/* Copyright 2001,2002,2003 Roger Dingledine, Matej Pfajfar. */ /* See LICENSE for licensing information */ /* $Id$ */ #include "../or/or.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" #include "log.h" #include "aes.h" #ifdef MS_WINDOWS #include #endif #if OPENSSL_VERSION_NUMBER < 0x00905000l #error "We require openssl >= 0.9.5" #elif OPENSSL_VERSION_NUMBER < 0x00906000l #define OPENSSL_095 #endif /* * Certain functions that return a success code in OpenSSL 0.9.6 return void * (and don't indicate errors) in OpenSSL version 0.9.5. * * [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.] */ #ifdef OPENSSL_095 #define RETURN_SSL_OUTCOME(exp) (exp); return 0 #else #define RETURN_SSL_OUTCOME(exp) return !(exp) #endif struct crypto_pk_env_t { int refs; /* reference counting; so we don't have to copy keys */ RSA *key; }; struct crypto_cipher_env_t { unsigned char key[CIPHER_KEY_LEN]; unsigned char iv[CIPHER_IV_LEN]; aes_cnt_cipher_t *cipher; }; struct crypto_dh_env_t { DH *dh; }; static INLINE int crypto_get_rsa_padding_overhead(int padding) { switch(padding) { case RSA_NO_PADDING: return 0; case RSA_PKCS1_OAEP_PADDING: return 42; case RSA_PKCS1_PADDING: return 11; default: assert(0); return -1; } } static INLINE int crypto_get_rsa_padding(int padding) { switch(padding) { case PK_NO_PADDING: return RSA_NO_PADDING; case PK_PKCS1_PADDING: return RSA_PKCS1_PADDING; case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; default: assert(0); return -1; } } static int _crypto_global_initialized = 0; int crypto_global_init() { if (!_crypto_global_initialized) { ERR_load_crypto_strings(); _crypto_global_initialized = 1; } return 0; } int crypto_global_cleanup() { ERR_free_strings(); return 0; } /* used by tortls.c */ crypto_pk_env_t *_crypto_new_pk_env_rsa(RSA *rsa) { crypto_pk_env_t *env; assert(rsa); env = tor_malloc(sizeof(crypto_pk_env_t)); env->refs = 1; env->key = rsa; return env; } /* used by tortls.c */ RSA *_crypto_pk_env_get_rsa(crypto_pk_env_t *env) { return env->key; } /* used by tortls.c */ EVP_PKEY *_crypto_pk_env_get_evp_pkey(crypto_pk_env_t *env) { RSA *key = NULL; EVP_PKEY *pkey = NULL; assert(env->key); if (!(key = RSAPrivateKey_dup(env->key))) goto error; if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } DH *_crypto_dh_env_get_dh(crypto_dh_env_t *dh) { return dh->dh; } crypto_pk_env_t *crypto_new_pk_env(void) { RSA *rsa; rsa = RSA_new(); if (!rsa) return NULL; return _crypto_new_pk_env_rsa(rsa); } void crypto_free_pk_env(crypto_pk_env_t *env) { assert(env); if(--env->refs > 0) return; if (env->key) RSA_free(env->key); free(env); } /* Create a new crypto_cipher_env_t for a given onion cipher type, key, * iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object * on success; NULL on failure. */ crypto_cipher_env_t * crypto_create_init_cipher(const char *key, const char *iv, int encrypt_mode) { int r; crypto_cipher_env_t *crypto = NULL; if (! (crypto = crypto_new_cipher_env())) { log_fn(LOG_WARN, "Unable to allocate crypto object"); return NULL; } if (crypto_cipher_set_key(crypto, key)) { log_fn(LOG_WARN, "Unable to set key: %s", crypto_perror()); goto error; } if (crypto_cipher_set_iv(crypto, iv)) { log_fn(LOG_WARN, "Unable to set iv: %s", crypto_perror()); goto error; } if (encrypt_mode) r = crypto_cipher_encrypt_init_cipher(crypto); else r = crypto_cipher_decrypt_init_cipher(crypto); if (r) { log_fn(LOG_WARN, "Unable to initialize cipher: %s", crypto_perror()); goto error; } return crypto; error: if (crypto) crypto_free_cipher_env(crypto); return NULL; } crypto_cipher_env_t *crypto_new_cipher_env() { crypto_cipher_env_t *env; env = tor_malloc_zero(sizeof(crypto_cipher_env_t)); env->cipher = aes_new_cipher(); return env; } void crypto_free_cipher_env(crypto_cipher_env_t *env) { assert(env); assert(env->cipher); aes_free_cipher(env->cipher); tor_free(env); } /* public key crypto */ int crypto_pk_generate_key(crypto_pk_env_t *env) { assert(env); if (env->key) RSA_free(env->key); env->key = RSA_generate_key(PK_BITS,65537, NULL, NULL); if (!env->key) return -1; return 0; } int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); if (env->key) RSA_free(env->key); env->key = PEM_read_RSAPrivateKey(src, NULL, NULL, NULL); if (!env->key) return -1; return 0; } int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile) { FILE *f_pr; assert(env && keyfile); if(strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) != strlen(keyfile)) { /* filename contains nonlegal characters */ return -1; } /* open the keyfile */ f_pr=fopen(keyfile,"rb"); if (!f_pr) return -1; /* read the private key */ if(crypto_pk_read_private_key_from_file(env, f_pr) < 0) { log_fn(LOG_WARN,"Error reading private key : %s",crypto_perror()); fclose(f_pr); return -1; } fclose(f_pr); /* check the private key */ switch(crypto_pk_check_key(env)) { case 0: log_fn(LOG_WARN,"Private key read but is invalid : %s.", crypto_perror()); return -1; case -1: log_fn(LOG_WARN,"Private key read but validity checking failed : %s",crypto_perror()); return -1; /* case 1: fall through */ } return 0; } int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src) { assert(env && src); if(env->key) RSA_free(env->key); env->key = PEM_read_RSAPublicKey(src, NULL, NULL, NULL); if (!env->key) return -1; return 0; } int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) { BUF_MEM *buf; BIO *b; assert(env && env->key && dest); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ /* Now you can treat b as if it were a file. Just use the * PEM_*_bio_* functions instead of the non-bio variants. */ if(!PEM_write_bio_RSAPublicKey(b, env->key)) return -1; BIO_get_mem_ptr(b, &buf); BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */ BIO_free(b); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* null terminate it */ *len = buf->length; BUF_MEM_free(buf); return 0; } int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) { BIO *b; assert(env && src); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ BIO_write(b, src, len); if (env->key) RSA_free(env->key); env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL); if(!env->key) return -1; return 0; } int crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env, const char *fname) { BIO *bio; char *cp; long len; char *s; int r; if (!(bio = BIO_new(BIO_s_mem()))) return -1; if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) == 0) { BIO_free(bio); return -1; } len = BIO_get_mem_data(bio, &cp); s = tor_malloc(len+1); strncpy(s, cp, len); s[len] = '\0'; r = write_str_to_file(fname, s); BIO_free(bio); free(s); return r; } int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); if (!env->key) return -1; if (PEM_write_RSAPrivateKey(dest, env->key, NULL, NULL, 0,0, NULL) == 0) return -1; return 0; } int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest) { assert(env && dest); if (!env->key) return -1; if (PEM_write_RSAPublicKey(dest, env->key) == 0) return -1; return 0; } int crypto_pk_check_key(crypto_pk_env_t *env) { assert(env); return RSA_check_key(env->key); } int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) { int result; if (!a || !b) return -1; if (!a->key || !b->key) return -1; assert((a->key)->n && (a->key)->e && (b->key)->n && (b->key)->e); result = BN_cmp((a->key)->n, (b->key)->n); if (result) return result; return BN_cmp((a->key)->e, (b->key)->e); } /* return the size of the public key modulus in 'env', in bytes. */ int crypto_pk_keysize(crypto_pk_env_t *env) { assert(env && env->key); return RSA_size(env->key); } crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) { assert(env && env->key); env->refs++; return env; } int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to); return RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key, crypto_get_rsa_padding(padding)); } int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) { assert(env && from && to && env->key); if (!env->key->p) /* Not a private key */ return -1; return RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key, crypto_get_rsa_padding(padding)); } int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) { assert(env && from && to); return RSA_public_decrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING); } int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) { assert(env && from && to); if (!env->key->p) /* Not a private key */ return -1; return RSA_private_encrypt(fromlen, (unsigned char*)from, to, env->key, RSA_PKCS1_PADDING); } /* Return 0 if sig is a correct signature for SHA1(data). Else return -1. */ int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, unsigned char *sig, int siglen) { char digest[DIGEST_LEN]; char buf[PK_BYTES+1]; int r; assert(env && data && sig); if (crypto_digest(data,datalen,digest)<0) { log_fn(LOG_WARN, "couldn't compute digest"); return -1; } r = crypto_pk_public_checksig(env,sig,siglen,buf); if (r != DIGEST_LEN) { log_fn(LOG_WARN, "Invalid signature"); return -1; } if (memcmp(buf, digest, DIGEST_LEN)) { log_fn(LOG_WARN, "Signature mismatched with digest."); return -1; } return 0; } /* Fill 'to' with a signature of SHA1(from). */ int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) { char digest[DIGEST_LEN]; if (crypto_digest(from,fromlen,digest)<0) return 0; return crypto_pk_private_sign(env,digest,DIGEST_LEN,to); } /* Perform a hybrid (public/secret) encryption on 'fromlen' bytes of data * from 'from', with padding type 'padding', storing the results on 'to'. * * If no padding is used, the public key must be at least as large as * 'from'. * * Returns the number of bytes written on success, -1 on failure. * * The encrypted data consists of: * * The source data, padded and encrypted with the public key, if the * padded source data is no longer than the public key. * OR * The beginning of the source data prefixed with a 16-symmetric key, * padded and encrypted with the public key; followed by the rest of * the source data encrypted in AES-CTR mode with the symmetric key. */ int crypto_pk_public_hybrid_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) { int overhead, pkeylen, outlen, r, symlen; crypto_cipher_env_t *cipher = NULL; char buf[PK_BYTES+1]; assert(env && from && to); overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); pkeylen = crypto_pk_keysize(env); if (padding == PK_NO_PADDING && fromlen < pkeylen) return -1; if (fromlen+overhead <= pkeylen) { /* It all fits in a single encrypt. */ return crypto_pk_public_encrypt(env,from,fromlen,to,padding); } cipher = crypto_new_cipher_env(); if (!cipher) return -1; if (crypto_cipher_generate_key(cipher)<0) goto err; if (padding == PK_NO_PADDING) cipher->key[0] &= 0x7f; if (crypto_cipher_encrypt_init_cipher(cipher)<0) goto err; memcpy(buf, cipher->key, CIPHER_KEY_LEN); memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN); /* Length of symmetrically encrypted data. */ symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN); outlen = crypto_pk_public_encrypt(env,buf,pkeylen-overhead,to,padding); if (outlen!=pkeylen) { goto err; } r = crypto_cipher_encrypt(cipher, from+pkeylen-overhead-CIPHER_KEY_LEN, symlen, to+outlen); if (r<0) goto err; memset(buf, 0, sizeof(buf)); crypto_free_cipher_env(cipher); return outlen + symlen; err: memset(buf, 0, sizeof(buf)); if (cipher) crypto_free_cipher_env(cipher); return -1; } /* Invert crypto_pk_public_hybrid_encrypt. */ int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) { int overhead, pkeylen, outlen, r; crypto_cipher_env_t *cipher = NULL; char buf[PK_BYTES+1]; overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); pkeylen = crypto_pk_keysize(env); if (fromlen <= pkeylen) { return crypto_pk_private_decrypt(env,from,fromlen,to,padding); } outlen = crypto_pk_private_decrypt(env,from,pkeylen,buf,padding); if (outlen<0) { log_fn(LOG_WARN, "Error decrypting public-key data"); return -1; } if (outlen < CIPHER_KEY_LEN) { log_fn(LOG_WARN, "No room for a symmetric key"); return -1; } cipher = crypto_create_init_cipher(buf, NULL, 0); if (!cipher) { return -1; } memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN); outlen -= CIPHER_KEY_LEN; r = crypto_cipher_decrypt(cipher, from+pkeylen, fromlen-pkeylen, to+outlen); if (r<0) goto err; memset(buf,0,sizeof(buf)); crypto_free_cipher_env(cipher); return outlen + (fromlen-pkeylen); err: memset(buf,0,sizeof(buf)); if (cipher) crypto_free_cipher_env(cipher); return -1; } /* Encode the public portion of 'pk' into 'dest'. Return -1 on error, * or the number of characters used on success. */ int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len) { int len; unsigned char *buf, *bufp; len = i2d_RSAPublicKey(pk->key, NULL); if (len < 0 || len > dest_len) return -1; bufp = buf = tor_malloc(len+1); len = i2d_RSAPublicKey(pk->key, &bufp); if (len < 0) { tor_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); tor_free(buf); return len; } /* Decode an ASN1-encoded public key from str. */ crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len) { RSA *rsa; unsigned char *buf; const unsigned char *bufp; bufp = buf = tor_malloc(len); memcpy(buf,str,len); /* This ifdef suppresses a type warning. Take out the first case once * everybody is using openssl 0.9.7 or later. */ #if OPENSSL_VERSION_NUMBER < 0x00907000l rsa = d2i_RSAPublicKey(NULL, &buf, len); #else rsa = d2i_RSAPublicKey(NULL, &bufp, len); #endif tor_free(buf); if (!rsa) return NULL; /* XXXX log openssl error */ return _crypto_new_pk_env_rsa(rsa); } /* Given a private or public key pk, put a SHA1 hash of the public key into * digest_out (must have DIGEST_LEN bytes of space). */ int crypto_pk_get_digest(crypto_pk_env_t *pk, char *digest_out) { unsigned char *buf, *bufp; int len; len = i2d_RSAPublicKey(pk->key, NULL); if (len < 0) return -1; buf = bufp = tor_malloc(len+1); len = i2d_RSAPublicKey(pk->key, &bufp); if (len < 0) { free(buf); return -1; } if (crypto_digest(buf, len, digest_out) < 0) { free(buf); return -1; } return 0; } /* Given a private or public key pk, put a fingerprint of the * public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of * space). */ int crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out) { unsigned char *bufp; unsigned char digest[DIGEST_LEN]; unsigned char buf[FINGERPRINT_LEN+1]; int i; if (crypto_pk_get_digest(pk, digest)) { return -1; } bufp = buf; for (i = 0; i < DIGEST_LEN; ++i) { sprintf(bufp,"%02X",digest[i]); bufp += 2; if (i%2 && i != 19) { *bufp++ = ' '; } } *bufp = '\0'; assert(strlen(buf) == FINGERPRINT_LEN); assert(crypto_pk_check_fingerprint_syntax(buf)); strcpy(fp_out, buf); return 0; } int crypto_pk_check_fingerprint_syntax(const char *s) { int i; for (i = 0; i < FINGERPRINT_LEN; ++i) { if ((i%5) == 4) { if (!isspace((int)s[i])) return 0; } else { if (!isxdigit((int)s[i])) return 0; } } if (s[FINGERPRINT_LEN]) return 0; return 1; } /* symmetric crypto */ int crypto_cipher_generate_key(crypto_cipher_env_t *env) { assert(env); return crypto_rand(CIPHER_KEY_LEN, env->key); } int crypto_cipher_set_iv(crypto_cipher_env_t *env, const unsigned char *iv) { assert(env && (CIPHER_IV_LEN==0 || iv)); if (!CIPHER_IV_LEN) return 0; if (!env->iv) return -1; memcpy(env->iv, iv, CIPHER_IV_LEN); return 0; } int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key) { assert(env && key); if (!env->key) return -1; memcpy(env->key, key, CIPHER_KEY_LEN); return 0; } const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env) { return env->key; } int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8); return 0; } int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env) { assert(env); aes_set_key(env->cipher, env->key, CIPHER_KEY_LEN*8); return 0; } int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to) { assert(env && env->cipher && from && fromlen && to); aes_crypt(env->cipher, from, fromlen, to); return 0; } int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to) { assert(env && from && to); aes_crypt(env->cipher, from, fromlen, to); return 0; } int crypto_cipher_rewind(crypto_cipher_env_t *env, long delta) { return crypto_cipher_advance(env, -delta); } int crypto_cipher_advance(crypto_cipher_env_t *env, long delta) { aes_adjust_counter(env->cipher, delta); return 0; } /* SHA-1 */ int crypto_digest(const unsigned char *m, int len, unsigned char *digest) { assert(m && digest); return (SHA1(m,len,digest) == NULL); } struct crypto_digest_env_t { SHA_CTX d; }; crypto_digest_env_t * crypto_new_digest_env(void) { crypto_digest_env_t *r; r = tor_malloc(sizeof(crypto_digest_env_t)); SHA1_Init(&r->d); return r; } void crypto_free_digest_env(crypto_digest_env_t *digest) { tor_free(digest); } void crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data, size_t len) { assert(digest); assert(data); SHA1_Update(&digest->d, (void*)data, len); } void crypto_digest_get_digest(crypto_digest_env_t *digest, char *out, size_t out_len) { static char r[DIGEST_LEN]; assert(digest && out); assert(out_len <= DIGEST_LEN); SHA1_Final(r, &digest->d); memcpy(out, r, out_len); } crypto_digest_env_t * crypto_digest_dup(const crypto_digest_env_t *digest) { crypto_digest_env_t *r; assert(digest); r = tor_malloc(sizeof(crypto_digest_env_t)); memcpy(r,digest,sizeof(crypto_digest_env_t)); return r; } void crypto_digest_assign(crypto_digest_env_t *into, const crypto_digest_env_t *from) { assert(into && from); memcpy(into,from,sizeof(crypto_digest_env_t)); } /* DH */ static BIGNUM *dh_param_p = NULL; static BIGNUM *dh_param_g = NULL; static void init_dh_param() { BIGNUM *p, *g; int r; if (dh_param_p && dh_param_g) return; p = BN_new(); g = BN_new(); assert(p && g); #if 0 /* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe prime, and supposedly it equals: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB9ED529077096966D" "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF"); #endif /* This is from rfc2409, section 6.2. It's a safe prime, and supposedly it equals: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. */ /* See also rfc 3536 */ r = BN_hex2bn(&p, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE65381FFFFFFFFFFFFFFFF"); assert(r); r = BN_set_word(g, 2); assert(r); dh_param_p = p; dh_param_g = g; } crypto_dh_env_t *crypto_dh_new() { crypto_dh_env_t *res = NULL; if (!dh_param_p) init_dh_param(); res = tor_malloc(sizeof(crypto_dh_env_t)); res->dh = NULL; if (!(res->dh = DH_new())) goto err; if (!(res->dh->p = BN_dup(dh_param_p))) goto err; if (!(res->dh->g = BN_dup(dh_param_g))) goto err; return res; err: if (res && res->dh) DH_free(res->dh); /* frees p and g too */ if (res) free(res); return NULL; } int crypto_dh_get_bytes(crypto_dh_env_t *dh) { assert(dh); return DH_size(dh->dh); } int crypto_dh_generate_public(crypto_dh_env_t *dh) { if (!DH_generate_key(dh->dh)) return -1; return 0; } int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len) { int bytes; assert(dh); if (!dh->dh->pub_key) { if (!DH_generate_key(dh->dh)) return -1; } assert(dh->dh->pub_key); bytes = BN_num_bytes(dh->dh->pub_key); if (pubkey_len < bytes) return -1; memset(pubkey, 0, pubkey_len); BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes)); return 0; } #undef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) int crypto_dh_compute_secret(crypto_dh_env_t *dh, const char *pubkey, int pubkey_len, char *secret_out, int secret_bytes_out) { unsigned char hash[DIGEST_LEN]; unsigned char *secret_tmp = NULL; BIGNUM *pubkey_bn = NULL; int secret_len; int i; assert(dh); assert(secret_bytes_out/DIGEST_LEN <= 255); if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL))) goto error; secret_tmp = tor_malloc(crypto_dh_get_bytes(dh)+1); secret_len = DH_compute_key(secret_tmp, pubkey_bn, dh->dh); /* sometimes secret_len might be less than 128, e.g., 127. that's ok. */ for (i = 0; i < secret_bytes_out; i += DIGEST_LEN) { secret_tmp[secret_len] = (unsigned char) i/DIGEST_LEN; if (crypto_digest(secret_tmp, secret_len+1, hash)) goto error; memcpy(secret_out+i, hash, MIN(DIGEST_LEN, secret_bytes_out-i)); } secret_len = secret_bytes_out; goto done; error: secret_len = -1; done: if (pubkey_bn) BN_free(pubkey_bn); tor_free(secret_tmp); return secret_len; } void crypto_dh_free(crypto_dh_env_t *dh) { assert(dh && dh->dh); DH_free(dh->dh); free(dh); } /* random numbers */ #ifdef MS_WINDOWS int crypto_seed_rng() { static int provider_set = 0; static HCRYPTPROV provider; char buf[DIGEST_LEN+1]; if (!provider_set) { if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, 0)) { if (GetLastError() != NTE_BAD_KEYSET) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [1]"); return -1; } /* Yes, we need to try it twice. */ if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET)) { log_fn(LOG_ERR,"Can't get CryptoAPI provider [2]"); return -1; } } provider_set = 1; } if (!CryptGenRandom(provider, DIGEST_LEN, buf)) { log_fn(LOG_ERR,"Can't get entropy from CryptoAPI."); return -1; } RAND_seed(buf, DIGEST_LEN); /* And add the current screen state to the entopy pool for * good measure. */ RAND_screen(); return 0; } #else int crypto_seed_rng() { static char *filenames[] = { "/dev/srandom", "/dev/urandom", "/dev/random", NULL }; int i, n; char buf[DIGEST_LEN+1]; FILE *f; for (i = 0; filenames[i]; ++i) { f = fopen(filenames[i], "rb"); if (!f) continue; log_fn(LOG_INFO, "Seeding RNG from %s", filenames[i]); n = fread(buf, 1, DIGEST_LEN, f); fclose(f); if (n != DIGEST_LEN) { log_fn(LOG_WARN, "Error reading from entropy source"); return -1; } RAND_seed(buf, DIGEST_LEN); return 0; } log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found."); return -1; } #endif int crypto_rand(unsigned int n, unsigned char *to) { assert(to); return (RAND_bytes(to, n) != 1); } void crypto_pseudo_rand(unsigned int n, unsigned char *to) { assert(to); if (RAND_pseudo_bytes(to, n) == -1) { log_fn(LOG_ERR, "RAND_pseudo_bytes failed unexpectedly."); exit(1); } } /* return a pseudo random number between 0 and max-1 */ int crypto_pseudo_rand_int(unsigned int max) { unsigned int val; unsigned int cutoff; assert(max < UINT_MAX); assert(max > 0); /* don't div by 0 */ /* We ignore any values that are >= 'cutoff,' to avoid biasing the * distribution with clipping at the upper end of unsigned int's * range. */ cutoff = UINT_MAX - (UINT_MAX%max); while(1) { crypto_pseudo_rand(sizeof(val), (unsigned char*) &val); if (val < cutoff) return val % max; } } /* errors */ const char *crypto_perror() { return (const char *)ERR_reason_error_string(ERR_get_error()); } int base64_encode(char *dest, int destlen, const char *src, int srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 48 bytes of input -> 64 bytes of output plus newline. Plus one more byte, in case I'm wrong. */ if (destlen < ((srclen/48)+1)*66) return -1; EVP_EncodeInit(&ctx); EVP_EncodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_EncodeFinal(&ctx, dest+len, &ret); ret += len; return ret; } int base64_decode(char *dest, int destlen, const char *src, int srclen) { EVP_ENCODE_CTX ctx; int len, ret; /* 64 bytes of input -> *up to* 48 bytes of output. Plus one more byte, in caes I'm wrong. */ if (destlen < ((srclen/64)+1)*49) return -1; EVP_DecodeInit(&ctx); EVP_DecodeUpdate(&ctx, dest, &len, (char*) src, srclen); EVP_DecodeFinal(&ctx, dest, &ret); ret += len; return ret; } int base32_encode(char *dest, int destlen, const char *src, int srclen) { int nbits, i, bit, v, u; nbits = srclen * 8; if ((nbits%5) != 0) /* We need an even multiple of 5 bits. */ return -1; if ((nbits/5)+1 < destlen) /* Not enough space. */ return -1; for (i=0,bit=0; bit < nbits; ++i, bit+=5) { /* set v to the 16-bit value starting at src[bits/8], 0-padded. */ v = ((unsigned char)src[bit/8]) << 8; if (bit+5> (11-(bit%8))) & 0x1F; dest[i] = BASE32_CHARS[u]; } dest[i] = '\0'; return 0; } /* Local Variables: mode:c indent-tabs-mode:nil c-basic-offset:2 End: */