
Tor Development Roadmap: Wishlist for Nov

2006–Dec 2007

Roger Dingledine Nick Mathewson Shava Nerad

October 22, 2006

1 Introduction

Hi, Roger! Hi, Shava. This paragraph should get deleted soon. Right now, this
document goes into about as much detail as I’d like to go into for a technical
audience, since that’s the audience I know best. It doesn’t have time estimates
everywhere. It isn’t very well prioritized, and it doesn’t distinguish well between
things that need lots of research and things that don’t. The breakdowns don’t
all make sense. It isn’t all stuff we can do for sure, and it isn’t even all stuff we
can do for sure in 2007. The tmp{} macro indicates stuff I haven’t said enough
about. That said, here goes...

Tor (the software) and Tor (the overall software/network/support/document
suite) are now experiencing all the crises of success. Over the next year, we’re
probably going to grow more in terms of users, developers, and funding than
before. This gives us the opportunity to perform long-neglected maintenance
tasks.

2 Code and design infrastructure

2.1 Protocol revision

In order to maintain backward compatibility, we’ve postponed major protocol
changes and redesigns for a long time. Because of this, there are a number of
sensible revisions we’ve been putting off until we could deploy several of them
at once. To do each of these, we first need to discuss design alternatives with
cryptographers and other outside collaborators in order to make sure that our
choices are secure.

First of all, our protocol needs better versioning support so that we can
make backward-incompatible changes to our core protocol. There are difficult
anonymity issues here, since many naive designs would make it easy to tell
clients apart based on their supported versions.

With protocol versioning support would come the ability to future-proof
our ciphersuites. For example, not only our OR protocol, but also our direc-
tory protocol, is pretty firmly tied to the SHA-1 hash function, which though

1

not insecure for our purposes, has begun to show its age. We should remove
assumptions thoughout our design based on the assumption that public keys,
secret keys, or digests will remain any particular size infinitely.

A new protocol could support multiple cell sizes. Right now, all data
passes through the Tor network divided into 512-byte cells. This is efficient for
high-bandwidth protocols, but very inefficient for protocols like SSH or AIM
that send information in small chunks. Of course, we need to investigate the
extent to which multiple sizes could make it easier for an adversary to fingerprint
a traffic pattern.

Our OR authentication protocol, though provably secure[?], relies more
on particular aspects of RSA and our implementation thereof than we had ini-
tially believed. To future-proof against changes, we should replace it with a less
delicate approach.

2.2 Scalability

2.2.1 Improved directory performance

Right now, clients download a statement of the network status made by each
directory authority. We could reduce network bandwidth significantly by hav-
ing the authorities jointly sign a statement reflecting their vote on the current
network status. This would save clients up to 160K per hour, and make their
view of the network more uniform. Of course, we’d need to make sure the voting
process was secure and resilient to failures in the network.

We should shorten router descriptors, since the current format includes
a great deal of information that’s only of interest to the directory authorities,
and not of interest to clients. We can do this by having each router upload
a short-form and a long-form signed descriptor, and having clients download
only the short form. Even a naive version of this would save about 40% of the
bandwidth currently spent on descriptors.

We should have routers upload their descriptors even less often,
so that clients do not need to download replacements every 18 hours whether
any information has changed or not. (As of Tor 0.1.2.3-alpha, clients tolerate
routers that don’t upload often, but routers still upload at least every 18 hours
to support older clients.)

2.2.2 Non-clique topology

Our current network design achieves a certain amount of its anonymity by mak-
ing clients act like each other through the simple expedient of making sure that
all clients know all servers, and that any server can talk to any other server. But
as the number of servers increases to serve an ever-greater number of clients,
these assumptions become impractical.

At worst, if these scalability issues become troubling before a solution is
found, we can design and build a solution to split the network into multiple
slices until a better solution comes along. This is not ideal, since rather than

2

looking like all other users from a point of view of path selection, users would
“only” look like 200,000–300,000 other users.

We are in the process of designing improved schemes for network scal-
ability. Some approaches focus on limiting what an adversary can know about
what a user knows; others focus on reducing the extent to which an adversary
can exploit this knowledge. These are currently in their infancy, and will prob-
ably not be needed in 2007, but they must be designed in 2007 if they are to be
deployed in 2008.

2.2.3 Relay incentives

We need incentives to relay. [......]

2.3 Portability

Our Windows implementation, though much improved, continues to lag
behind Unix and Mac OS X, especially when running as a server. We hope to
merge promising patches from Mike Chiussi to address this point, and bring
Windows performance on par with other platforms.

We should have better support for portable devices, including modes
of operation that require less RAM, and that write to disk less frequently (to
avoid wearing out flash RAM).

2.4 Performance: resource usage

Use less RAM when we have very little. Make buffer code smarter
[......]

Use less RAM when we have very little. Make buffer code smarter
[......]

2.5 Performance: network usage

2.6 Blue-sky: UDP

3 Blocking resistance

3.1 Design for blocking resistance

We have written a design document explaining our general approach to blocking
resistance. We should workshop it with other experts in the field to get their
ideas about how we can improve Tor’s efficacy as an anti-censorship tool.

3

3.2 Implementation: client-side and bridges-side

Our anticensorship design calls for some nodes to act as “bridges” that can cir-
cumvent a national firewall, and others inside the firewall to act as pure clients.
The design here is quite clear-cut; we’re probably ready to begin implementing
it. To implement bridges, we need only to have servers publish themselves as
limited-availability relays to a special bridge authority if they judge they’d make
good servers. Clients need a flexible interface to learn about bridges and to act
on knowledge of bridges.

Additionally, we should resist content-based filters. Though an adver-
sary can’t see what users are saying, some aspects of our protocol are easy to
fingerprint as Tor. We should correct this where possible.

3.3 Implementation: bridge authorities

Our design anticipates an arms race between discovery methods and censors.
We need to begin the infrastructure on our side quickly, preferably in a flexible
language like Python, so we can adapt quickly to censorship.

4 Security

4.1 Security research projects

Mixed-latency [......]

long-distance padding [......]

router-zones [......]

defenses against end-to-end correlation [......]
We don’t expect any to work right now, but it would be very useful to learn
that one did. Alternatively, proving that one didn’t would free up researchers
in the field to go work on other things.

4.2 Implementation security

Encrypt more keys [......]

Talk Coverity or somebody with a copy of vs2005 into running
tools on our code [......]

4

5 Development infrastructure

5.1 Build farm

We’ve begun to deploy a cross-platform distributed build farm of hosts that build
and test the Tor source every time it changes in our development repository.

We need to get more participants, so that we can test a larger variety
of platforms. (Previously, we’ve only found out when our code had broken on
obscure platforms when somebody got around to building it.)

We need also to add our dependencies to the build farm, so that we can
ensure that libraries we need (especially libevent) do not stop working on any
important platform between one release and the next.

5.2 Improved testing harness

Currently, our unit tests cover only about XX% of the code base. This is
uncomfortably low; we should write more and switch to a more flexible testing
framework.

We should also write flexible automated single-host deployment tests
so we can more easily verify that the current codebase works with the network.

5.3 Centralized build system

We currently rely on a separate packager to maintain the packaging system and
to build Tor on each platform for which we distribute binaries. Separate pack-
age maintainers is sensible, but separate package builders has meant very long
turnaround times between source releases and package releases. We should cre-
ate the necessary infrastructure for us to produce binaries for all major packages
within an hour or so of source release.

6 User experience

6.1 All-in-one bundle

a.k.a “Torpedo”, but rename this. [......]

6.2 LiveCD Tor

a.k.a anonym.os done right [......]

5

6.3 Interface improvements

6.4 Firewall-level deployment

6.5 Localization

Right now, most of our user-facing code is internationalized. We need to interna-
tionalize the last few hold-outs (like the Tor installer), and get more translations
for the parts that are already internationalized.

Also, we should look into a unified translator’s solution. Currently, since
different tools have been internationalized using the framework-appropriate method,
different tools require translators to localize them via different interfaces. Inas-
much as possible, we should make translators only need to use a single tool to
translate the whole Tor suite.

7 Documentation

7.1 Unified documentation scheme

Keep track of all the docs we’ve got [......]

Unify the docs into a single book-like thing [......]
This will also help us identify what sections of the “book” are missing.

6

