
|
|
|
|
\maketitle
|
|
\thispagestyle{empty}
|
|
|
|
\begin{abstract}
|
|
We present Tor, a circuit-based low-latency anonymous communication
|
|
service. This second-generation Onion Routing system addresses limitations
|
|
in the original design by adding perfect forward secrecy, congestion
|
|
control, directory servers, integrity checking, configurable exit policies,
|
|
and a practical design for location-hidden services via rendezvous
|
|
points. Tor works on the real-world
|
|
Internet, requires no special privileges or kernel modifications, requires
|
|
little synchronization or coordination between nodes, and provides a
|
|
reasonable tradeoff between anonymity, usability, and efficiency.
|
|
We briefly describe our experiences with an international network of
|
|
more than 30 nodes. % that has been running for several months.
|
|
We close with a list of open problems in anonymous communication.
|
|
\end{abstract}
|
|
|
|
%\begin{center}
|
|
%\textbf{Keywords:} anonymity, peer-to-peer, remailer, nymserver, reply block
|
|
%\end{center}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\section{Overview}
|
|
\label{sec:intro}
|
|
|
|
Onion Routing is a distributed overlay network designed to anonymize
|
|
TCP-based applications like web browsing, secure shell,
|
|
and instant messaging. Clients choose a path through the network and
|
|
build a \emph{circuit}, in which each node (or ``onion router'' or ``OR'')
|
|
in the path knows its predecessor and successor, but no other nodes in
|
|
the circuit. Traffic flows down the circuit in fixed-size
|
|
\emph{cells}, which are unwrapped by a symmetric key at each node
|
|
(like the layers of an onion) and relayed downstream. The
|
|
Onion Routing project published several design and analysis
|
|
papers \cite{or-ih96,or-jsac98,or-discex00,or-pet00}. While a wide area Onion
|
|
Routing network was deployed briefly, the only long-running
|
|
public implementation was a fragile
|
|
proof-of-concept that ran on a single machine. Even this simple deployment
|
|
processed connections from over sixty thousand distinct IP addresses from
|
|
all over the world at a rate of about fifty thousand per day.
|
|
But many critical design and deployment issues were never
|
|
resolved, and the design has not been updated in years. Here
|
|
we describe Tor, a protocol for asynchronous, loosely federated onion
|
|
routers that provides the following improvements over the old Onion
|
|
Routing design:
|
|
|
|
\textbf{Perfect forward secrecy:} In the original Onion Routing design,
|
|
a single hostile node could record traffic and
|
|
later compromise successive nodes in the circuit and force them
|
|
to decrypt it. Rather than using a single multiply encrypted data
|
|
structure (an \emph{onion}) to lay each circuit,
|
|
Tor now uses an incremental or \emph{telescoping} path-building design,
|
|
where the initiator negotiates session keys with each successive hop in
|
|
the circuit. Once these keys are deleted, subsequently compromised nodes
|
|
cannot decrypt old traffic. As a side benefit, onion replay detection
|
|
is no longer necessary, and the process of building circuits is more
|
|
reliable, since the initiator knows when a hop fails and can then try
|
|
extending to a new node.
|
|
|
|
\textbf{Separation of ``protocol cleaning'' from anonymity:}
|
|
Onion Routing originally required a separate ``application
|
|
proxy'' for each supported application protocol---most of which were
|
|
never written, so many applications were never supported. Tor uses the
|
|
standard and near-ubiquitous SOCKS~\cite{socks4} proxy interface, allowing
|
|
us to support most TCP-based programs without modification. Tor now
|
|
relies on the filtering features of privacy-enhancing
|
|
application-level proxies such as Privoxy~\cite{privoxy}, without trying
|
|
to duplicate those features itself.
|
|
|
|
\textbf{No mixing, padding, or traffic shaping (yet):} Onion
|
|
Routing originally called for batching and reordering cells as they arrived,
|
|
assumed padding between ORs, and in
|
|
later designs added padding between onion proxies (users) and
|
|
ORs~\cite{or-ih96,or-jsac98}. Tradeoffs between padding protection
|
|
and cost were discussed, and \emph{traffic shaping} algorithms were
|
|
theorized~\cite{or-pet00} to provide good security without expensive
|
|
padding, but no concrete padding scheme was suggested.
|
|
Recent research~\cite{econymics}
|
|
and deployment experience~\cite{freedom21-security} suggest that this
|
|
level of resource use is not practical or economical; and even full
|
|
link padding is still vulnerable~\cite{defensive-dropping}. Thus,
|
|
until we have a proven and convenient design for traffic shaping or
|
|
low-latency mixing that improves anonymity against a realistic
|
|
adversary, we leave these strategies out.
|
|
|
|
\textbf{Many TCP streams can share one circuit:} Onion Routing originally
|
|
built a separate circuit for each
|
|
application-level request, but this required
|
|
multiple public key operations for every request, and also presented
|
|
a threat to anonymity from building so many circuits; see
|
|
Section~\ref{sec:maintaining-anonymity}. Tor multiplexes multiple TCP
|
|
streams along each circuit to improve efficiency and anonymity.
|
|
|
|
\textbf{Leaky-pipe circuit topology:} Through in-band signaling
|
|
within the circuit, Tor initiators can direct traffic to nodes partway
|
|
down the circuit. This novel approach
|
|
allows traffic to exit the circuit from the middle---possibly
|
|
frustrating traffic shape and volume attacks based on observing the end
|
|
of the circuit. (It also allows for long-range padding if
|
|
future research shows this to be worthwhile.)
|
|
|
|
\textbf{Congestion control:} Earlier anonymity designs do not
|
|
address traffic bottlenecks. Unfortunately, typical approaches to
|
|
load balancing and flow control in overlay networks involve inter-node
|
|
control communication and global views of traffic. Tor's decentralized
|
|
congestion control uses end-to-end acks to maintain anonymity
|
|
while allowing nodes at the edges of the network to detect congestion
|
|
or flooding and send less data until the congestion subsides.
|
|
|
|
\textbf{Directory servers:} The earlier Onion Routing design
|
|
planned to flood state information through the network---an approach
|
|
that can be unreliable and complex. % open to partitioning attacks.
|
|
Tor takes a simplified view toward distributing this
|
|
information. Certain more trusted nodes act as \emph{directory
|
|
servers}: they provide signed directories describing known
|
|
routers and their current state. Users periodically download them
|
|
via HTTP.
|
|
|
|
\textbf{Variable exit policies:} Tor provides a consistent mechanism
|
|
for each node to advertise a policy describing the hosts
|
|
and ports to which it will connect. These exit policies are critical
|
|
in a volunteer-based distributed infrastructure, because each operator
|
|
is comfortable with allowing different types of traffic to exit
|
|
from his node.
|
|
|
|
\textbf{End-to-end integrity checking:} The original Onion Routing
|
|
design did no integrity checking on data. Any node on the
|
|
circuit could change the contents of data cells as they passed by---for
|
|
example, to alter a connection request so it would connect
|
|
to a different webserver, or to `tag' encrypted traffic and look for
|
|
corresponding corrupted traffic at the network edges~\cite{minion-design}.
|
|
Tor hampers these attacks by verifying data integrity before it leaves
|
|
the network.
|
|
|
|
%\textbf{Improved robustness to failed nodes:} A failed node
|
|
%in the old design meant that circuit building failed, but thanks to
|
|
%Tor's step-by-step circuit building, users notice failed nodes
|
|
%while building circuits and route around them. Additionally, liveness
|
|
%information from directories allows users to avoid unreliable nodes in
|
|
%the first place.
|
|
%% Can't really claim this, now that we've found so many variants of
|
|
%% attack on partial-circuit-building. -RD
|
|
|
|
\textbf{Rendezvous points and hidden services:}
|
|
Tor provides an integrated mechanism for responder anonymity via
|
|
location-protected servers. Previous Onion Routing designs included
|
|
long-lived ``reply onions'' that could be used to build circuits
|
|
to a hidden server, but these reply onions did not provide forward
|
|
security, and became useless if any node in the path went down
|
|
or rotated its keys. In Tor, clients negotiate {\it rendezvous points}
|
|
to connect with hidden servers; reply onions are no longer required.
|
|
|
|
Unlike Freedom~\cite{freedom2-arch}, Tor does not require OS kernel
|
|
patches or network stack support. This prevents us from anonymizing
|
|
non-TCP protocols, but has greatly helped our portability and
|
|
deployability.
|
|
|
|
%Unlike Freedom~\cite{freedom2-arch}, Tor only anonymizes
|
|
%TCP-based protocols---not requiring patches (or built-in support) in an
|
|
%operating system's network stack has been valuable to Tor's
|
|
%portability and deployability.
|
|
|
|
We have implemented all of the above features, including rendezvous
|
|
points. Our source code is
|
|
available under a free license, and Tor
|
|
%, as far as we know, is unencumbered by patents.
|
|
is not covered by the patent that affected distribution and use of
|
|
earlier versions of Onion Routing.
|
|
We have deployed a wide-area alpha network
|
|
to test the design, to get more experience with usability
|
|
and users, and to provide a research platform for experimentation.
|
|
As of this writing, the network stands at 32 nodes %in thirteen
|
|
%distinct administrative domains
|
|
spread over two continents.
|
|
|
|
We review previous work in Section~\ref{sec:related-work}, describe
|
|
our goals and assumptions in Section~\ref{sec:assumptions},
|
|
and then address the above list of improvements in
|
|
Sections~\ref{sec:design},~\ref{sec:rendezvous}, and~\ref{sec:other-design}.
|
|
We summarize
|
|
in Section~\ref{sec:attacks} how our design stands up to
|
|
known attacks, and talk about our early deployment experiences in
|
|
Section~\ref{sec:in-the-wild}. We conclude with a list of open problems in
|
|
Section~\ref{sec:maintaining-anonymity} and future work for the Onion
|
|
Routing project in Section~\ref{sec:conclusion}.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\section{Related work}
|
|
\label{sec:related-work}
|
|
|
|
Modern anonymity systems date to Chaum's {\bf Mix-Net}
|
|
design~\cite{chaum-mix}. Chaum
|
|
proposed hiding the correspondence between sender and recipient by
|
|
wrapping messages in layers of public-key cryptography, and relaying them
|
|
through a path composed of ``mixes.'' Each mix in turn
|
|
decrypts, delays, and re-orders messages before relaying them
|
|
onward.
|
|
%toward their destinations.
|
|
|
|
Subsequent relay-based anonymity designs have diverged in two
|
|
main directions. Systems like {\bf Babel}~\cite{babel},
|
|
{\bf Mixmaster}~\cite{mixmaster-spec},
|
|
and {\bf Mixminion}~\cite{minion-design} have tried
|
|
to maximize anonymity at the cost of introducing comparatively large and
|
|
variable latencies. Because of this decision, these \emph{high-latency}
|
|
networks resist strong global adversaries,
|
|
but introduce too much lag for interactive tasks like web browsing,
|
|
Internet chat, or SSH connections.
|
|
|
|
Tor belongs to the second category: \emph{low-latency} designs that
|
|
try to anonymize interactive network traffic. These systems handle
|
|
a variety of bidirectional protocols. They also provide more convenient
|
|
mail delivery than the high-latency anonymous email
|
|
networks, because the remote mail server provides explicit and timely
|
|
delivery confirmation. But because these designs typically
|
|
involve many packets that must be delivered quickly, it is
|
|
difficult for them to prevent an attacker who can eavesdrop both ends of the
|
|
communication from correlating the timing and volume
|
|
of traffic entering the anonymity network with traffic leaving it~\cite{SS03}.
|
|
These
|
|
protocols are similarly vulnerable to an active adversary who introduces
|
|
timing patterns into traffic entering the network and looks
|
|
for correlated patterns among exiting traffic.
|
|
Although some work has been done to frustrate these attacks, most designs
|
|
protect primarily against traffic analysis rather than traffic
|
|
confirmation (see Section~\ref{subsec:threat-model}).
|
|
|
|
The simplest low-latency designs are single-hop proxies such as the
|
|
{\bf Anonymizer}~\cite{anonymizer}: a single trusted server strips the
|
|
data's origin before relaying it. These designs are easy to
|
|
analyze, but users must trust the anonymizing proxy.
|
|
Concentrating the traffic to this single point increases the anonymity set
|
|
(the people a given user is hiding among), but it is vulnerable if the
|
|
adversary can observe all traffic entering and leaving the proxy.
|
|
|
|
More complex are distributed-trust, circuit-based anonymizing systems.
|
|
In these designs, a user establishes one or more medium-term bidirectional
|
|
end-to-end circuits, and tunnels data in fixed-size cells.
|
|
Establishing circuits is computationally expensive and typically
|
|
requires public-key
|
|
cryptography, whereas relaying cells is comparatively inexpensive and
|
|
typically requires only symmetric encryption.
|
|
Because a circuit crosses several servers, and each server only knows
|
|
the adjacent servers in the circuit, no single server can link a
|
|
user to her communication partners.
|
|
|
|
The {\bf Java Anon Proxy} (also known as JAP or Web MIXes) uses fixed shared
|
|
routes known as \emph{cascades}. As with a single-hop proxy, this
|
|
approach aggregates users into larger anonymity sets, but again an
|
|
attacker only needs to observe both ends of the cascade to bridge all
|
|
the system's traffic. The Java Anon Proxy's design
|
|
calls for padding between end users and the head of the
|
|
cascade~\cite{web-mix}. However, it is not demonstrated whether the current
|
|
implementation's padding policy improves anonymity.
|
|
|
|
{\bf PipeNet}~\cite{back01, pipenet}, another low-latency design proposed
|
|
around the same time as Onion Routing, gave
|
|
stronger anonymity but allowed a single user to shut
|
|
down the network by not sending. Systems like {\bf ISDN
|
|
mixes}~\cite{isdn-mixes} were designed for other environments with
|
|
different assumptions.
|
|
%XXX please can we fix this sentence to something less demeaning
|
|
|
|
In P2P designs like {\bf Tarzan}~\cite{tarzan:ccs02} and
|
|
{\bf MorphMix}~\cite{morphmix:fc04}, all participants both generate
|
|
traffic and relay traffic for others. These systems aim to conceal
|
|
whether a given peer originated a request
|
|
or just relayed it from another peer. While Tarzan and MorphMix use
|
|
layered encryption as above, {\bf Crowds}~\cite{crowds-tissec} simply assumes
|
|
an adversary who cannot observe the initiator: it uses no public-key
|
|
encryption, so any node on a circuit can read users' traffic.
|
|
|
|
{\bf Hordes}~\cite{hordes-jcs} is based on Crowds but also uses multicast
|
|
responses to hide the initiator. {\bf Herbivore}~\cite{herbivore} and
|
|
$\mbox{\bf P}^{\mathbf 5}$~\cite{p5} go even further, requiring broadcast.
|
|
These systems are designed primarily for communication among peers,
|
|
although Herbivore users can make external connections by
|
|
requesting a peer to serve as a proxy.
|
|
|
|
Systems like {\bf Freedom} and the original Onion Routing build circuits
|
|
all at once, using a layered ``onion'' of public-key encrypted messages,
|
|
each layer of which provides session keys and the address of the
|
|
next server in the circuit. Tor as described herein, Tarzan, MorphMix,
|
|
{\bf Cebolla}~\cite{cebolla}, and Rennhard's {\bf Anonymity Network}~\cite{anonnet}
|
|
build circuits
|
|
in stages, extending them one hop at a time.
|
|
Section~\ref{subsubsec:constructing-a-circuit} describes how this
|
|
approach enables perfect forward secrecy.
|
|
|
|
Circuit-based designs must choose which protocol layer
|
|
to anonymize. They may intercept IP packets directly, and
|
|
relay them whole (stripping the source address) along the
|
|
circuit~\cite{freedom2-arch,tarzan:ccs02}. Like
|
|
Tor, they may accept TCP streams and relay the data in those streams,
|
|
ignoring the breakdown of that data into TCP
|
|
segments~\cite{morphmix:fc04,anonnet}. Finally, like Crowds, they may accept
|
|
application-level protocols such as HTTP and relay the application
|
|
requests themselves.
|
|
Making this protocol-layer decision requires a compromise between flexibility
|
|
and anonymity. For example, a system that understands HTTP
|
|
can strip
|
|
identifying information from requests, can take advantage of caching
|
|
to limit the number of requests that leave the network, and can batch
|
|
or encode requests to minimize the number of connections.
|
|
On the other hand, an IP-level anonymizer can handle nearly any protocol,
|
|
even ones unforeseen by its designers (though these systems require
|
|
kernel-level modifications to some operating systems, and so are more
|
|
complex and less portable). TCP-level anonymity networks like Tor present
|
|
a middle approach: they are application neutral (so long as the
|
|
application supports, or can be tunneled across, TCP), but by treating
|
|
application connections as data streams rather than raw TCP packets,
|
|
they avoid the inefficiencies of tunneling TCP over
|
|
TCP.
|
|
|
|
Distributed-trust anonymizing systems need to prevent attackers from
|
|
adding too many servers and thus compromising user paths.
|
|
Tor relies on a small set of well-known directory servers, run by
|
|
independent parties, to decide which nodes can
|
|
join. Tarzan and MorphMix allow unknown users to run servers, and use
|
|
a limited resource (like IP addresses) to prevent an attacker from
|
|
controlling too much of the network. Crowds suggests requiring
|
|
written, notarized requests from potential crowd members.
|
|
|
|
Anonymous communication is essential for censorship-resistant
|
|
systems like Eternity~\cite{eternity}, Free~Haven~\cite{freehaven-berk},
|
|
Publius~\cite{publius}, and Tangler~\cite{tangler}. Tor's rendezvous
|
|
points enable connections between mutually anonymous entities; they
|
|
are a building block for location-hidden servers, which are needed by
|
|
Eternity and Free~Haven.
|
|
|
|
% didn't include rewebbers. No clear place to put them, so I'll leave
|
|
% them out for now. -RD
|
|
|
|
\section{Design goals and assumptions}
|
|
\label{sec:assumptions}
|
|
|
|
\noindent{\large\bf Goals}\\
|
|
Like other low-latency anonymity designs, Tor seeks to frustrate
|
|
attackers from linking communication partners, or from linking
|
|
multiple communications to or from a single user. Within this
|
|
main goal, however, several considerations have directed
|
|
Tor's evolution.
|
|
|
|
\textbf{Deployability:} The design must be deployed and used in the
|
|
real world. Thus it
|
|
must not be expensive to run (for example, by requiring more bandwidth
|
|
than volunteers are willing to provide); must not place a heavy
|
|
liability burden on operators (for example, by allowing attackers to
|
|
implicate onion routers in illegal activities); and must not be
|
|
difficult or expensive to implement (for example, by requiring kernel
|
|
patches, or separate proxies for every protocol). We also cannot
|
|
require non-anonymous parties (such as websites)
|
|
to run our software. (Our rendezvous point design does not meet
|
|
this goal for non-anonymous users talking to hidden servers,
|
|
however; see Section~\ref{sec:rendezvous}.)
|
|
|
|
\textbf{Usability:} A hard-to-use system has fewer users---and because
|
|
anonymity systems hide users among users, a system with fewer users
|
|
provides less anonymity. Usability is thus not only a convenience:
|
|
it is a security requirement~\cite{econymics,back01}. Tor should
|
|
therefore not
|
|
require modifying familiar applications; should not introduce prohibitive
|
|
delays;
|
|
and should require as few configuration decisions
|
|
as possible. Finally, Tor should be easily implementable on all common
|
|
platforms; we cannot require users to change their operating system
|
|
to be anonymous. (Tor currently runs on Win32, Linux,
|
|
Solaris, BSD-style Unix, MacOS X, and probably others.)
|
|
|
|
\textbf{Flexibility:} The protocol must be flexible and well-specified,
|
|
so Tor can serve as a test-bed for future research.
|
|
Many of the open problems in low-latency anonymity
|
|
networks, such as generating dummy traffic or preventing Sybil
|
|
attacks~\cite{sybil}, may be solvable independently from the issues
|
|
solved by
|
|
Tor. Hopefully future systems will not need to reinvent Tor's design.
|
|
%(But note that while a flexible design benefits researchers,
|
|
%there is a danger that differing choices of extensions will make users
|
|
%distinguishable. Experiments should be run on a separate network.)
|
|
|
|
\textbf{Simple design:} The protocol's design and security
|
|
parameters must be well-understood. Additional features impose implementation
|
|
and complexity costs; adding unproven techniques to the design threatens
|
|
deployability, readability, and ease of security analysis. Tor aims to
|
|
deploy a simple and stable system that integrates the best accepted
|
|
approaches to protecting anonymity.\\
|
|
|
|
\noindent{\large\bf Non-goals}\label{subsec:non-goals}\\
|
|
In favoring simple, deployable designs, we have explicitly deferred
|
|
several possible goals, either because they are solved elsewhere, or because
|
|
they are not yet solved.
|
|
|
|
\textbf{Not peer-to-peer:} Tarzan and MorphMix aim to scale to completely
|
|
decentralized peer-to-peer environments with thousands of short-lived
|
|
servers, many of which may be controlled by an adversary. This approach
|
|
is appealing, but still has many open
|
|
problems~\cite{tarzan:ccs02,morphmix:fc04}.
|
|
|
|
\textbf{Not secure against end-to-end attacks:} Tor does not claim
|
|
to completely solve end-to-end timing or intersection
|
|
attacks. Some approaches, such as having users run their own onion routers,
|
|
may help;
|
|
see Section~\ref{sec:maintaining-anonymity} for more discussion.
|
|
|
|
\textbf{No protocol normalization:} Tor does not provide \emph{protocol
|
|
normalization} like Privoxy or the Anonymizer. If senders want anonymity from
|
|
responders while using complex and variable
|
|
protocols like HTTP, Tor must be layered with a filtering proxy such
|
|
as Privoxy to hide differences between clients, and expunge protocol
|
|
features that leak identity.
|
|
Note that by this separation Tor can also provide services that
|
|
are anonymous to the network yet authenticated to the responder, like
|
|
SSH. Similarly, Tor does not integrate
|
|
tunneling for non-stream-based protocols like UDP; this must be
|
|
provided by an external service if appropriate.
|
|
|
|
\textbf{Not steganographic:} Tor does not try to conceal who is connected
|
|
to the network.
|
|
|
|
\subsection{Threat Model}
|
|
\label{subsec:threat-model}
|
|
|
|
A global passive adversary is the most commonly assumed threat when
|
|
analyzing theoretical anonymity designs. But like all practical
|
|
low-latency systems, Tor does not protect against such a strong
|
|
adversary. Instead, we assume an adversary who can observe some fraction
|
|
of network traffic; who can generate, modify, delete, or delay
|
|
traffic; who can operate onion routers of his own; and who can
|
|
compromise some fraction of the onion routers.
|
|
|
|
In low-latency anonymity systems that use layered encryption, the
|
|
adversary's typical goal is to observe both the initiator and the
|
|
responder. By observing both ends, passive attackers can confirm a
|
|
suspicion that Alice is
|
|
talking to Bob if the timing and volume patterns of the traffic on the
|
|
connection are distinct enough; active attackers can induce timing
|
|
signatures on the traffic to force distinct patterns. Rather
|
|
than focusing on these \emph{traffic confirmation} attacks,
|
|
we aim to prevent \emph{traffic
|
|
analysis} attacks, where the adversary uses traffic patterns to learn
|
|
which points in the network he should attack.
|
|
|
|
Our adversary might try to link an initiator Alice with her
|
|
communication partners, or try to build a profile of Alice's
|
|
behavior. He might mount passive attacks by observing the network edges
|
|
and correlating traffic entering and leaving the network---by
|
|
relationships in packet timing, volume, or externally visible
|
|
user-selected
|
|
options. The adversary can also mount active attacks by compromising
|
|
routers or keys; by replaying traffic; by selectively denying service
|
|
to trustworthy routers to move users to
|
|
compromised routers, or denying service to users to see if traffic
|
|
elsewhere in the
|
|
network stops; or by introducing patterns into traffic that can later be
|
|
detected. The adversary might subvert the directory servers to give users
|
|
differing views of network state. Additionally, he can try to decrease
|
|
the network's reliability by attacking nodes or by performing antisocial
|
|
activities from reliable nodes and trying to get them taken down---making
|
|
the network unreliable flushes users to other less anonymous
|
|
systems, where they may be easier to attack. We summarize
|
|
in Section~\ref{sec:attacks} how well the Tor design defends against
|
|
each of these attacks.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\section{The Tor Design}
|
|
\label{sec:design}
|
|
|
|
The Tor network is an overlay network; each onion router (OR)
|
|
runs as a normal
|
|
user-level process without any special privileges.
|
|
Each onion router maintains a TLS~\cite{TLS}
|
|
connection to every other onion router.
|
|
%(We discuss alternatives to this clique-topology assumption in
|
|
%Section~\ref{sec:maintaining-anonymity}.)
|
|
% A subset of the ORs also act as
|
|
%directory servers, tracking which routers are in the network;
|
|
%see Section~\ref{subsec:dirservers} for directory server details.
|
|
Each user
|
|
runs local software called an onion proxy (OP) to fetch directories,
|
|
establish circuits across the network,
|
|
and handle connections from user applications. These onion proxies accept
|
|
TCP streams and multiplex them across the circuits. The onion
|
|
router on the other side
|
|
of the circuit connects to the requested destinations
|
|
and relays data.
|
|
|
|
Each onion router maintains a long-term identity key and a short-term
|
|
onion key. The identity
|
|
key is used to sign TLS certificates, to sign the OR's \emph{router
|
|
descriptor} (a summary of its keys, address, bandwidth, exit policy,
|
|
and so on), and (by directory servers) to sign directories. %Changing
|
|
%the identity key of a router is considered equivalent to creating a
|
|
%new router.
|
|
The onion key is used to decrypt requests
|
|
from users to set up a circuit and negotiate ephemeral keys.
|
|
The TLS protocol also establishes a short-term link key when communicating
|
|
between ORs. Short-term keys are rotated periodically and
|
|
independently, to limit the impact of key compromise.
|
|
|
|
Section~\ref{subsec:cells} presents the fixed-size
|
|
\emph{cells} that are the unit of communication in Tor. We describe
|
|
in Section~\ref{subsec:circuits} how circuits are
|
|
built, extended, truncated, and destroyed. Section~\ref{subsec:tcp}
|
|
describes how TCP streams are routed through the network. We address
|
|
integrity checking in Section~\ref{subsec:integrity-checking},
|
|
and resource limiting in Section~\ref{subsec:rate-limit}.
|
|
Finally,
|
|
Section~\ref{subsec:congestion} talks about congestion control and
|
|
fairness issues.
|
|
|
|
\subsection{Cells}
|
|
\label{subsec:cells}
|
|
|
|
Onion routers communicate with one another, and with users' OPs, via
|
|
TLS connections with ephemeral keys. Using TLS conceals the data on
|
|
the connection with perfect forward secrecy, and prevents an attacker
|
|
from modifying data on the wire or impersonating an OR.
|
|
|
|
Traffic passes along these connections in fixed-size cells. Each cell
|
|
is 512 bytes, %(but see Section~\ref{sec:conclusion} for a discussion of
|
|
%allowing large cells and small cells on the same network),
|
|
and consists of a header and a payload. The header includes a circuit
|
|
identifier (circID) that specifies which circuit the cell refers to
|
|
(many circuits can be multiplexed over the single TLS connection), and
|
|
a command to describe what to do with the cell's payload. (Circuit
|
|
identifiers are connection-specific: each circuit has a different
|
|
circID on each OP/OR or OR/OR connection it traverses.)
|
|
Based on their command, cells are either \emph{control} cells, which are
|
|
always interpreted by the node that receives them, or \emph{relay} cells,
|
|
which carry end-to-end stream data. The control cell commands are:
|
|
\emph{padding} (currently used for keepalive, but also usable for link
|
|
padding); \emph{create} or \emph{created} (used to set up a new circuit);
|
|
and \emph{destroy} (to tear down a circuit).
|
|
|
|
Relay cells have an additional header (the relay header) at the front
|
|
of the payload, containing a streamID (stream identifier: many streams can
|
|
be multiplexed over a circuit); an end-to-end checksum for integrity
|
|
checking; the length of the relay payload; and a relay command.
|
|
The entire contents of the relay header and the relay cell payload
|
|
are encrypted or decrypted together as the relay cell moves along the
|
|
circuit, using the 128-bit AES cipher in counter mode to generate a
|
|
cipher stream. The relay commands are: \emph{relay
|
|
data} (for data flowing down the stream), \emph{relay begin} (to open a
|
|
stream), \emph{relay end} (to close a stream cleanly), \emph{relay
|
|
teardown} (to close a broken stream), \emph{relay connected}
|
|
(to notify the OP that a relay begin has succeeded), \emph{relay
|
|
extend} and \emph{relay extended} (to extend the circuit by a hop,
|
|
and to acknowledge), \emph{relay truncate} and \emph{relay truncated}
|
|
(to tear down only part of the circuit, and to acknowledge), \emph{relay
|
|
sendme} (used for congestion control), and \emph{relay drop} (used to
|
|
implement long-range dummies).
|
|
We give a visual overview of cell structure plus the details of relay
|
|
cell structure, and then describe each of these cell types and commands
|
|
in more detail below.
|
|
|
|
%\begin{figure}[h]
|
|
%\unitlength=1cm
|
|
%\centering
|
|
%\begin{picture}(8.0,1.5)
|
|
%\put(4,.5){\makebox(0,0)[c]{\epsfig{file=cell-struct,width=7cm}}}
|
|
%\end{picture}
|
|
%\end{figure}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\mbox{\epsfig{figure=cell-struct,width=7cm}}
|
|
\end{figure}
|
|
|
|
\subsection{Circuits and streams}
|
|
\label{subsec:circuits}
|
|
|
|
Onion Routing originally built one circuit for each
|
|
TCP stream. Because building a circuit can take several tenths of a
|
|
second (due to public-key cryptography and network latency),
|
|
this design imposed high costs on applications like web browsing that
|
|
open many TCP streams.
|
|
|
|
In Tor, each circuit can be shared by many TCP streams. To avoid
|
|
delays, users construct circuits preemptively. To limit linkability
|
|
among their streams, users' OPs build a new circuit
|
|
periodically if the previous ones have been used,
|
|
and expire old used circuits that no longer have any open streams.
|
|
OPs consider rotating to a new circuit once a minute: thus
|
|
even heavy users spend negligible time
|
|
building circuits, but a limited number of requests can be linked
|
|
to each other through a given exit node. Also, because circuits are built
|
|
in the background, OPs can recover from failed circuit creation
|
|
without harming user experience.\\
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\mbox{\epsfig{figure=interaction,width=8.75cm}}
|
|
\caption{Alice builds a two-hop circuit and begins fetching a web page.}
|
|
\label{fig:interaction}
|
|
\end{figure}
|
|
|
|
\noindent{\large\bf Constructing a circuit}\label{subsubsec:constructing-a-circuit}\\
|
|
%\subsubsection{Constructing a circuit}
|
|
A user's OP constructs circuits incrementally, negotiating a
|
|
symmetric key with each OR on the circuit, one hop at a time. To begin
|
|
creating a new circuit, the OP (call her Alice) sends a
|
|
\emph{create} cell to the first node in her chosen path (call him Bob).
|
|
(She chooses a new
|
|
circID $C_{AB}$ not currently used on the connection from her to Bob.)
|
|
The \emph{create} cell's
|
|
payload contains the first half of the Diffie-Hellman handshake
|
|
($g^x$), encrypted to the onion key of the OR (call him Bob). Bob
|
|
responds with a \emph{created} cell containing $g^y$
|
|
along with a hash of the negotiated key $K=g^{xy}$.
|
|
|
|
Once the circuit has been established, Alice and Bob can send one
|
|
another relay cells encrypted with the negotiated
|
|
key.\footnote{Actually, the negotiated key is used to derive two
|
|
symmetric keys: one for each direction.} More detail is given in
|
|
the next section.
|
|
|
|
To extend the circuit further, Alice sends a \emph{relay extend} cell
|
|
to Bob, specifying the address of the next OR (call her Carol), and
|
|
an encrypted $g^{x_2}$ for her. Bob copies the half-handshake into a
|
|
\emph{create} cell, and passes it to Carol to extend the circuit.
|
|
(Bob chooses a new circID $C_{BC}$ not currently used on the connection
|
|
between him and Carol. Alice never needs to know this circID; only Bob
|
|
associates $C_{AB}$ on his connection with Alice to $C_{BC}$ on
|
|
his connection with Carol.)
|
|
When Carol responds with a \emph{created} cell, Bob wraps the payload
|
|
into a \emph{relay extended} cell and passes it back to Alice. Now
|
|
the circuit is extended to Carol, and Alice and Carol share a common key
|
|
$K_2 = g^{x_2 y_2}$.
|
|
|
|
To extend the circuit to a third node or beyond, Alice
|
|
proceeds as above, always telling the last node in the circuit to
|
|
extend one hop further.
|
|
|
|
This circuit-level handshake protocol achieves unilateral entity
|
|
authentication (Alice knows she's handshaking with the OR, but
|
|
the OR doesn't care who is opening the circuit---Alice uses no public key
|
|
and remains anonymous) and unilateral key authentication
|
|
(Alice and the OR agree on a key, and Alice knows only the OR learns
|
|
it). It also achieves forward
|
|
secrecy and key freshness. More formally, the protocol is as follows
|
|
(where $E_{PK_{Bob}}(\cdot)$ is encryption with Bob's public key,
|
|
$H$ is a secure hash function, and $|$ is concatenation):
|
|
\begin{equation*}
|
|
\begin{aligned}
|
|
\mathrm{Alice} \rightarrow \mathrm{Bob}&: E_{PK_{Bob}}(g^x) \\
|
|
\mathrm{Bob} \rightarrow \mathrm{Alice}&: g^y, H(K | \mathrm{``handshake"}) \\
|
|
\end{aligned}
|
|
\end{equation*}
|
|
|
|
\noindent In the second step, Bob proves that it was he who received $g^x$,
|
|
and who chose $y$. We use PK encryption in the first step
|
|
(rather than, say, using the first two steps of STS, which has a
|
|
signature in the second step) because a single cell is too small to
|
|
hold both a public key and a signature. Preliminary analysis with the
|
|
NRL protocol analyzer~\cite{meadows96} shows this protocol to be
|
|
secure (including perfect forward secrecy) under the
|
|
traditional Dolev-Yao model.\\
|
|
|
|
\noindent{\large\bf Relay cells}\\
|
|
%\subsubsection{Relay cells}
|
|
%
|
|
Once Alice has established the circuit (so she shares keys with each
|
|
OR on the circuit), she can send relay cells.
|
|
%Recall that every relay cell has a streamID that indicates to which
|
|
%stream the cell belongs. %This streamID allows a relay cell to be
|
|
%addressed to any OR on the circuit.
|
|
Upon receiving a relay
|
|
cell, an OR looks up the corresponding circuit, and decrypts the relay
|
|
header and payload with the session key for that circuit.
|
|
If the cell is headed away from Alice the OR then checks whether the
|
|
decrypted cell has a valid digest (as an optimization, the first
|
|
two bytes of the integrity check are zero, so in most cases we can avoid
|
|
computing the hash).
|
|
%is recognized---either because it
|
|
%corresponds to an open stream at this OR for the given circuit, or because
|
|
%it is the control streamID (zero).
|
|
If valid, it accepts the relay cell and processes it as described
|
|
below. Otherwise,
|
|
the OR looks up the circID and OR for the
|
|
next step in the circuit, replaces the circID as appropriate, and
|
|
sends the decrypted relay cell to the next OR. (If the OR at the end
|
|
of the circuit receives an unrecognized relay cell, an error has
|
|
occurred, and the circuit is torn down.)
|
|
|
|
OPs treat incoming relay cells similarly: they iteratively unwrap the
|
|
relay header and payload with the session keys shared with each
|
|
OR on the circuit, from the closest to farthest.
|
|
If at any stage the digest is valid, the cell must have
|
|
originated at the OR whose encryption has just been removed.
|
|
|
|
To construct a relay cell addressed to a given OR, Alice assigns the
|
|
digest, and then iteratively
|
|
encrypts the cell payload (that is, the relay header and payload) with
|
|
the symmetric key of each hop up to that OR. Because the digest is
|
|
encrypted to a different value at each step, only at the targeted OR
|
|
will it have a meaningful value.\footnote{
|
|
% Should we just say that 2^56 is itself negligible?
|
|
% Assuming 4-hop circuits with 10 streams per hop, there are 33
|
|
% possible bad streamIDs before the last circuit. This still
|
|
% gives an error only once every 2 million terabytes (approx).
|
|
With 48 bits of digest per cell, the probability of an accidental
|
|
collision is far lower than the chance of hardware failure.}
|
|
This \emph{leaky pipe} circuit topology
|
|
allows Alice's streams to exit at different ORs on a single circuit.
|
|
Alice may choose different exit points because of their exit policies,
|
|
or to keep the ORs from knowing that two streams
|
|
originate from the same person.
|
|
|
|
When an OR later replies to Alice with a relay cell, it
|
|
encrypts the cell's relay header and payload with the single key it
|
|
shares with Alice, and sends the cell back toward Alice along the
|
|
circuit. Subsequent ORs add further layers of encryption as they
|
|
relay the cell back to Alice.
|
|
|
|
To tear down a circuit, Alice sends a \emph{destroy} control
|
|
cell. Each OR in the circuit receives the \emph{destroy} cell, closes
|
|
all streams on that circuit, and passes a new \emph{destroy} cell
|
|
forward. But just as circuits are built incrementally, they can also
|
|
be torn down incrementally: Alice can send a \emph{relay
|
|
truncate} cell to a single OR on a circuit. That OR then sends a
|
|
\emph{destroy} cell forward, and acknowledges with a
|
|
\emph{relay truncated} cell. Alice can then extend the circuit to
|
|
different nodes, without signaling to the intermediate nodes (or
|
|
a limited observer) that she has changed her circuit.
|
|
Similarly, if a node on the circuit goes down, the adjacent
|
|
node can send a \emph{relay truncated} cell back to Alice. Thus the
|
|
``break a node and see which circuits go down''
|
|
attack~\cite{freedom21-security} is weakened.
|
|
|
|
\subsection{Opening and closing streams}
|
|
\label{subsec:tcp}
|
|
|
|
When Alice's application wants a TCP connection to a given
|
|
address and port, it asks the OP (via SOCKS) to make the
|
|
connection. The OP chooses the newest open circuit (or creates one if
|
|
needed), and chooses a suitable OR on that circuit to be the
|
|
exit node (usually the last node, but maybe others due to exit policy
|
|
conflicts; see Section~\ref{subsec:exitpolicies}.) The OP then opens
|
|
the stream by sending a \emph{relay begin} cell to the exit node,
|
|
using a new random streamID. Once the
|
|
exit node connects to the remote host, it responds
|
|
with a \emph{relay connected} cell. Upon receipt, the OP sends a
|
|
SOCKS reply to notify the application of its success. The OP
|
|
now accepts data from the application's TCP stream, packaging it into
|
|
\emph{relay data} cells and sending those cells along the circuit to
|
|
the chosen OR.
|
|
|
|
There's a catch to using SOCKS, however---some applications pass the
|
|
alphanumeric hostname to the Tor client, while others resolve it into
|
|
an IP address first and then pass the IP address to the Tor client. If
|
|
the application does DNS resolution first, Alice thereby reveals her
|
|
destination to the remote DNS server, rather than sending the hostname
|
|
through the Tor network to be resolved at the far end. Common applications
|
|
like Mozilla and SSH have this flaw.
|
|
|
|
With Mozilla, the flaw is easy to address: the filtering HTTP
|
|
proxy called Privoxy gives a hostname to the Tor client, so Alice's
|
|
computer never does DNS resolution.
|
|
But a portable general solution, such as is needed for
|
|
SSH, is
|
|
an open problem. Modifying or replacing the local nameserver
|
|
can be invasive, brittle, and unportable. Forcing the resolver
|
|
library to prefer TCP rather than UDP is hard, and also has
|
|
portability problems. Dynamically intercepting system calls to the
|
|
resolver library seems a promising direction. We could also provide
|
|
a tool similar to \emph{dig} to perform a private lookup through the
|
|
Tor network. Currently, we encourage the use of privacy-aware proxies
|
|
like Privoxy wherever possible.
|
|
|
|
Closing a Tor stream is analogous to closing a TCP stream: it uses a
|
|
two-step handshake for normal operation, or a one-step handshake for
|
|
errors. If the stream closes abnormally, the adjacent node simply sends a
|
|
\emph{relay teardown} cell. If the stream closes normally, the node sends
|
|
a \emph{relay end} cell down the circuit, and the other side responds with
|
|
its own \emph{relay end} cell. Because
|
|
all relay cells use layered encryption, only the destination OR knows
|
|
that a given relay cell is a request to close a stream. This two-step
|
|
handshake allows Tor to support TCP-based applications that use half-closed
|
|
connections.
|
|
% such as broken HTTP clients that close their side of the
|
|
%stream after writing but are still willing to read.
|
|
|
|
\subsection{Integrity checking on streams}
|
|
\label{subsec:integrity-checking}
|
|
|
|
Because the old Onion Routing design used a stream cipher without integrity
|
|
checking, traffic was
|
|
vulnerable to a malleability attack: though the attacker could not
|
|
decrypt cells, any changes to encrypted data
|
|
would create corresponding changes to the data leaving the network.
|
|
This weakness allowed an adversary who could guess the encrypted content
|
|
to change a padding cell to a destroy
|
|
cell; change the destination address in a \emph{relay begin} cell to the
|
|
adversary's webserver; or change an FTP command from
|
|
{\tt dir} to {\tt rm~*}. (Even an external
|
|
adversary could do this, because the link encryption similarly used a
|
|
stream cipher.)
|
|
|
|
Because Tor uses TLS on its links, external adversaries cannot modify
|
|
data. Addressing the insider malleability attack, however, is
|
|
more complex.
|
|
|
|
We could do integrity checking of the relay cells at each hop, either
|
|
by including hashes or by using an authenticating cipher mode like
|
|
EAX~\cite{eax}, but there are some problems. First, these approaches
|
|
impose a message-expansion overhead at each hop, and so we would have to
|
|
either leak the path length or waste bytes by padding to a maximum
|
|
path length. Second, these solutions can only verify traffic coming
|
|
from Alice: ORs would not be able to produce suitable hashes for
|
|
the intermediate hops, since the ORs on a circuit do not know the
|
|
other ORs' session keys. Third, we have already accepted that our design
|
|
is vulnerable to end-to-end timing attacks; so tagging attacks performed
|
|
within the circuit provide no additional information to the attacker.
|
|
|
|
Thus, we check integrity only at the edges of each stream. (Remember that
|
|
in our leaky-pipe circuit topology, a stream's edge could be any hop
|
|
in the circuit.) When Alice
|
|
negotiates a key with a new hop, they each initialize a SHA-1
|
|
digest with a derivative of that key,
|
|
thus beginning with randomness that only the two of them know.
|
|
Then they each incrementally add to the SHA-1 digest the contents of
|
|
all relay cells they create, and include with each relay cell the
|
|
first four bytes of the current digest. Each also keeps a SHA-1
|
|
digest of data received, to verify that the received hashes are correct.
|
|
|
|
To be sure of removing or modifying a cell, the attacker must be able
|
|
to deduce the current digest state (which depends on all
|
|
traffic between Alice and Bob, starting with their negotiated key).
|
|
Attacks on SHA-1 where the adversary can incrementally add to a hash
|
|
to produce a new valid hash don't work, because all hashes are
|
|
end-to-end encrypted across the circuit. The computational overhead
|
|
of computing the digests is minimal compared to doing the AES
|
|
encryption performed at each hop of the circuit. We use only four
|
|
bytes per cell to minimize overhead; the chance that an adversary will
|
|
correctly guess a valid hash
|
|
%, plus the payload the current cell,
|
|
is
|
|
acceptably low, given that the OP or OR tear down the circuit if they
|
|
receive a bad hash.
|
|
|
|
\subsection{Rate limiting and fairness}
|
|
\label{subsec:rate-limit}
|
|
|
|
Volunteers are more willing to run services that can limit
|
|
their bandwidth usage. To accommodate them, Tor servers use a
|
|
token bucket approach~\cite{tannenbaum96} to
|
|
enforce a long-term average rate of incoming bytes, while still
|
|
permitting short-term bursts above the allowed bandwidth.
|
|
% Current bucket sizes are set to ten seconds' worth of traffic.
|
|
|
|
%Further, we want to avoid starving any Tor streams. Entire circuits
|
|
%could starve if we read greedily from connections and one connection
|
|
%uses all the remaining bandwidth. We solve this by dividing the number
|
|
%of tokens in the bucket by the number of connections that want to read,
|
|
%and reading at most that number of bytes from each connection. We iterate
|
|
%this procedure until the number of tokens in the bucket is under some
|
|
%threshold (currently 10KB), at which point we greedily read from connections.
|
|
|
|
Because the Tor protocol outputs about the same number of bytes as it
|
|
takes in, it is sufficient in practice to limit only incoming bytes.
|
|
With TCP streams, however, the correspondence is not one-to-one:
|
|
relaying a single incoming byte can require an entire 512-byte cell.
|
|
(We can't just wait for more bytes, because the local application may
|
|
be awaiting a reply.) Therefore, we treat this case as if the entire
|
|
cell size had been read, regardless of the cell's fullness.
|
|
|
|
Further, inspired by Rennhard et al's design in~\cite{anonnet}, a
|
|
circuit's edges can heuristically distinguish interactive streams from bulk
|
|
streams by comparing the frequency with which they supply cells. We can
|
|
provide good latency for interactive streams by giving them preferential
|
|
service, while still giving good overall throughput to the bulk
|
|
streams. Such preferential treatment presents a possible end-to-end
|
|
attack, but an adversary observing both
|
|
ends of the stream can already learn this information through timing
|
|
attacks.
|
|
|
|
\subsection{Congestion control}
|
|
\label{subsec:congestion}
|
|
|
|
Even with bandwidth rate limiting, we still need to worry about
|
|
congestion, either accidental or intentional. If enough users choose the
|
|
same OR-to-OR connection for their circuits, that connection can become
|
|
saturated. For example, an attacker could send a large file
|
|
through the Tor network to a webserver he runs, and then
|
|
refuse to read any of the bytes at the webserver end of the
|
|
circuit. Without some congestion control mechanism, these bottlenecks
|
|
can propagate back through the entire network. We don't need to
|
|
reimplement full TCP windows (with sequence numbers,
|
|
the ability to drop cells when we're full and retransmit later, and so
|
|
on),
|
|
because TCP already guarantees in-order delivery of each
|
|
cell.
|
|
%But we need to investigate further the effects of the current
|
|
%parameters on throughput and latency, while also keeping privacy in mind;
|
|
%see Section~\ref{sec:maintaining-anonymity} for more discussion.
|
|
We describe our response below.
|
|
|
|
\textbf{Circuit-level throttling:}
|
|
To control a circuit's bandwidth usage, each OR keeps track of two
|
|
windows. The \emph{packaging window} tracks how many relay data cells the OR is
|
|
allowed to package (from incoming TCP streams) for transmission back to the OP,
|
|
and the \emph{delivery window} tracks how many relay data cells it is willing
|
|
to deliver to TCP streams outside the network. Each window is initialized
|
|
(say, to 1000 data cells). When a data cell is packaged or delivered,
|
|
the appropriate window is decremented. When an OR has received enough
|
|
data cells (currently 100), it sends a \emph{relay sendme} cell towards the OP,
|
|
with streamID zero. When an OR receives a \emph{relay sendme} cell with
|
|
streamID zero, it increments its packaging window. Either of these cells
|
|
increments the corresponding window by 100. If the packaging window
|
|
reaches 0, the OR stops reading from TCP connections for all streams
|
|
on the corresponding circuit, and sends no more relay data cells until
|
|
receiving a \emph{relay sendme} cell.
|
|
|
|
The OP behaves identically, except that it must track a packaging window
|
|
and a delivery window for every OR in the circuit. If a packaging window
|
|
reaches 0, it stops reading from streams destined for that OR.
|
|
|
|
\textbf{Stream-level throttling}:
|
|
The stream-level congestion control mechanism is similar to the
|
|
circuit-level mechanism. ORs and OPs use \emph{relay sendme} cells
|
|
to implement end-to-end flow control for individual streams across
|
|
circuits. Each stream begins with a packaging window (currently 500 cells),
|
|
and increments the window by a fixed value (50) upon receiving a \emph{relay
|
|
sendme} cell. Rather than always returning a \emph{relay sendme} cell as soon
|
|
as enough cells have arrived, the stream-level congestion control also
|
|
has to check whether data has been successfully flushed onto the TCP
|
|
stream; it sends the \emph{relay sendme} cell only when the number of bytes pending
|
|
to be flushed is under some threshold (currently 10 cells' worth).
|
|
|
|
%% Maybe omit this next paragraph. -NM
|
|
%Currently, non-data relay cells do not affect the windows. Thus we
|
|
%avoid potential deadlock issues, for example, arising because a stream
|
|
%can't send a \emph{relay sendme} cell when its packaging window is empty.
|
|
|
|
These arbitrarily chosen parameters seem to give tolerable throughput
|
|
and delay; see Section~\ref{sec:in-the-wild}.
|
|
|
|
\section{Rendezvous Points and hidden services}
|
|
\label{sec:rendezvous}
|
|
|
|
Rendezvous points are a building block for \emph{location-hidden
|
|
services} (also known as \emph{responder anonymity}) in the Tor
|
|
network. Location-hidden services allow Bob to offer a TCP
|
|
service, such as a webserver, without revealing his IP address.
|
|
This type of anonymity protects against distributed DoS attacks:
|
|
attackers are forced to attack the onion routing network
|
|
because they do not know Bob's IP address.
|
|
|
|
Our design for location-hidden servers has the following goals.
|
|
\textbf{Access-control:} Bob needs a way to filter incoming requests,
|
|
so an attacker cannot flood Bob simply by making many connections to him.
|
|
\textbf{Robustness:} Bob should be able to maintain a long-term pseudonymous
|
|
identity even in the presence of router failure. Bob's service must
|
|
not be tied to a single OR, and Bob must be able to migrate his service
|
|
across ORs. \textbf{Smear-resistance:}
|
|
A social attacker
|
|
should not be able to ``frame'' a rendezvous router by
|
|
offering an illegal or disreputable location-hidden service and
|
|
making observers believe the router created that service.
|
|
\textbf{Application-transparency:} Although we require users
|
|
to run special software to access location-hidden servers, we must not
|
|
require them to modify their applications.
|
|
|
|
We provide location-hiding for Bob by allowing him to advertise
|
|
several onion routers (his \emph{introduction points}) as contact
|
|
points. He may do this on any robust efficient
|
|
key-value lookup system with authenticated updates, such as a
|
|
distributed hash table (DHT) like CFS~\cite{cfs:sosp01}.\footnote{
|
|
Rather than rely on an external infrastructure, the Onion Routing network
|
|
can run the lookup service itself. Our current implementation provides a
|
|
simple lookup system on the
|
|
directory servers.} Alice, the client, chooses an OR as her
|
|
\emph{rendezvous point}. She connects to one of Bob's introduction
|
|
points, informs him of her rendezvous point, and then waits for him
|
|
to connect to the rendezvous point. This extra level of indirection
|
|
helps Bob's introduction points avoid problems associated with serving
|
|
unpopular files directly (for example, if Bob serves
|
|
material that the introduction point's community finds objectionable,
|
|
or if Bob's service tends to get attacked by network vandals).
|
|
The extra level of indirection also allows Bob to respond to some requests
|
|
and ignore others.
|
|
|
|
\subsection{Rendezvous points in Tor}
|
|
|
|
The following steps are
|
|
%We give an overview of the steps of a rendezvous. These are
|
|
performed on behalf of Alice and Bob by their local OPs;
|
|
application integration is described more fully below.
|
|
|
|
\begin{tightlist}
|
|
\item Bob generates a long-term public key pair to identify his service.
|
|
\item Bob chooses some introduction points, and advertises them on
|
|
the lookup service, signing the advertisement with his public key. He
|
|
can add more later.
|
|
\item Bob builds a circuit to each of his introduction points, and tells
|
|
them to wait for requests.
|
|
\item Alice learns about Bob's service out of band (perhaps Bob told her,
|
|
or she found it on a website). She retrieves the details of Bob's
|
|
service from the lookup service. If Alice wants to access Bob's
|
|
service anonymously, she must connect to the lookup service via Tor.
|
|
\item Alice chooses an OR as the rendezvous point (RP) for her connection to
|
|
Bob's service. She builds a circuit to the RP, and gives it a
|
|
randomly chosen ``rendezvous cookie'' to recognize Bob.
|
|
\item Alice opens an anonymous stream to one of Bob's introduction
|
|
points, and gives it a message (encrypted with Bob's public key)
|
|
telling it about herself,
|
|
her RP and rendezvous cookie, and the
|
|
start of a DH
|
|
handshake. The introduction point sends the message to Bob.
|
|
\item If Bob wants to talk to Alice, he builds a circuit to Alice's
|
|
RP and sends the rendezvous cookie, the second half of the DH
|
|
handshake, and a hash of the session
|
|
key they now share. By the same argument as in
|
|
Section~\ref{subsubsec:constructing-a-circuit}, Alice knows she
|
|
shares the key only with Bob.
|
|
\item The RP connects Alice's circuit to Bob's. Note that RP can't
|
|
recognize Alice, Bob, or the data they transmit.
|
|
\item Alice sends a \emph{relay begin} cell along the circuit. It
|
|
arrives at Bob's OP, which connects to Bob's
|
|
webserver.
|
|
\item An anonymous stream has been established, and Alice and Bob
|
|
communicate as normal.
|
|
\end{tightlist}
|
|
|
|
When establishing an introduction point, Bob provides the onion router
|
|
with the public key identifying his service. Bob signs his
|
|
messages, so others cannot usurp his introduction point
|
|
in the future. He uses the same public key to establish the other
|
|
introduction points for his service, and periodically refreshes his
|
|
entry in the lookup service.
|
|
|
|
The message that Alice gives
|
|
the introduction point includes a hash of Bob's public key % to identify
|
|
%the service, along with
|
|
and an optional initial authorization token (the
|
|
introduction point can do prescreening, for example to block replays). Her
|
|
message to Bob may include an end-to-end authorization token so Bob
|
|
can choose whether to respond.
|
|
The authorization tokens can be used to provide selective access:
|
|
important users can get uninterrupted access.
|
|
%important users get tokens to ensure uninterrupted access. %to the
|
|
%service.
|
|
During normal situations, Bob's service might simply be offered
|
|
directly from mirrors, while Bob gives out tokens to high-priority users. If
|
|
the mirrors are knocked down,
|
|
%by distributed DoS attacks or even
|
|
%physical attack,
|
|
those users can switch to accessing Bob's service via
|
|
the Tor rendezvous system.
|
|
|
|
Bob's introduction points are themselves subject to DoS---he must
|
|
open many introduction points or risk such an attack.
|
|
He can provide selected users with a current list or future schedule of
|
|
unadvertised introduction points;
|
|
this is most practical
|
|
if there is a stable and large group of introduction points
|
|
available. Bob could also give secret public keys
|
|
for consulting the lookup service. All of these approaches
|
|
limit exposure even when
|
|
some selected users collude in the DoS\@.
|
|
|
|
\subsection{Integration with user applications}
|
|
|
|
Bob configures his onion proxy to know the local IP address and port of his
|
|
service, a strategy for authorizing clients, and his public key. The onion
|
|
proxy anonymously publishes a signed statement of Bob's
|
|
public key, an expiration time, and
|
|
the current introduction points for his service onto the lookup service,
|
|
indexed
|
|
by the hash of his public key. Bob's webserver is unmodified,
|
|
and doesn't even know that it's hidden behind the Tor network.
|
|
|
|
Alice's applications also work unchanged---her client interface
|
|
remains a SOCKS proxy. We encode all of the necessary information
|
|
into the fully qualified domain name (FQDN) Alice uses when establishing her
|
|
connection. Location-hidden services use a virtual top level domain
|
|
called {\tt .onion}: thus hostnames take the form {\tt x.y.onion} where
|
|
{\tt x} is the authorization cookie and {\tt y} encodes the hash of
|
|
the public key. Alice's onion proxy
|
|
examines addresses; if they're destined for a hidden server, it decodes
|
|
the key and starts the rendezvous as described above.
|
|
|
|
\subsection{Previous rendezvous work}
|
|
%XXXX Should this get integrated into the earlier related work section? -NM
|
|
|
|
Rendezvous points in low-latency anonymity systems were first
|
|
described for use in ISDN telephony~\cite{jerichow-jsac98,isdn-mixes}.
|
|
Later low-latency designs used rendezvous points for hiding location
|
|
of mobile phones and low-power location
|
|
trackers~\cite{federrath-ih96,reed-protocols97}. Rendezvous for
|
|
anonymizing low-latency
|
|
Internet connections was suggested in early Onion Routing
|
|
work~\cite{or-ih96}, but the first published design was by Ian
|
|
Goldberg~\cite{ian-thesis}. His design differs from
|
|
ours in three ways. First, Goldberg suggests that Alice should manually
|
|
hunt down a current location of the service via Gnutella; our approach
|
|
makes lookup transparent to the user, as well as faster and more robust.
|
|
Second, in Tor the client and server negotiate session keys
|
|
with Diffie-Hellman, so plaintext is not exposed even at the rendezvous
|
|
point. Third,
|
|
our design minimizes the exposure from running the
|
|
service, to encourage volunteers to offer introduction and rendezvous
|
|
services. Tor's introduction points do not output any bytes to the
|
|
clients; the rendezvous points don't know the client or the server,
|
|
and can't read the data being transmitted. The indirection scheme is
|
|
also designed to include authentication/authorization---if Alice doesn't
|
|
include the right cookie with her request for service, Bob need not even
|
|
acknowledge his existence.
|
|
|
|
\section{Other design decisions}
|
|
\label{sec:other-design}
|
|
|
|
\subsection{Denial of service}
|
|
\label{subsec:dos}
|
|
|
|
Providing Tor as a public service creates many opportunities for
|
|
denial-of-service attacks against the network. While
|
|
flow control and rate limiting (discussed in
|
|
Section~\ref{subsec:congestion}) prevent users from consuming more
|
|
bandwidth than routers are willing to provide, opportunities remain for
|
|
users to
|
|
consume more network resources than their fair share, or to render the
|
|
network unusable for others.
|
|
|
|
First of all, there are several CPU-consuming denial-of-service
|
|
attacks wherein an attacker can force an OR to perform expensive
|
|
cryptographic operations. For example, an attacker can
|
|
%\emph{create} cell full of junk bytes can force an OR to perform an RSA
|
|
%decrypt.
|
|
%Similarly, an attacker can
|
|
fake the start of a TLS handshake, forcing the OR to carry out its
|
|
(comparatively expensive) half of the handshake at no real computational
|
|
cost to the attacker.
|
|
|
|
We have not yet implemented any defenses for these attacks, but several
|
|
approaches are possible. First, ORs can
|
|
require clients to solve a puzzle~\cite{puzzles-tls} while beginning new
|
|
TLS handshakes or accepting \emph{create} cells. So long as these
|
|
tokens are easy to verify and computationally expensive to produce, this
|
|
approach limits the attack multiplier. Additionally, ORs can limit
|
|
the rate at which they accept \emph{create} cells and TLS connections,
|
|
so that
|
|
the computational work of processing them does not drown out the
|
|
symmetric cryptography operations that keep cells
|
|
flowing. This rate limiting could, however, allow an attacker
|
|
to slow down other users when they build new circuits.
|
|
|
|
% What about link-to-link rate limiting?
|
|
|
|
Adversaries can also attack the Tor network's hosts and network
|
|
links. Disrupting a single circuit or link breaks all streams passing
|
|
along that part of the circuit. Users similarly lose service
|
|
when a router crashes or its operator restarts it. The current
|
|
Tor design treats such attacks as intermittent network failures, and
|
|
depends on users and applications to respond or recover as appropriate. A
|
|
future design could use an end-to-end TCP-like acknowledgment protocol,
|
|
so no streams are lost unless the entry or exit point is
|
|
disrupted. This solution would require more buffering at the network
|
|
edges, however, and the performance and anonymity implications from this
|
|
extra complexity still require investigation.
|
|
|
|
\subsection{Exit policies and abuse}
|
|
\label{subsec:exitpolicies}
|
|
|
|
% originally, we planned to put the "users only know the hostname,
|
|
% not the IP, but exit policies are by IP" problem here too. Not
|
|
% worth putting in the submission, but worth thinking about putting
|
|
% in sometime somehow. -RD
|
|
|
|
Exit abuse is a serious barrier to wide-scale Tor deployment. Anonymity
|
|
presents would-be vandals and abusers with an opportunity to hide
|
|
the origins of their activities. Attackers can harm the Tor network by
|
|
implicating exit servers for their abuse. Also, applications that commonly
|
|
use IP-based authentication (such as institutional mail or webservers)
|
|
can be fooled by the fact that anonymous connections appear to originate
|
|
at the exit OR.
|
|
|
|
We stress that Tor does not enable any new class of abuse. Spammers
|
|
and other attackers already have access to thousands of misconfigured
|
|
systems worldwide, and the Tor network is far from the easiest way
|
|
to launch attacks.
|
|
%Indeed, because of its limited
|
|
%anonymity, Tor is probably not a good way to commit crimes.
|
|
But because the
|
|
onion routers can be mistaken for the originators of the abuse,
|
|
and the volunteers who run them may not want to deal with the hassle of
|
|
explaining anonymity networks to irate administrators, we must block or limit
|
|
abuse through the Tor network.
|
|
|
|
To mitigate abuse issues, each onion router's \emph{exit policy}
|
|
describes to which external addresses and ports the router will
|
|
connect. On one end of the spectrum are \emph{open exit}
|
|
nodes that will connect anywhere. On the other end are \emph{middleman}
|
|
nodes that only relay traffic to other Tor nodes, and \emph{private exit}
|
|
nodes that only connect to a local host or network. A private
|
|
exit can allow a client to connect to a given host or
|
|
network more securely---an external adversary cannot eavesdrop traffic
|
|
between the private exit and the final destination, and so is less sure of
|
|
Alice's destination and activities. Most onion routers in the current
|
|
network function as
|
|
\emph{restricted exits} that permit connections to the world at large,
|
|
but prevent access to certain abuse-prone addresses and services such
|
|
as SMTP.
|
|
The OR might also be able to authenticate clients to
|
|
prevent exit abuse without harming anonymity~\cite{or-discex00}.
|
|
|
|
%The abuse issues on closed (e.g. military) networks are different
|
|
%from the abuse on open networks like the Internet. While these IP-based
|
|
%access controls are still commonplace on the Internet, on closed networks,
|
|
%nearly all participants will be honest, and end-to-end authentication
|
|
%can be assumed for important traffic.
|
|
|
|
Many administrators use port restrictions to support only a
|
|
limited set of services, such as HTTP, SSH, or AIM.
|
|
This is not a complete solution, of course, since abuse opportunities for these
|
|
protocols are still well known.
|
|
|
|
We have not yet encountered any abuse in the deployed network, but if
|
|
we do we should consider using proxies to clean traffic for certain
|
|
protocols as it leaves the network. For example, much abusive HTTP
|
|
behavior (such as exploiting buffer overflows or well-known script
|
|
vulnerabilities) can be detected in a straightforward manner.
|
|
Similarly, one could run automatic spam filtering software (such as
|
|
SpamAssassin) on email exiting the OR network.
|
|
|
|
ORs may also rewrite exiting traffic to append
|
|
headers or other information indicating that the traffic has passed
|
|
through an anonymity service. This approach is commonly used
|
|
by email-only anonymity systems. ORs can also
|
|
run on servers with hostnames like {\tt anonymous} to further
|
|
alert abuse targets to the nature of the anonymous traffic.
|
|
|
|
A mixture of open and restricted exit nodes allows the most
|
|
flexibility for volunteers running servers. But while having many
|
|
middleman nodes provides a large and robust network,
|
|
having only a few exit nodes reduces the number of points
|
|
an adversary needs to monitor for traffic analysis, and places a
|
|
greater burden on the exit nodes. This tension can be seen in the
|
|
Java Anon Proxy
|
|
cascade model, wherein only one node in each cascade needs to handle
|
|
abuse complaints---but an adversary only needs to observe the entry
|
|
and exit of a cascade to perform traffic analysis on all that
|
|
cascade's users. The hydra model (many entries, few exits) presents a
|
|
different compromise: only a few exit nodes are needed, but an
|
|
adversary needs to work harder to watch all the clients; see
|
|
Section~\ref{sec:conclusion}.
|
|
|
|
Finally, we note that exit abuse must not be dismissed as a peripheral
|
|
issue: when a system's public image suffers, it can reduce the number
|
|
and diversity of that system's users, and thereby reduce the anonymity
|
|
of the system itself. Like usability, public perception is a
|
|
security parameter. Sadly, preventing abuse of open exit nodes is an
|
|
unsolved problem, and will probably remain an arms race for the
|
|
foreseeable future. The abuse problems faced by Princeton's CoDeeN
|
|
project~\cite{darkside} give us a glimpse of likely issues.
|
|
|
|
\subsection{Directory Servers}
|
|
\label{subsec:dirservers}
|
|
|
|
First-generation Onion Routing designs~\cite{freedom2-arch,or-jsac98} used
|
|
in-band network status updates: each router flooded a signed statement
|
|
to its neighbors, which propagated it onward. But anonymizing networks
|
|
have different security goals than typical link-state routing protocols.
|
|
For example, delays (accidental or intentional)
|
|
that can cause different parts of the network to have different views
|
|
of link-state and topology are not only inconvenient: they give
|
|
attackers an opportunity to exploit differences in client knowledge.
|
|
We also worry about attacks to deceive a
|
|
client about the router membership list, topology, or current network
|
|
state. Such \emph{partitioning attacks} on client knowledge help an
|
|
adversary to efficiently deploy resources
|
|
against a target~\cite{minion-design}.
|
|
|
|
Tor uses a small group of redundant, well-known onion routers to
|
|
track changes in network topology and node state, including keys and
|
|
exit policies. Each such \emph{directory server} acts as an HTTP
|
|
server, so clients can fetch current network state
|
|
and router lists, and so other ORs can upload
|
|
state information. Onion routers periodically publish signed
|
|
statements of their state to each directory server. The directory servers
|
|
combine this information with their own views of network liveness,
|
|
and generate a signed description (a \emph{directory}) of the entire
|
|
network state. Client software is
|
|
pre-loaded with a list of the directory servers and their keys,
|
|
to bootstrap each client's view of the network.
|
|
% XXX this means that clients will be forced to upgrade as the
|
|
% XXX dirservers change or get compromised. argue that this is ok.
|
|
|
|
When a directory server receives a signed statement for an OR, it
|
|
checks whether the OR's identity key is recognized. Directory
|
|
servers do not advertise unrecognized ORs---if they did,
|
|
an adversary could take over the network by creating many
|
|
servers~\cite{sybil}. Instead, new nodes must be approved by the
|
|
directory
|
|
server administrator before they are included. Mechanisms for automated
|
|
node approval are an area of active research, and are discussed more
|
|
in Section~\ref{sec:maintaining-anonymity}.
|
|
|
|
Of course, a variety of attacks remain. An adversary who controls
|
|
a directory server can track clients by providing them different
|
|
information---perhaps by listing only nodes under its control, or by
|
|
informing only certain clients about a given node. Even an external
|
|
adversary can exploit differences in client knowledge: clients who use
|
|
a node listed on one directory server but not the others are vulnerable.
|
|
|
|
Thus these directory servers must be synchronized and redundant, so
|
|
that they can agree on a common directory. Clients should only trust
|
|
this directory if it is signed by a threshold of the directory
|
|
servers.
|
|
|
|
The directory servers in Tor are modeled after those in
|
|
Mixminion~\cite{minion-design}, but our situation is easier. First,
|
|
we make the
|
|
simplifying assumption that all participants agree on the set of
|
|
directory servers. Second, while Mixminion needs to predict node
|
|
behavior, Tor only needs a threshold consensus of the current
|
|
state of the network. Third, we assume that we can fall back to the
|
|
human administrators to discover and resolve problems when a consensus
|
|
directory cannot be reached. Since there are relatively few directory
|
|
servers (currently 3, but we expect as many as 9 as the network scales),
|
|
we can afford operations like broadcast to simplify the consensus-building
|
|
protocol.
|
|
|
|
To avoid attacks where a router connects to all the directory servers
|
|
but refuses to relay traffic from other routers, the directory servers
|
|
must also build circuits and use them to anonymously test router
|
|
reliability~\cite{mix-acc}. Unfortunately, this defense is not yet
|
|
designed or
|
|
implemented.
|
|
|
|
Using directory servers is simpler and more flexible than flooding.
|
|
Flooding is expensive, and complicates the analysis when we
|
|
start experimenting with non-clique network topologies. Signed
|
|
directories can be cached by other
|
|
onion routers,
|
|
so directory servers are not a performance
|
|
bottleneck when we have many users, and do not aid traffic analysis by
|
|
forcing clients to announce their existence to any
|
|
central point.
|
|
|
|
\section{Attacks and Defenses}
|
|
\label{sec:attacks}
|
|
|
|
Below we summarize a variety of attacks, and discuss how well our
|
|
design withstands them.\\
|
|
|
|
\noindent{\large\bf Passive attacks}\\
|
|
\emph{Observing user traffic patterns.} Observing a user's connection
|
|
will not reveal her destination or data, but it will
|
|
reveal traffic patterns (both sent and received). Profiling via user
|
|
connection patterns requires further processing, because multiple
|
|
application streams may be operating simultaneously or in series over
|
|
a single circuit.
|
|
|
|
\emph{Observing user content.} While content at the user end is encrypted,
|
|
connections to responders may not be (indeed, the responding website
|
|
itself may be hostile). While filtering content is not a primary goal
|
|
of Onion Routing, Tor can directly use Privoxy and related
|
|
filtering services to anonymize application data streams.
|
|
|
|
\emph{Option distinguishability.} We allow clients to choose
|
|
configuration options. For example, clients concerned about request
|
|
linkability should rotate circuits more often than those concerned
|
|
about traceability. Allowing choice may attract users with different
|
|
%There is economic incentive to attract users by
|
|
%allowing this choice;
|
|
needs; but clients who are
|
|
in the minority may lose more anonymity by appearing distinct than they
|
|
gain by optimizing their behavior~\cite{econymics}.
|
|
|
|
\emph{End-to-end timing correlation.} Tor only minimally hides
|
|
such correlations. An attacker watching patterns of
|
|
traffic at the initiator and the responder will be
|
|
able to confirm the correspondence with high probability. The
|
|
greatest protection currently available against such confirmation is to hide
|
|
the connection between the onion proxy and the first Tor node,
|
|
by running the OP on the Tor node or behind a firewall. This approach
|
|
requires an observer to separate traffic originating at the onion
|
|
router from traffic passing through it: a global observer can do this,
|
|
but it might be beyond a limited observer's capabilities.
|
|
|
|
\emph{End-to-end size correlation.} Simple packet counting
|
|
will also be effective in confirming
|
|
endpoints of a stream. However, even without padding, we may have some
|
|
limited protection: the leaky pipe topology means different numbers
|
|
of packets may enter one end of a circuit than exit at the other.
|
|
|
|
\emph{Website fingerprinting.} All the effective passive
|
|
attacks above are traffic confirmation attacks,
|
|
which puts them outside our design goals. There is also
|
|
a passive traffic analysis attack that is potentially effective.
|
|
Rather than searching exit connections for timing and volume
|
|
correlations, the adversary may build up a database of
|
|
``fingerprints'' containing file sizes and access patterns for
|
|
targeted websites. He can later confirm a user's connection to a given
|
|
site simply by consulting the database. This attack has
|
|
been shown to be effective against SafeWeb~\cite{hintz-pet02}.
|
|
It may be less effective against Tor, since
|
|
streams are multiplexed within the same circuit, and
|
|
fingerprinting will be limited to
|
|
the granularity of cells (currently 512 bytes). Additional
|
|
defenses could include
|
|
larger cell sizes, padding schemes to group websites
|
|
into large sets, and link
|
|
padding or long-range dummies.\footnote{Note that this fingerprinting
|
|
attack should not be confused with the much more complicated latency
|
|
attacks of~\cite{back01}, which require a fingerprint of the latencies
|
|
of all circuits through the network, combined with those from the
|
|
network edges to the target user and the responder website.}\\
|
|
|
|
\noindent{\large\bf Active attacks}\\
|
|
\emph{Compromise keys.} An attacker who learns the TLS session key can
|
|
see control cells and encrypted relay cells on every circuit on that
|
|
connection; learning a circuit
|
|
session key lets him unwrap one layer of the encryption. An attacker
|
|
who learns an OR's TLS private key can impersonate that OR for the TLS
|
|
key's lifetime, but he must
|
|
also learn the onion key to decrypt \emph{create} cells (and because of
|
|
perfect forward secrecy, he cannot hijack already established circuits
|
|
without also compromising their session keys). Periodic key rotation
|
|
limits the window of opportunity for these attacks. On the other hand,
|
|
an attacker who learns a node's identity key can replace that node
|
|
indefinitely by sending new forged descriptors to the directory servers.
|
|
|
|
\emph{Iterated compromise.} A roving adversary who can
|
|
compromise ORs (by system intrusion, legal coercion, or extralegal
|
|
coercion) could march down the circuit compromising the
|
|
nodes until he reaches the end. Unless the adversary can complete
|
|
this attack within the lifetime of the circuit, however, the ORs
|
|
will have discarded the necessary information before the attack can
|
|
be completed. (Thanks to the perfect forward secrecy of session
|
|
keys, the attacker cannot force nodes to decrypt recorded
|
|
traffic once the circuits have been closed.) Additionally, building
|
|
circuits that cross jurisdictions can make legal coercion
|
|
harder---this phenomenon is commonly called ``jurisdictional
|
|
arbitrage.'' The Java Anon Proxy project recently experienced the
|
|
need for this approach, when
|
|
a German court forced them to add a backdoor to
|
|
their nodes~\cite{jap-backdoor}.
|
|
|
|
\emph{Run a recipient.} An adversary running a webserver
|
|
trivially learns the timing patterns of users connecting to it, and
|
|
can introduce arbitrary patterns in its responses.
|
|
End-to-end attacks become easier: if the adversary can induce
|
|
users to connect to his webserver (perhaps by advertising
|
|
content targeted to those users), he now holds one end of their
|
|
connection. There is also a danger that application
|
|
protocols and associated programs can be induced to reveal information
|
|
about the initiator. Tor depends on Privoxy and similar protocol cleaners
|
|
to solve this latter problem.
|
|
|
|
\emph{Run an onion proxy.} It is expected that end users will
|
|
nearly always run their own local onion proxy. However, in some
|
|
settings, it may be necessary for the proxy to run
|
|
remotely---typically, in institutions that want
|
|
to monitor the activity of those connecting to the proxy.
|
|
Compromising an onion proxy compromises all future connections
|
|
through it.
|
|
|
|
\emph{DoS non-observed nodes.} An observer who can only watch some
|
|
of the Tor network can increase the value of this traffic
|
|
by attacking non-observed nodes to shut them down, reduce
|
|
their reliability, or persuade users that they are not trustworthy.
|
|
The best defense here is robustness.
|
|
|
|
\emph{Run a hostile OR.} In addition to being a local observer,
|
|
an isolated hostile node can create circuits through itself, or alter
|
|
traffic patterns to affect traffic at other nodes. Nonetheless, a hostile
|
|
node must be immediately adjacent to both endpoints to compromise the
|
|
anonymity of a circuit. If an adversary can
|
|
run multiple ORs, and can persuade the directory servers
|
|
that those ORs are trustworthy and independent, then occasionally
|
|
some user will choose one of those ORs for the start and another
|
|
as the end of a circuit. If an adversary
|
|
controls $m>1$ of $N$ nodes, he can correlate at most
|
|
$\left(\frac{m}{N}\right)^2$ of the traffic---although an
|
|
adversary
|
|
could still attract a disproportionately large amount of traffic
|
|
by running an OR with a permissive exit policy, or by
|
|
degrading the reliability of other routers.
|
|
|
|
\emph{Introduce timing into messages.} This is simply a stronger
|
|
version of passive timing attacks already discussed earlier.
|
|
|
|
\emph{Tagging attacks.} A hostile node could ``tag'' a
|
|
cell by altering it. If the
|
|
stream were, for example, an unencrypted request to a Web site,
|
|
the garbled content coming out at the appropriate time would confirm
|
|
the association. However, integrity checks on cells prevent
|
|
this attack.
|
|
|
|
\emph{Replace contents of unauthenticated protocols.} When
|
|
relaying an unauthenticated protocol like HTTP, a hostile exit node
|
|
can impersonate the target server. Clients
|
|
should prefer protocols with end-to-end authentication.
|
|
|
|
\emph{Replay attacks.} Some anonymity protocols are vulnerable
|
|
to replay attacks. Tor is not; replaying one side of a handshake
|
|
will result in a different negotiated session key, and so the rest
|
|
of the recorded session can't be used.
|
|
|
|
\emph{Smear attacks.} An attacker could use the Tor network for
|
|
socially disapproved acts, to bring the
|
|
network into disrepute and get its operators to shut it down.
|
|
Exit policies reduce the possibilities for abuse, but
|
|
ultimately the network requires volunteers who can tolerate
|
|
some political heat.
|
|
|
|
\emph{Distribute hostile code.} An attacker could trick users
|
|
into running subverted Tor software that did not, in fact, anonymize
|
|
their connections---or worse, could trick ORs into running weakened
|
|
software that provided users with less anonymity. We address this
|
|
problem (but do not solve it completely) by signing all Tor releases
|
|
with an official public key, and including an entry in the directory
|
|
that lists which versions are currently believed to be secure. To
|
|
prevent an attacker from subverting the official release itself
|
|
(through threats, bribery, or insider attacks), we provide all
|
|
releases in source code form, encourage source audits, and
|
|
frequently warn our users never to trust any software (even from
|
|
us) that comes without source.\\
|
|
|
|
\noindent{\large\bf Directory attacks}\\
|
|
\emph{Destroy directory servers.} If a few directory
|
|
servers disappear, the others still decide on a valid
|
|
directory. So long as any directory servers remain in operation,
|
|
they will still broadcast their views of the network and generate a
|
|
consensus directory. (If more than half are destroyed, this
|
|
directory will not, however, have enough signatures for clients to
|
|
use it automatically; human intervention will be necessary for
|
|
clients to decide whether to trust the resulting directory.)
|
|
|
|
\emph{Subvert a directory server.} By taking over a directory server,
|
|
an attacker can partially influence the final directory. Since ORs
|
|
are included or excluded by majority vote, the corrupt directory can
|
|
at worst cast a tie-breaking vote to decide whether to include
|
|
marginal ORs. It remains to be seen how often such marginal cases
|
|
occur in practice.
|
|
|
|
\emph{Subvert a majority of directory servers.} An adversary who controls
|
|
more than half the directory servers can include as many compromised
|
|
ORs in the final directory as he wishes. We must ensure that directory
|
|
server operators are independent and attack-resistant.
|
|
|
|
\emph{Encourage directory server dissent.} The directory
|
|
agreement protocol assumes that directory server operators agree on
|
|
the set of directory servers. An adversary who can persuade some
|
|
of the directory server operators to distrust one another could
|
|
split the quorum into mutually hostile camps, thus partitioning
|
|
users based on which directory they use. Tor does not address
|
|
this attack.
|
|
|
|
\emph{Trick the directory servers into listing a hostile OR.}
|
|
Our threat model explicitly assumes directory server operators will
|
|
be able to filter out most hostile ORs.
|
|
% If this is not true, an
|
|
% attacker can flood the directory with compromised servers.
|
|
|
|
\emph{Convince the directories that a malfunctioning OR is
|
|
working.} In the current Tor implementation, directory servers
|
|
assume that an OR is running correctly if they can start a TLS
|
|
connection to it. A hostile OR could easily subvert this test by
|
|
accepting TLS connections from ORs but ignoring all cells. Directory
|
|
servers must actively test ORs by building circuits and streams as
|
|
appropriate. The tradeoffs of a similar approach are discussed
|
|
in~\cite{mix-acc}.\\
|
|
|
|
\noindent{\large\bf Attacks against rendezvous points}\\
|
|
\emph{Make many introduction requests.} An attacker could
|
|
try to deny Bob service by flooding his introduction points with
|
|
requests. Because the introduction points can block requests that
|
|
lack authorization tokens, however, Bob can restrict the volume of
|
|
requests he receives, or require a certain amount of computation for
|
|
every request he receives.
|
|
|
|
\emph{Attack an introduction point.} An attacker could
|
|
disrupt a location-hidden service by disabling its introduction
|
|
points. But because a service's identity is attached to its public
|
|
key, the service can simply re-advertise
|
|
itself at a different introduction point. Advertisements can also be
|
|
done secretly so that only high-priority clients know the address of
|
|
Bob's introduction points or so that different clients know of different
|
|
introduction points. This forces the attacker to disable all possible
|
|
introduction points.
|
|
|
|
\emph{Compromise an introduction point.} An attacker who controls
|
|
Bob's introduction point can flood Bob with
|
|
introduction requests, or prevent valid introduction requests from
|
|
reaching him. Bob can notice a flood, and close the circuit. To notice
|
|
blocking of valid requests, however, he should periodically test the
|
|
introduction point by sending rendezvous requests and making
|
|
sure he receives them.
|
|
|
|
\emph{Compromise a rendezvous point.} A rendezvous
|
|
point is no more sensitive than any other OR on
|
|
a circuit, since all data passing through the rendezvous is encrypted
|
|
with a session key shared by Alice and Bob.
|
|
|
|
\section{Early experiences: Tor in the Wild}
|
|
\label{sec:in-the-wild}
|
|
|
|
As of mid-May 2004, the Tor network consists of 32 nodes
|
|
(24 in the US, 8 in Europe), and more are joining each week as the code
|
|
matures. (For comparison, the current remailer network
|
|
has about 40 nodes.) % We haven't asked PlanetLab to provide
|
|
%Tor nodes, since their AUP wouldn't allow exit nodes (see
|
|
%also~\cite{darkside}) and because we aim to build a long-term community of
|
|
%node operators and developers.}
|
|
Each node has at least a 768Kb/768Kb connection, and
|
|
many have 10Mb. The number of users varies (and of course, it's hard to
|
|
tell for sure), but we sometimes have several hundred users---administrators at
|
|
several companies have begun sending their entire departments' web
|
|
traffic through Tor, to block other divisions of
|
|
their company from reading their traffic. Tor users have reported using
|
|
the network for web browsing, FTP, IRC, AIM, Kazaa, SSH, and
|
|
recipient-anonymous email via rendezvous points. One user has anonymously
|
|
set up a Wiki as a hidden service, where other users anonymously publish
|
|
the addresses of their hidden services.
|
|
|
|
Each Tor node currently processes roughly 800,000 relay
|
|
cells (a bit under half a gigabyte) per week. On average, about 80\%
|
|
of each 498-byte payload is full for cells going back to the client,
|
|
whereas about 40\% is full for cells coming from the client. (The difference
|
|
arises because most of the network's traffic is web browsing.) Interactive
|
|
traffic like SSH brings down the average a lot---once we have more
|
|
experience, and assuming we can resolve the anonymity issues, we may
|
|
partition traffic into two relay cell sizes: one to handle
|
|
bulk traffic and one for interactive traffic.
|
|
|
|
Based in part on our restrictive default exit policy (we
|
|
reject SMTP requests) and our low profile, we have had no abuse
|
|
issues since the network was deployed in October
|
|
2003. Our slow growth rate gives us time to add features,
|
|
resolve bugs, and get a feel for what users actually want from an
|
|
anonymity system. Even though having more users would bolster our
|
|
anonymity sets, we are not eager to attract the Kazaa or warez
|
|
communities---we feel that we must build a reputation for privacy, human
|
|
rights, research, and other socially laudable activities.
|
|
|
|
As for performance, profiling shows that Tor spends almost
|
|
all its CPU time in AES, which is fast. Current latency is attributable
|
|
to two factors. First, network latency is critical: we are
|
|
intentionally bouncing traffic around the world several times. Second,
|
|
our end-to-end congestion control algorithm focuses on protecting
|
|
volunteer servers from accidental DoS rather than on optimizing
|
|
performance. % Right now the first $500 \times 500\mbox{B}=250\mbox{KB}$
|
|
%of the stream arrives
|
|
%quickly, and after that throughput depends on the rate that \emph{relay
|
|
%sendme} acknowledgments arrive.
|
|
To quantify these effects, we did some informal tests using a network of 4
|
|
nodes on the same machine (a heavily loaded 1GHz Athlon). We downloaded a 60
|
|
megabyte file from {\tt debian.org} every 30 minutes for 54 hours (108 sample
|
|
points). It arrived in about 300 seconds on average, compared to 210s for a
|
|
direct download. We ran a similar test on the production Tor network,
|
|
fetching the front page of {\tt cnn.com} (55 kilobytes):
|
|
% every 20 seconds for 8952 data points
|
|
while a direct
|
|
download consistently took about 0.3s, the performance through Tor varied.
|
|
Some downloads were as fast as 0.4s, with a median at 2.8s, and
|
|
90\% finishing within 5.3s. It seems that as the network expands, the chance
|
|
of building a slow circuit (one that includes a slow or heavily loaded node
|
|
or link) is increasing. On the other hand, as our users remain satisfied
|
|
with this increased latency, we can address our performance incrementally as we
|
|
proceed with development. %\footnote{For example, we have just begun pushing
|
|
%a pipelining patch to the production network that seems to decrease
|
|
%latency for medium-to-large files; we will present revised benchmarks
|
|
%as they become available.}
|
|
|
|
%With the current network's topology and load, users can typically get 1-2
|
|
%megabits sustained transfer rate, which is good enough for now.
|
|
%Indeed, the Tor
|
|
%design aims foremost to provide a security research platform; performance
|
|
%only needs to be sufficient to retain users~\cite{econymics,back01}.
|
|
%We can tweak the congestion control
|
|
%parameters to provide faster throughput at the cost of
|
|
%larger buffers at each node; adding the heuristics mentioned in
|
|
%Section~\ref{subsec:rate-limit} to favor low-volume
|
|
%streams may also help. More research remains to find the
|
|
%right balance.
|
|
% We should say _HOW MUCH_ latency there is in these cases. -NM
|
|
|
|
%performs badly on lossy networks. may need airhook or something else as
|
|
%transport alternative?
|
|
|
|
Although Tor's clique topology and full-visibility directories present
|
|
scaling problems, we still expect the network to support a few hundred
|
|
nodes and maybe 10,000 users before we're forced to become
|
|
more distributed. With luck, the experience we gain running the current
|
|
topology will help us choose among alternatives when the time comes.
|
|
|
|
\section{Open Questions in Low-latency Anonymity}
|
|
\label{sec:maintaining-anonymity}
|
|
|
|
In addition to the non-goals in
|
|
Section~\ref{subsec:non-goals}, many questions must be solved
|
|
before we can be confident of Tor's security.
|
|
|
|
Many of these open issues are questions of balance. For example,
|
|
how often should users rotate to fresh circuits? Frequent rotation
|
|
is inefficient, expensive, and may lead to intersection attacks and
|
|
predecessor attacks~\cite{wright03}, but infrequent rotation makes the
|
|
user's traffic linkable. Besides opening fresh circuits, clients can
|
|
also exit from the middle of the circuit,
|
|
or truncate and re-extend the circuit. More analysis is
|
|
needed to determine the proper tradeoff.
|
|
|
|
%% Duplicated by 'Better directory distribution' in section 9.
|
|
%
|
|
%A similar question surrounds timing of directory operations: how often
|
|
%should directories be updated? Clients that update infrequently receive
|
|
%an inaccurate picture of the network, but frequent updates can overload
|
|
%the directory servers. More generally, we must find more
|
|
%decentralized yet practical ways to distribute up-to-date snapshots of
|
|
%network status without introducing new attacks.
|
|
|
|
How should we choose path lengths? If Alice always uses two hops,
|
|
then both ORs can be certain that by colluding they will learn about
|
|
Alice and Bob. In our current approach, Alice always chooses at least
|
|
three nodes unrelated to herself and her destination.
|
|
%% This point is subtle, but not IMO necessary. Anybody who thinks
|
|
%% about it will see that it's implied by the above sentence; anybody
|
|
%% who doesn't think about it is safe in his ignorance.
|
|
%
|
|
%Thus normally she chooses
|
|
%three nodes, but if she is running an OR and her destination is on an OR,
|
|
%she uses five.
|
|
Should Alice choose a random path length (e.g.~from a geometric
|
|
distribution) to foil an attacker who
|
|
uses timing to learn that he is the fifth hop and thus concludes that
|
|
both Alice and the responder are running ORs?
|
|
|
|
Throughout this paper, we have assumed that end-to-end traffic
|
|
confirmation will immediately and automatically defeat a low-latency
|
|
anonymity system. Even high-latency anonymity systems can be
|
|
vulnerable to end-to-end traffic confirmation, if the traffic volumes
|
|
are high enough, and if users' habits are sufficiently
|
|
distinct~\cite{statistical-disclosure,limits-open}. Can anything be
|
|
done to
|
|
make low-latency systems resist these attacks as well as high-latency
|
|
systems? Tor already makes some effort to conceal the starts and ends of
|
|
streams by wrapping long-range control commands in identical-looking
|
|
relay cells. Link padding could frustrate passive observers who count
|
|
packets; long-range padding could work against observers who own the
|
|
first hop in a circuit. But more research remains to find an efficient
|
|
and practical approach. Volunteers prefer not to run constant-bandwidth
|
|
padding; but no convincing traffic shaping approach has been
|
|
specified. Recent work on long-range padding~\cite{defensive-dropping}
|
|
shows promise. One could also try to reduce correlation in packet timing
|
|
by batching and re-ordering packets, but it is unclear whether this could
|
|
improve anonymity without introducing so much latency as to render the
|
|
network unusable.
|
|
|
|
A cascade topology may better defend against traffic confirmation by
|
|
aggregating users, and making padding and
|
|
mixing more affordable. Does the hydra topology (many input nodes,
|
|
few output nodes) work better against some adversaries? Are we going
|
|
to get a hydra anyway because most nodes will be middleman nodes?
|
|
|
|
Common wisdom suggests that Alice should run her own OR for best
|
|
anonymity, because traffic coming from her node could plausibly have
|
|
come from elsewhere. How much mixing does this approach need? Is it
|
|
immediately beneficial because of real-world adversaries that can't
|
|
observe Alice's router, but can run routers of their own?
|
|
|
|
To scale to many users, and to prevent an attacker from observing the
|
|
whole network, it may be necessary
|
|
to support far more servers than Tor currently anticipates.
|
|
This introduces several issues. First, if approval by a central set
|
|
of directory servers is no longer feasible, what mechanism should be used
|
|
to prevent adversaries from signing up many colluding servers? Second,
|
|
if clients can no longer have a complete picture of the network,
|
|
how can they perform discovery while preventing attackers from
|
|
manipulating or exploiting gaps in their knowledge? Third, if there
|
|
are too many servers for every server to constantly communicate with
|
|
every other, which non-clique topology should the network use?
|
|
(Restricted-route topologies promise comparable anonymity with better
|
|
scalability~\cite{danezis-pets03}, but whatever topology we choose, we
|
|
need some way to keep attackers from manipulating their position within
|
|
it~\cite{casc-rep}.) Fourth, if no central authority is tracking
|
|
server reliability, how do we stop unreliable servers from making
|
|
the network unusable? Fifth, do clients receive so much anonymity
|
|
from running their own ORs that we should expect them all to do
|
|
so~\cite{econymics}, or do we need another incentive structure to
|
|
motivate them? Tarzan and MorphMix present possible solutions.
|
|
|
|
% advogato, captcha
|
|
|
|
When a Tor node goes down, all its circuits (and thus streams) must break.
|
|
Will users abandon the system because of this brittleness? How well
|
|
does the method in Section~\ref{subsec:dos} allow streams to survive
|
|
node failure? If affected users rebuild circuits immediately, how much
|
|
anonymity is lost? It seems the problem is even worse in a peer-to-peer
|
|
environment---such systems don't yet provide an incentive for peers to
|
|
stay connected when they're done retrieving content, so we would expect
|
|
a higher churn rate.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\section{Future Directions}
|
|
\label{sec:conclusion}
|
|
|
|
Tor brings together many innovations into a unified deployable system. The
|
|
next immediate steps include:
|
|
|
|
\emph{Scalability:} Tor's emphasis on deployability and design simplicity
|
|
has led us to adopt a clique topology, semi-centralized
|
|
directories, and a full-network-visibility model for client
|
|
knowledge. These properties will not scale past a few hundred servers.
|
|
Section~\ref{sec:maintaining-anonymity} describes some promising
|
|
approaches, but more deployment experience will be helpful in learning
|
|
the relative importance of these bottlenecks.
|
|
|
|
\emph{Bandwidth classes:} This paper assumes that all ORs have
|
|
good bandwidth and latency. We should instead adopt the MorphMix model,
|
|
where nodes advertise their bandwidth level (DSL, T1, T3), and
|
|
Alice avoids bottlenecks by choosing nodes that match or
|
|
exceed her bandwidth. In this way DSL users can usefully join the Tor
|
|
network.
|
|
|
|
\emph{Incentives:} Volunteers who run nodes are rewarded with publicity
|
|
and possibly better anonymity~\cite{econymics}. More nodes means increased
|
|
scalability, and more users can mean more anonymity. We need to continue
|
|
examining the incentive structures for participating in Tor. Further,
|
|
we need to explore more approaches to limiting abuse, and understand
|
|
why most people don't bother using privacy systems.
|
|
|
|
\emph{Cover traffic:} Currently Tor omits cover traffic---its costs
|
|
in performance and bandwidth are clear but its security benefits are
|
|
not well understood. We must pursue more research on link-level cover
|
|
traffic and long-range cover traffic to determine whether some simple padding
|
|
method offers provable protection against our chosen adversary.
|
|
|
|
%%\emph{Offer two relay cell sizes:} Traffic on the Internet tends to be
|
|
%%large for bulk transfers and small for interactive traffic. One cell
|
|
%%size cannot be optimal for both types of traffic.
|
|
% This should go in the spec and todo, but not the paper yet. -RD
|
|
|
|
\emph{Caching at exit nodes:} Perhaps each exit node should run a
|
|
caching web proxy~\cite{shsm03}, to improve anonymity for cached pages
|
|
(Alice's request never
|
|
leaves the Tor network), to improve speed, and to reduce bandwidth cost.
|
|
On the other hand, forward security is weakened because caches
|
|
constitute a record of retrieved files. We must find the right
|
|
balance between usability and security.
|
|
|
|
\emph{Better directory distribution:}
|
|
Clients currently download a description of
|
|
the entire network every 15 minutes. As the state grows larger
|
|
and clients more numerous, we may need a solution in which
|
|
clients receive incremental updates to directory state.
|
|
More generally, we must find more
|
|
scalable yet practical ways to distribute up-to-date snapshots of
|
|
network status without introducing new attacks.
|
|
|
|
\emph{Further specification review:} Our public
|
|
byte-level specification~\cite{tor-spec} needs
|
|
external review. We hope that as Tor
|
|
is deployed, more people will examine its
|
|
specification.
|
|
|
|
\emph{Multisystem interoperability:} We are currently working with the
|
|
designer of MorphMix to unify the specification and implementation of
|
|
the common elements of our two systems. So far, this seems
|
|
to be relatively straightforward. Interoperability will allow testing
|
|
and direct comparison of the two designs for trust and scalability.
|
|
|
|
\emph{Wider-scale deployment:} The original goal of Tor was to
|
|
gain experience in deploying an anonymizing overlay network, and
|
|
learn from having actual users. We are now at a point in design
|
|
and development where we can start deploying a wider network. Once
|
|
we have many actual users, we will doubtlessly be better
|
|
able to evaluate some of our design decisions, including our
|
|
robustness/latency tradeoffs, our performance tradeoffs (including
|
|
cell size), our abuse-prevention mechanisms, and
|
|
our overall usability.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%% commented out for anonymous submission
|
|
\section*{Acknowledgments}
|
|
We thank Peter Palfrader, Geoff Goodell, Adam Shostack, Joseph Sokol-Margolis,
|
|
John Bashinski, and Zack Brown
|
|
for editing and comments;
|
|
Matej Pfajfar, Andrei Serjantov, Marc Rennhard for design discussions;
|
|
Bram Cohen for congestion control discussions;
|
|
Adam Back for suggesting telescoping circuits; and
|
|
Cathy Meadows for formal analysis of the \emph{extend} protocol.
|
|
This work has been supported by ONR and DARPA.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\bibliographystyle{latex8}
|
|
\bibliography{tor-design}
|
|
|
|
\end{document}
|
|
|
|
% Style guide:
|
|
% U.S. spelling
|
|
% avoid contractions (it's, can't, etc.)
|
|
% prefer ``for example'' or ``such as'' to e.g.
|
|
% prefer ``that is'' to i.e.
|
|
% 'mix', 'mixes' (as noun)
|
|
% 'mix-net'
|
|
% 'mix', 'mixing' (as verb)
|
|
% 'middleman' [Not with a hyphen; the hyphen has been optional
|
|
% since Middle English.]
|
|
% 'nymserver'
|
|
% 'Cypherpunk', 'Cypherpunks', 'Cypherpunk remailer'
|
|
% 'Onion Routing design', 'onion router' [note capitalization]
|
|
% 'SOCKS'
|
|
% Try not to use \cite as a noun.
|
|
% 'Authorizating' sounds great, but it isn't a word.
|
|
% 'First, second, third', not 'Firstly, secondly, thirdly'.
|
|
% 'circuit', not 'channel'
|
|
% Typography: no space on either side of an em dash---ever.
|
|
% Hyphens are for multi-part words; en dashs imply movement or
|
|
% opposition (The Alice--Bob connection); and em dashes are
|
|
% for punctuation---like that.
|
|
% A relay cell; a control cell; a \emph{create} cell; a
|
|
% \emph{relay truncated} cell. Never ``a \emph{relay truncated}.''
|
|
%
|
|
% 'Substitute ``Damn'' every time you're inclined to write ``very;'' your
|
|
% editor will delete it and the writing will be just as it should be.'
|
|
% -- Mark Twain
|