/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */ /* See LICENSE for licensing information */ /* $Id$ */ #include #include #include #include #include #include #include #include #include #include "crypto.h" #include "config.h" #include "log.h" #if OPENSSL_VERSION_NUMBER < 0x00905000l #error "We require openssl >= 0.9.5" #elif OPENSSL_VERSION_NUMBER < 0x00906000l #define OPENSSL_095 #endif /* * Certain functions that return a success code in OpenSSL 0.9.6 return void * (and don't indicate errors) in OpenSSL version 0.9.5. * * [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.] */ #ifdef OPENSSL_095 #define RETURN_SSL_OUTCOME(exp) (exp); return 0 #else #define RETURN_SSL_OUTCOME(exp) return !(exp) #endif int crypto_global_init() { ERR_load_crypto_strings(); return 0; } int crypto_global_cleanup() { ERR_free_strings(); return 0; } crypto_pk_env_t *crypto_new_pk_env(int type) { crypto_pk_env_t *env; env = (crypto_pk_env_t *)malloc(sizeof(crypto_pk_env_t)); if (!env) return 0; env->type = type; env->refs = 1; env->key = NULL; env->aux = NULL; switch(type) { case CRYPTO_PK_RSA: env->key = (unsigned char *)RSA_new(); if (!env->key) { free((void *)env); return NULL; } break; default: free((void *)env); return NULL; break; } return env; } void crypto_free_pk_env(crypto_pk_env_t *env) { assert(env); if(--env->refs > 0) return; switch(env->type) { case CRYPTO_PK_RSA: if (env->key) RSA_free((RSA *)env->key); break; default: break; } free((void *)env); return; } crypto_cipher_env_t *crypto_new_cipher_env(int type) { crypto_cipher_env_t *env; env = (crypto_cipher_env_t *)malloc(sizeof(crypto_cipher_env_t)); if (!env) return NULL; env->type = type; env->key = NULL; env->iv = NULL; env->aux = NULL; switch(type) { case CRYPTO_CIPHER_IDENTITY: env->aux = (unsigned char *)malloc(sizeof(EVP_CIPHER_CTX)); if (!env->aux) { free((void *)env); return NULL; } EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux); break; case CRYPTO_CIPHER_DES: env->aux = (unsigned char *)malloc(sizeof(EVP_CIPHER_CTX)); if (!env->aux) { free((void *)env); return NULL; } env->key = (unsigned char *)malloc(8); if (!env->key) { free((void *)env->aux); free((void *)env); return NULL; } env->iv = (unsigned char *)malloc(8); if (!env->iv) { free((void *)env->key); free((void *)env->aux); return NULL; } EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux); break; case CRYPTO_CIPHER_RC4: env->aux = (unsigned char *)malloc(sizeof(EVP_CIPHER_CTX)); if (!env->aux) { free((void *)env); return NULL; } env->key = (unsigned char *)malloc(16); if (!env->key) { free((void *)env->aux); free((void *)env); return NULL; } env->iv = (unsigned char *)malloc(16); if (!env->iv) { free((void *)env->key); free((void *)env->aux); return NULL; } break; EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux); default: free((void *)env); return NULL; break; } return env; } void crypto_free_cipher_env(crypto_cipher_env_t *env) { assert(env); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: if (env->aux) { EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux); free((void *)env->aux); } break; case CRYPTO_CIPHER_DES: if (env->aux) { EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux); free((void *)env->aux); } if (env->key) free((void *)env->key); if (env->iv) free((void *)env->iv); break; case CRYPTO_CIPHER_RC4: if (env->aux) { EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux); free((void *)env->aux); } if (env->key) free((void *)env->key); if (env->iv) free((void *)env->iv); break; default: break; } free((void *)env); return; } /* public key crypto */ int crypto_pk_generate_key(crypto_pk_env_t *env) { assert(env); switch(env->type) { case CRYPTO_PK_RSA: if (env->key) RSA_free((RSA *)env->key); env->key = (unsigned char *)RSA_generate_key(1024,65537, NULL, NULL); if (!env->key) return -1; break; default: return -1; } return 0; } int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: /* if (env->key) RSA_free((RSA *)env->key);*/ env->key = (unsigned char *)PEM_read_RSAPrivateKey(src, (RSA **)&env->key, NULL, NULL); if (!env->key) return -1; break; default : return -1; } return 0; } int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, unsigned char *keyfile) { FILE *f_pr; int retval = 0; assert(env && keyfile); if (strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) == strlen(keyfile)) /* filename contains legal characters only */ { /* open the keyfile */ f_pr=fopen(keyfile,"r"); if (!f_pr) return -1; /* read the private key */ retval = crypto_pk_read_private_key_from_file(env, f_pr); fclose(f_pr); if (retval == -1) { log(LOG_ERR,"Error reading private key : %s",crypto_perror()); return -1; } /* check the private key */ retval = crypto_pk_check_key(env); if (retval == 0) { log(LOG_ERR,"Private key read but is invalid : %s.", crypto_perror()); return -1; } else if (retval == -1) { log(LOG_ERR,"Private key read but validity checking failed : %s",crypto_perror()); return -1; } else if (retval == 1) { return 0; } } /* filename contains legal characters only */ return -1; /* report error */ } int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: env->key = (unsigned char *)PEM_read_RSAPublicKey(src, (RSA **)&env->key, NULL, NULL); if (!env->key) return -1; break; default : return -1; } return 0; } int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) { BUF_MEM *buf; BIO *b; assert(env && env->key && dest); switch(env->type) { case CRYPTO_PK_RSA: b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ /* Now you can treat b as if it were a file. Just use the * * PEM_*_bio_* functions instead of the non-bio variants. * */ if(!PEM_write_bio_RSAPublicKey(b, (RSA *)env->key)) return -1; BIO_get_mem_ptr(b, &buf); BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */ BIO_free(b); *dest = malloc(buf->length+1); if(!*dest) return -1; memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* null terminate it */ *len = buf->length; BUF_MEM_free(buf); break; default: return -1; } return 0; } int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, char *src, int len) { BIO *b; assert(env && src); switch(env->type) { case CRYPTO_PK_RSA: b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ BIO_write(b, src, len); RSA_free((RSA *)env->key); env->key = (unsigned char *)PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL); if(!env->key) return -1; BIO_free(b); break; default: return -1; } return 0; } int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); switch(env->type) { case CRYPTO_PK_RSA: if (!env->key) return -1; if (PEM_write_RSAPrivateKey(dest, (RSA *)env->key, NULL, NULL, 0,0, NULL) == 0) return -1; break; default : return -1; } return 0; } int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); switch(env->type) { case CRYPTO_PK_RSA: if (!env->key) return -1; if (PEM_write_RSAPublicKey(dest, (RSA *)env->key) == 0) return -1; break; default : return -1; } return 0; } int crypto_pk_check_key(crypto_pk_env_t *env) { assert(env); switch(env->type) { case CRYPTO_PK_RSA: return RSA_check_key((RSA *)env->key); default: return -1; } } int crypto_pk_set_key(crypto_pk_env_t *env, unsigned char *key) { assert(env && key); switch(env->type) { case CRYPTO_PK_RSA: if (!env->key) return -1; memcpy((void *)env->key, (void *)key, sizeof(RSA)); /* XXX BUG XXX you can't memcpy an RSA, it's got a bunch of subpointers */ break; default : return -1; } return 0; } int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) { int result; if (!a || !b) return -1; if (!a->key || !b->key) return -1; if (a->type != b->type) return -1; switch(a->type) { case CRYPTO_PK_RSA: assert(((RSA *)a->key)->n && ((RSA *)a->key)->e && ((RSA *)b->key)->n && ((RSA *)b->key)->e); result = BN_cmp(((RSA *)a->key)->n, ((RSA *)b->key)->n); if (result) return result; return BN_cmp(((RSA *)a->key)->e, ((RSA *)b->key)->e); default: return -1; } } int crypto_pk_keysize(crypto_pk_env_t *env) { assert(env && env->key); return RSA_size((RSA *)env->key); } crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) { assert(env && env->key); switch(env->type) { case CRYPTO_PK_RSA: env->refs++; break; default: return NULL; } return env; } int crypto_pk_public_encrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: return RSA_public_encrypt(fromlen, from, to, (RSA *)env->key, padding); default: return -1; } } int crypto_pk_private_decrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to); switch(env->type) { case CRYPTO_PK_RSA: return RSA_private_decrypt(fromlen, from, to, (RSA *)env->key, padding); default: return -1; } } /* symmetric crypto */ int crypto_cipher_generate_key(crypto_cipher_env_t *env) { assert(env); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: return 0; case CRYPTO_CIPHER_DES: return crypto_rand(8, env->key); case CRYPTO_CIPHER_RC4: return crypto_rand(16, env->key); default: return -1; } } int crypto_cipher_set_iv(crypto_cipher_env_t *env, unsigned char *iv) { assert(env && iv); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: break; case CRYPTO_CIPHER_DES: if (!env->iv) return -1; memcpy((void *)env->iv, (void *)iv, 8); break; case CRYPTO_CIPHER_RC4: if (!env->iv) return -1; memcpy((void *)env->iv, (void *)iv, 16); break; default: return -1; } return 0; } int crypto_cipher_set_key(crypto_cipher_env_t *env, unsigned char *key) { assert(env && key); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: break; case CRYPTO_CIPHER_DES: if (!env->key) return -1; memcpy((void *)env->key, (void *)key, 8); break; case CRYPTO_CIPHER_RC4: if (!env->key) return -1; memcpy((void *)env->key, (void *)key, 16); break; default: return -1; } return 0; } int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux, EVP_enc_null(), env->key, env->iv)); case CRYPTO_CIPHER_DES: RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux, EVP_des_ofb(), env->key, env->iv)); case CRYPTO_CIPHER_RC4: RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux, EVP_rc4(), env->key, env->iv)); default: return -1; } return 0; } int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); switch(env->type) { case CRYPTO_CIPHER_IDENTITY: RETURN_SSL_OUTCOME(EVP_DecryptInit((EVP_CIPHER_CTX *)env->aux, EVP_enc_null(), env->key, env->iv)); case CRYPTO_CIPHER_DES: RETURN_SSL_OUTCOME(EVP_DecryptInit((EVP_CIPHER_CTX *)env->aux, EVP_des_ofb(), env->key, env->iv)); case CRYPTO_CIPHER_RC4: RETURN_SSL_OUTCOME(EVP_DecryptInit((EVP_CIPHER_CTX *)env->aux, EVP_rc4(), env->key, env->iv)); default: return -1; } return 0; } int crypto_cipher_encrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to) { int tolen; assert(env && from && to); RETURN_SSL_OUTCOME(EVP_EncryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen)); } int crypto_cipher_decrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to) { int tolen; assert(env && from && to); RETURN_SSL_OUTCOME(EVP_DecryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen)); } /* SHA-1 */ int crypto_SHA_digest(unsigned char *m, int len, unsigned char *digest) { assert(m && digest); return (SHA1(m,len,digest) == NULL); } /* random numbers */ int crypto_rand(unsigned int n, unsigned char *to) { assert(to); return (RAND_bytes(to, n) != 1); } int crypto_pseudo_rand(unsigned int n, unsigned char *to) { assert(to); return (RAND_pseudo_bytes(to, n) == -1); } /* errors */ char *crypto_perror() { return (char *)ERR_reason_error_string(ERR_get_error()); }