/* Copyright 2004 Roger Dingledine, Nick Mathewson. */ /* See LICENSE for licensing information */ /* $Id$ */ /** * \file hibernate.c * \brief Functions to close listeners, stop allowing new circuits, * etc in preparation for closing down or going dormant; and to track * bandwidth and time intervals to know when to hibernate and when to * stop hibernating. **/ /* hibernating, phase 1: - send destroy in response to create cells - send end (policy failed) in response to begin cells - close an OR conn when it has no circuits hibernating, phase 2: (entered when bandwidth hard limit reached) - close all OR/AP/exit conns) */ #include "or.h" #define HIBERNATE_STATE_LIVE 1 #define HIBERNATE_STATE_EXITING 2 #define HIBERNATE_STATE_LOWBANDWIDTH 3 #define HIBERNATE_STATE_DORMANT 4 #define SHUTDOWN_WAIT_LENGTH 30 /* seconds */ static int hibernate_state = HIBERNATE_STATE_LIVE; /** If are hibernating, when do we plan to wake up? Set to 0 if we * aren't hibernating. */ static time_t hibernate_end_time = 0; /* Fields for accounting logic. Accounting overview: * * Accounting is designed to ensure that more than N bytes are sent in * either direction over a given interval (currently, one month, * starting at 0:00 GMT an arbitrary date within the month). We could * try to do this by choking our bandwidth to a trickle, but that * would make our streams useless. Instead, we estimate what our * bandwidth usage will be, and guess how long we'll be able to * provide that much bandwidth before hitting our limit. We then * choose a random time within the accounting interval to come up (so * that we don't get 50 Tors running on the 1st of the month and none * on the 30th). * * Each interval runs as follows: * * 1. We guess our bandwidth usage, based on how much we used * last time. We choose a "wakeup time" within the interval to come up. * 2. Until the chosen wakeup time, we hibernate. * 3. We come up at the wakeup time, and provide bandwidth until we are * "very close" to running out. * 4. Then we go into low-bandwidth mode, and stop accepting new * connections, but provide bandwidth until we run out. * 5. Then we hibernate until the end of the interval. * * If the interval ends before we run out of bandwdith, we go back to * step one. */ /** How many bytes have we read/written in this accounting interval? */ static uint64_t n_bytes_read_in_interval = 0; static uint64_t n_bytes_written_in_interval = 0; /** How many seconds have we been running this interval? */ static uint32_t n_seconds_active_in_interval = 0; /** When did this accounting interval start? */ static time_t interval_start_time = 0; /** When will this accounting interval end? */ static time_t interval_end_time = 0; /** How far into the accounting interval should we hibernate? */ static time_t interval_wakeup_time = 0; /** How much bandwidth do we 'expect' to use per minute? */ static uint32_t expected_bandwidth_usage = 0; static void reset_accounting(time_t now); static int read_bandwidth_usage(void); static int record_bandwidth_usage(time_t now); static time_t start_of_accounting_period_after(time_t now); static time_t start_of_accounting_period_containing(time_t now); static void accounting_set_wakeup_time(void); /* ************ * Functions for bandwidth accounting. * ************/ /** Called from main.c to tell us that seconds seconds have * passed, n_read bytes have been read, and n_written * bytes have been written. */ void accounting_add_bytes(size_t n_read, size_t n_written, int seconds) { n_bytes_read_in_interval += n_read; n_bytes_written_in_interval += n_written; /* If we haven't been called in 10 seconds, we're probably jumping * around in time. */ n_seconds_active_in_interval += (seconds < 10) ? seconds : 0; } /** Increment the month field of tm by delta months. */ static INLINE void incr_month(struct tm *tm, unsigned int delta) { tm->tm_mon += delta; /* officially, we don't have to do this, but some platforms are rumored * to have broken implementations. */ while (tm->tm_mon > 11) { ++tm->tm_year; tm->tm_mon -= 12; } } /** Decrement the month field of tm by delta months. */ static INLINE void decr_month(struct tm *tm, unsigned int delta) { tm->tm_mon -= delta; while (tm->tm_mon < 0) { --tm->tm_year; tm->tm_mon += 12; } } /** Return the start of the accounting period that contains the time * now */ static time_t start_of_accounting_period_containing(time_t now) { struct tm *tm; /* Only months are supported. */ tm = gmtime(&now); /* If this is before the Nth, we want the Nth of last month. */ if (tm->tm_mday < get_options()->AccountingStart) { decr_month(tm, 1); } /* Otherwise, the month and year are correct.*/ tm->tm_mday = get_options()->AccountingStart; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; return tor_timegm(tm); } /** Return the start of the accounting period that comes after the one * containing the time now. */ static time_t start_of_accounting_period_after(time_t now) { time_t start; struct tm *tm; start = start_of_accounting_period_containing(now); tm = gmtime(&start); incr_month(tm, 1); return tor_timegm(tm); } /** Initialize the accounting subsystem. */ void configure_accounting(time_t now) { /* Try to remember our recorded usage. */ if (!interval_start_time) read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and * reset below.*/ if (!interval_start_time || start_of_accounting_period_after(interval_start_time) <= now) { /* We didn't have recorded usage, or we don't have recorded usage * for this interval. Start a new interval. */ log_fn(LOG_INFO, "Starting new accounting interval."); reset_accounting(now); } if (interval_start_time == start_of_accounting_period_containing(interval_start_time)) { log_fn(LOG_INFO, "Continuing accounting interval."); /* We are in the interval we thought we were in. Do nothing.*/ } else { log_fn(LOG_WARN, "Mismatched accounting interval; starting a fresh one."); reset_accounting(now); } accounting_set_wakeup_time(); } /** Set expected_bandwidth_usage based on how much we sent/received * per minute last interval (if we were up for at least 30 minutes), * or based on our declared bandwidth otherwise. */ static void update_expected_bandwidth(void) { uint64_t used; uint32_t max_configured = (get_options()->BandwidthRateBytes * 60); if (n_seconds_active_in_interval < 1800) { expected_bandwidth_usage = max_configured; } else { used = n_bytes_written_in_interval < n_bytes_read_in_interval ? n_bytes_read_in_interval : n_bytes_written_in_interval; expected_bandwidth_usage = (uint32_t) (used / (n_seconds_active_in_interval / 60)); if (expected_bandwidth_usage > max_configured) expected_bandwidth_usage = max_configured; } } /** Called at the start of a new accounting interval: reset our * expected bandwidth usage based on what happened last time, set up * the start and end of the interval, and clear byte/time totals. */ static void reset_accounting(time_t now) { log_fn(LOG_INFO, "Starting new accounting interval."); update_expected_bandwidth(); interval_start_time = start_of_accounting_period_containing(now); interval_end_time = start_of_accounting_period_after(interval_start_time); n_bytes_read_in_interval = 0; n_bytes_written_in_interval = 0; n_seconds_active_in_interval = 0; } /** Return true iff we should save our bandwidth usage to disk. */ static INLINE int time_to_record_bandwidth_usage(time_t now) { /* Note every 5 minutes */ #define NOTE_INTERVAL (5*60) /* Or every 20 megabytes */ #define NOTE_BYTES 20*(1024*1024) static uint64_t last_read_bytes_noted = 0; static uint64_t last_written_bytes_noted = 0; static time_t last_time_noted = 0; if (last_time_noted + NOTE_INTERVAL <= now || last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval || last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval || (interval_end_time && interval_end_time <= now)) { last_time_noted = now; last_read_bytes_noted = n_bytes_read_in_interval; last_written_bytes_noted = n_bytes_written_in_interval; return 1; } return 0; } void accounting_run_housekeeping(time_t now) { if (now >= interval_end_time) { configure_accounting(now); } if (time_to_record_bandwidth_usage(now)) { if (record_bandwidth_usage(now)) { log_fn(LOG_ERR, "Couldn't record bandwidth usage; exiting."); exit(1); } } } /** Based on our interval and our estimated bandwidth, choose a * deterministic (but random-ish) time to wake up. */ static void accounting_set_wakeup_time(void) { struct tm *tm; char buf[ISO_TIME_LEN+1]; char digest[DIGEST_LEN]; crypto_digest_env_t *d; int n_days_in_interval; int n_days_to_exhaust_bw; int n_days_to_consider; format_iso_time(buf, interval_start_time); crypto_pk_get_digest(get_identity_key(), digest); d = crypto_new_digest_env(); crypto_digest_add_bytes(d, buf, ISO_TIME_LEN); crypto_digest_add_bytes(d, digest, DIGEST_LEN); crypto_digest_get_digest(d, digest, DIGEST_LEN); crypto_free_digest_env(d); n_days_to_exhaust_bw = (get_options()->AccountingMaxKB/expected_bandwidth_usage)/(24*60); tm = gmtime(&interval_start_time); if (++tm->tm_mon > 11) { tm->tm_mon = 0; ++tm->tm_year; } n_days_in_interval = (tor_timegm(tm)-interval_start_time+1)/(24*60*60); n_days_to_consider = n_days_in_interval - n_days_to_exhaust_bw; /* XXX can we simplify this just by picking a random (non-deterministic) * time to be up? If we go down and come up, then we pick a new one. Is * that good enough? -RD */ while (((unsigned char)digest[0]) > n_days_to_consider) crypto_digest(digest, digest, DIGEST_LEN); interval_wakeup_time = interval_start_time + 24*60*60 * (unsigned char)digest[0]; } #define BW_ACCOUNTING_VERSION 1 /** Save all our bandwidth tracking information to disk. Return 0 on * success, -1 on failure*/ static int record_bandwidth_usage(time_t now) { char buf[128]; char fname[512]; char time1[ISO_TIME_LEN+1]; char time2[ISO_TIME_LEN+1]; char *cp = buf; /* Format is: Version\nTime\nTime\nRead\nWrite\nSeconds\nExpected-Rate\n */ format_iso_time(time1, interval_start_time); format_iso_time(time2, now); tor_snprintf(cp, sizeof(buf), "%d\n%s\n%s\n"U64_FORMAT"\n"U64_FORMAT"\n%lu\n%lu\n", BW_ACCOUNTING_VERSION, time1, time2, U64_PRINTF_ARG(n_bytes_read_in_interval), U64_PRINTF_ARG(n_bytes_written_in_interval), (unsigned long)n_seconds_active_in_interval, (unsigned long)expected_bandwidth_usage); tor_snprintf(fname, sizeof(fname), "%s/bw_accounting", get_data_directory()); return write_str_to_file(fname, buf, 0); } /** Read stored accounting information from disk. Return 0 on success; * return -1 and change nothing on failure. */ static int read_bandwidth_usage(void) { char *s = NULL; char fname[512]; time_t t1, t2; uint64_t n_read, n_written; uint32_t expected_bw, n_seconds; smartlist_t *elts; int ok; tor_snprintf(fname, sizeof(fname), "%s/bw_accounting", get_data_directory()); if (!(s = read_file_to_str(fname, 0))) { return 0; } elts = smartlist_create(); smartlist_split_string(elts, s, "\n", SPLIT_SKIP_SPACE, SPLIT_IGNORE_BLANK); tor_free(s); if (smartlist_len(elts)<1 || atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) { log_fn(LOG_WARN, "Unrecognized bw_accounting file version: %s", (const char*)smartlist_get(elts,0)); goto err; } if (smartlist_len(elts) < 7) { log_fn(LOG_WARN, "Corrupted bw_accounting file: %d lines", smartlist_len(elts)); goto err; } if (parse_iso_time(smartlist_get(elts,1), &t1)) { log_fn(LOG_WARN, "Error parsing bandwidth usage start time."); goto err; } if (parse_iso_time(smartlist_get(elts,2), &t2)) { log_fn(LOG_WARN, "Error parsing bandwidth usage last-written time"); goto err; } n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of bytes read"); goto err; } n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of bytes read"); goto err; } n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing number of seconds live"); goto err; } expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX, &ok, NULL); if (!ok) { log_fn(LOG_WARN, "Error parsing expected bandwidth"); goto err; } n_bytes_read_in_interval = n_read; n_bytes_written_in_interval = n_written; n_seconds_active_in_interval = n_seconds; interval_start_time = t1; expected_bandwidth_usage = expected_bw; accounting_set_wakeup_time(); return 0; err: SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp)); smartlist_free(elts); return -1; } /** Return true iff we have sent/received all the bytes we are willing * to send/receive this interval. */ static int hibernate_hard_limit_reached(void) { uint64_t hard_limit = get_options()->AccountingMaxKB<<10; if (!hard_limit) return 0; return n_bytes_read_in_interval >= hard_limit || n_bytes_written_in_interval >= hard_limit; } /** Return true iff we have sent/received almost all the bytes we are willing * to send/receive this interval. */ static int hibernate_soft_limit_reached(void) { uint64_t soft_limit = (uint64_t) ((get_options()->AccountingMaxKB<<10) * .99); if (!soft_limit) return 0; return n_bytes_read_in_interval >= soft_limit || n_bytes_written_in_interval >= soft_limit; } /** Called when we get a SIGINT, or when bandwidth soft limit is * reached. Puts us into "loose hibernation": we don't accept new * connections, but we continue handling old ones. */ static void hibernate_begin(int new_state, time_t now) { connection_t *conn; if(hibernate_state == HIBERNATE_STATE_EXITING) { /* we've been called twice now. close immediately. */ log(LOG_NOTICE,"Second sigint received; exiting now."); tor_cleanup(); exit(0); } tor_assert(hibernate_state == HIBERNATE_STATE_LIVE); /* close listeners */ while((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) || (conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) || (conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) { log_fn(LOG_INFO,"Closing listener type %d", conn->type); connection_mark_for_close(conn); } /* XXX kill intro point circs */ /* XXX upload rendezvous service descriptors with no intro points */ if(new_state == HIBERNATE_STATE_EXITING) { log(LOG_NOTICE,"Interrupt: will shut down in %d seconds. Interrupt again to exit now.", SHUTDOWN_WAIT_LENGTH); hibernate_end_time = time(NULL) + SHUTDOWN_WAIT_LENGTH; } else { /* soft limit reached */ log_fn(LOG_NOTICE,"Bandwidth limit reached; beginning hibernation."); hibernate_end_time = interval_end_time; } hibernate_state = new_state; } /** Called when we've been hibernating and our timeout is reached. */ static void hibernate_end(int new_state) { tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH || hibernate_state == HIBERNATE_STATE_DORMANT); /* listeners will be relaunched in run_scheduled_events() in main.c */ log_fn(LOG_NOTICE,"Hibernation period ended. Resuming normal activity."); hibernate_state = new_state; hibernate_end_time = 0; /* no longer hibernating */ } /** A wrapper around hibernate_begin, for when we get SIGINT. */ void hibernate_begin_shutdown(void) { hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL)); } /** Return true iff we are currently hibernating. */ int we_are_hibernating(void) { return hibernate_state != HIBERNATE_STATE_LIVE; } /** If we aren't currently dormant, close all connections and become * dormant. */ static void hibernate_go_dormant(void) { connection_t *conn; if (hibernate_state == HIBERNATE_STATE_DORMANT) return; hibernate_state = HIBERNATE_STATE_DORMANT; log_fn(LOG_NOTICE,"Going dormant. Blowing away remaining connections."); /* Close all OR/AP/exit conns. Leave dir conns. */ /* XXXX Why leave dir cons? -NM */ while((conn = connection_get_by_type(CONN_TYPE_OR)) || (conn = connection_get_by_type(CONN_TYPE_AP)) || (conn = connection_get_by_type(CONN_TYPE_EXIT))) { log_fn(LOG_INFO,"Closing conn type %d", conn->type); connection_mark_for_close(conn); } } /** Called when hibernate_end_time has arrived. */ static void hibernate_end_time_elapsed(time_t now) { /* The interval has ended, or it is wakeup time. Find out which. */ accounting_run_housekeeping(now); if (interval_wakeup_time <= now) { /* The interval hasn't changed, but interval_wakeup_time has passed. * It's time to wake up and start being a server. */ hibernate_end(HIBERNATE_STATE_LIVE); return; } else { /* The interval has changed, and it isn't time to wake up yet. */ hibernate_end_time = interval_wakeup_time; if (hibernate_state != HIBERNATE_STATE_DORMANT) /* We weren't sleeping before; we should sleep now. */ hibernate_go_dormant(); } } /** The big function. Consider our environment and decide if it's time * to start/stop hibernating. */ void consider_hibernation(time_t now) { /* If we're in 'exiting' mode, then we just shutdown after the interval * elapses. */ if (hibernate_state == HIBERNATE_STATE_EXITING) { tor_assert(hibernate_end_time); if(hibernate_end_time <= now) { log(LOG_NOTICE,"Clean shutdown finished. Exiting."); tor_cleanup(); exit(0); } return; /* if exiting soon, don't worry about bandwidth limits */ } if(hibernate_state == HIBERNATE_STATE_DORMANT) { /* We've been hibernating because of bandwidth accounting. */ tor_assert(hibernate_end_time); if (hibernate_end_time > now) { /* If we're hibernating, don't wake up until it's time, regardless of * whether we're in a new interval. */ return ; } else { hibernate_end_time_elapsed(now); } } /* Else, we aren't hibernating. See if it's time to start hibernating, or to * go dormant. */ if (hibernate_state == HIBERNATE_STATE_LIVE && hibernate_soft_limit_reached()) { log_fn(LOG_NOTICE,"Bandwidth soft limit reached; commencing hibernation."); hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now); } if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) { if (hibernate_hard_limit_reached()) { hibernate_go_dormant(); } else if (hibernate_end_time <= now) { /* The hibernation period ended while we were still in lowbandwidth.*/ hibernate_end_time_elapsed(now); } } }