/* Copyright (c) 2014-2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#include "orconfig.h"
#define CIRCUITLIST_PRIVATE
#define STATEFILE_PRIVATE
#define ENTRYNODES_PRIVATE
#define ROUTERLIST_PRIVATE
#include "or.h"
#include "test.h"
#include "bridges.h"
#include "circuitlist.h"
#include "config.h"
#include "entrynodes.h"
#include "nodelist.h"
#include "networkstatus.h"
#include "policies.h"
#include "routerlist.h"
#include "routerparse.h"
#include "routerset.h"
#include "statefile.h"
#include "util.h"
#include "test_helpers.h"
#include "log_test_helpers.h"
/* TODO:
* choose_random_entry() test with state set.
*
* parse_state() tests with more than one guards.
*
* More tests for set_from_config(): Multiple nodes, use fingerprints,
* use country codes.
*/
/** Dummy Tor state used in unittests. */
static or_state_t *dummy_state = NULL;
static or_state_t *
get_or_state_replacement(void)
{
return dummy_state;
}
/* Unittest cleanup function: Cleanup the fake network. */
static int
fake_network_cleanup(const struct testcase_t *testcase, void *ptr)
{
(void) testcase;
(void) ptr;
routerlist_free_all();
nodelist_free_all();
entry_guards_free_all();
or_state_free(dummy_state);
return 1; /* NOP */
}
/* Unittest setup function: Setup a fake network. */
static void *
fake_network_setup(const struct testcase_t *testcase)
{
(void) testcase;
/* Setup fake state */
dummy_state = tor_malloc_zero(sizeof(or_state_t));
MOCK(get_or_state,
get_or_state_replacement);
/* Setup fake routerlist. */
helper_setup_fake_routerlist();
/* Return anything but NULL (it's interpreted as test fail) */
return dummy_state;
}
static networkstatus_t *dummy_consensus = NULL;
static smartlist_t *big_fake_net_nodes = NULL;
static smartlist_t *
bfn_mock_nodelist_get_list(void)
{
return big_fake_net_nodes;
}
static networkstatus_t *
bfn_mock_networkstatus_get_live_consensus(time_t now)
{
(void)now;
return dummy_consensus;
}
static const node_t *
bfn_mock_node_get_by_id(const char *id)
{
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n,
if (fast_memeq(n->identity, id, 20))
return n);
return NULL;
}
/* Unittest cleanup function: Cleanup the fake network. */
static int
big_fake_network_cleanup(const struct testcase_t *testcase, void *ptr)
{
(void) testcase;
(void) ptr;
if (big_fake_net_nodes) {
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
tor_free(n->rs);
tor_free(n->md);
tor_free(n);
});
smartlist_free(big_fake_net_nodes);
}
UNMOCK(nodelist_get_list);
UNMOCK(node_get_by_id);
UNMOCK(get_or_state);
UNMOCK(networkstatus_get_live_consensus);
or_state_free(dummy_state);
dummy_state = NULL;
tor_free(dummy_consensus);
return 1; /* NOP */
}
/* Unittest setup function: Setup a fake network. */
static void *
big_fake_network_setup(const struct testcase_t *testcase)
{
int i;
/* These are minimal node_t objects that only contain the aspects of node_t
* that we need for entrynodes.c. */
const int N_NODES = 271;
big_fake_net_nodes = smartlist_new();
for (i = 0; i < N_NODES; ++i) {
node_t *n = tor_malloc_zero(sizeof(node_t));
n->md = tor_malloc_zero(sizeof(microdesc_t));
crypto_rand(n->identity, sizeof(n->identity));
n->rs = tor_malloc_zero(sizeof(routerstatus_t));
memcpy(n->rs->identity_digest, n->identity, DIGEST_LEN);
n->is_running = n->is_valid = n->is_fast = n->is_stable = 1;
n->rs->addr = 0x04020202;
n->rs->or_port = 1234;
n->rs->is_v2_dir = 1;
n->rs->has_bandwidth = 1;
n->rs->bandwidth_kb = 30;
/* Call half of the nodes a possible guard. */
if (i % 2 == 0) {
n->is_possible_guard = 1;
n->rs->guardfraction_percentage = 100;
n->rs->has_guardfraction = 1;
}
smartlist_add(big_fake_net_nodes, n);
}
dummy_state = tor_malloc_zero(sizeof(or_state_t));
dummy_consensus = tor_malloc_zero(sizeof(networkstatus_t));
dummy_consensus->valid_after = approx_time() - 3600;
dummy_consensus->valid_until = approx_time() + 3600;
MOCK(nodelist_get_list, bfn_mock_nodelist_get_list);
MOCK(node_get_by_id, bfn_mock_node_get_by_id);
MOCK(get_or_state,
get_or_state_replacement);
MOCK(networkstatus_get_live_consensus,
bfn_mock_networkstatus_get_live_consensus);
/* Return anything but NULL (it's interpreted as test fail) */
return (void*)testcase;
}
static time_t
mock_randomize_time_no_randomization(time_t a, time_t b)
{
(void) b;
return a;
}
static or_options_t mocked_options;
static const or_options_t *
mock_get_options(void)
{
return &mocked_options;
}
/** Test choose_random_entry() with none of our routers being guard nodes. */
static void
test_choose_random_entry_no_guards(void *arg)
{
const node_t *chosen_entry = NULL;
(void) arg;
MOCK(get_options, mock_get_options);
/* Check that we get a guard if it passes preferred
* address settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientPreferIPv6ORPort = 0;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
/* Try to pick an entry even though none of our routers are guards. */
chosen_entry = choose_random_entry(NULL);
/* Unintuitively, we actually pick a random node as our entry,
because router_choose_random_node() relaxes its constraints if it
can't find a proper entry guard. */
tt_assert(chosen_entry);
/* And with the other IP version active */
mocked_options.ClientUseIPv6 = 1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
/* And with the preference on auto */
mocked_options.ClientPreferIPv6ORPort = -1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
/* Check that we don't get a guard if it doesn't pass mandatory address
* settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 0;
mocked_options.ClientPreferIPv6ORPort = 0;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
/* If we don't allow IPv4 at all, we don't get a guard*/
tt_assert(!chosen_entry);
/* Check that we get a guard if it passes allowed but not preferred address
* settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientUseIPv6 = 1;
mocked_options.ClientPreferIPv6ORPort = 1;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
/* Check that we get a guard if it passes preferred address settings when
* they're auto */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientPreferIPv6ORPort = -1;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
/* And with IPv6 active */
mocked_options.ClientUseIPv6 = 1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
done:
memset(&mocked_options, 0, sizeof(mocked_options));
UNMOCK(get_options);
}
/** Test choose_random_entry() with only one of our routers being a
guard node. */
static void
test_choose_random_entry_one_possible_guard(void *arg)
{
const node_t *chosen_entry = NULL;
node_t *the_guard = NULL;
smartlist_t *our_nodelist = NULL;
(void) arg;
MOCK(get_options, mock_get_options);
/* Set one of the nodes to be a guard. */
our_nodelist = nodelist_get_list();
the_guard = smartlist_get(our_nodelist, 4); /* chosen by fair dice roll */
the_guard->is_possible_guard = 1;
/* Check that we get the guard if it passes preferred
* address settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientPreferIPv6ORPort = 0;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
/* Pick an entry. Make sure we pick the node we marked as guard. */
chosen_entry = choose_random_entry(NULL);
tt_ptr_op(chosen_entry, OP_EQ, the_guard);
/* And with the other IP version active */
mocked_options.ClientUseIPv6 = 1;
chosen_entry = choose_random_entry(NULL);
tt_ptr_op(chosen_entry, OP_EQ, the_guard);
/* And with the preference on auto */
mocked_options.ClientPreferIPv6ORPort = -1;
chosen_entry = choose_random_entry(NULL);
tt_ptr_op(chosen_entry, OP_EQ, the_guard);
/* Check that we don't get a guard if it doesn't pass mandatory address
* settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 0;
mocked_options.ClientPreferIPv6ORPort = 0;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
/* If we don't allow IPv4 at all, we don't get a guard*/
tt_assert(!chosen_entry);
/* Check that we get a node if it passes allowed but not preferred
* address settings */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientUseIPv6 = 1;
mocked_options.ClientPreferIPv6ORPort = 1;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
/* We disable the guard check and the preferred address check at the same
* time, so we can't be sure we get the guard */
tt_assert(chosen_entry);
/* Check that we get a node if it is allowed but not preferred when settings
* are auto */
memset(&mocked_options, 0, sizeof(mocked_options));
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientPreferIPv6ORPort = -1;
mocked_options.UseDeprecatedGuardAlgorithm = 1;
chosen_entry = choose_random_entry(NULL);
/* We disable the guard check and the preferred address check at the same
* time, so we can't be sure we get the guard */
tt_assert(chosen_entry);
/* and with IPv6 active */
mocked_options.ClientUseIPv6 = 1;
chosen_entry = choose_random_entry(NULL);
tt_assert(chosen_entry);
done:
memset(&mocked_options, 0, sizeof(mocked_options));
UNMOCK(get_options);
}
/** Helper to conduct tests for populate_live_entry_guards().
This test adds some entry guards to our list, and then tests
populate_live_entry_guards() to mke sure it filters them correctly.
num_needed is the number of guard nodes we support. It's
configurable to make sure we function properly with 1 or 3 guard
nodes configured.
*/
static void
populate_live_entry_guards_test_helper(int num_needed)
{
smartlist_t *our_nodelist = NULL;
smartlist_t *live_entry_guards = smartlist_new();
guard_selection_t *gs = get_guard_selection_info();
const smartlist_t *all_entry_guards =
get_entry_guards_for_guard_selection(gs);
or_options_t *options = get_options_mutable();
int retval;
/* Set NumEntryGuards to the provided number. */
options->NumEntryGuards = num_needed;
tt_int_op(num_needed, OP_EQ, decide_num_guards(options, 0));
/* The global entry guards smartlist should be empty now. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 0);
/* Walk the nodelist and add all nodes as entry guards. */
our_nodelist = nodelist_get_list();
tt_int_op(smartlist_len(our_nodelist), OP_EQ, HELPER_NUMBER_OF_DESCRIPTORS);
SMARTLIST_FOREACH_BEGIN(our_nodelist, const node_t *, node) {
const node_t *node_tmp;
node_tmp = add_an_entry_guard(gs, node, 0, 1, 0, 0);
tt_assert(node_tmp);
} SMARTLIST_FOREACH_END(node);
/* Make sure the nodes were added as entry guards. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ,
HELPER_NUMBER_OF_DESCRIPTORS);
/* Ensure that all the possible entry guards are enough to satisfy us. */
tt_int_op(smartlist_len(all_entry_guards), OP_GE, num_needed);
/* Walk the entry guard list for some sanity checking */
SMARTLIST_FOREACH_BEGIN(all_entry_guards, const entry_guard_t *, entry) {
/* Since we called add_an_entry_guard() with 'for_discovery' being
False, all guards should have made_contact enabled. */
tt_int_op(entry->made_contact, OP_EQ, 1);
} SMARTLIST_FOREACH_END(entry);
/* First, try to get some fast guards. This should fail. */
retval = populate_live_entry_guards(live_entry_guards,
all_entry_guards,
NULL,
NO_DIRINFO, /* Don't care about DIRINFO*/
0, 0,
1); /* We want fast guard! */
tt_int_op(retval, OP_EQ, 0);
tt_int_op(smartlist_len(live_entry_guards), OP_EQ, 0);
/* Now try to get some stable guards. This should fail too. */
retval = populate_live_entry_guards(live_entry_guards,
all_entry_guards,
NULL,
NO_DIRINFO,
0,
1, /* We want stable guard! */
0);
tt_int_op(retval, OP_EQ, 0);
tt_int_op(smartlist_len(live_entry_guards), OP_EQ, 0);
/* Now try to get any guard we can find. This should succeed. */
retval = populate_live_entry_guards(live_entry_guards,
all_entry_guards,
NULL,
NO_DIRINFO,
0, 0, 0); /* No restrictions! */
/* Since we had more than enough guards in 'all_entry_guards', we
should have added 'num_needed' of them to live_entry_guards.
'retval' should be 1 since we now have enough live entry guards
to pick one. */
tt_int_op(retval, OP_EQ, 1);
tt_int_op(smartlist_len(live_entry_guards), OP_EQ, num_needed);
done:
smartlist_free(live_entry_guards);
}
/* Test populate_live_entry_guards() for 1 guard node. */
static void
test_populate_live_entry_guards_1guard(void *arg)
{
(void) arg;
populate_live_entry_guards_test_helper(1);
}
/* Test populate_live_entry_guards() for 3 guard nodes. */
static void
test_populate_live_entry_guards_3guards(void *arg)
{
(void) arg;
populate_live_entry_guards_test_helper(3);
}
/** Append some EntryGuard lines to the Tor state at state.
entry_guard_lines is a smartlist containing 2-tuple
smartlists that carry the key and values of the statefile.
As an example:
entry_guard_lines =
(("EntryGuard", "name 67E72FF33D7D41BF11C569646A0A7B4B188340DF DirCache"),
("EntryGuardDownSince", "2014-06-07 16:02:46 2014-06-07 16:02:46"))
*/
static void
state_insert_entry_guard_helper(or_state_t *state,
smartlist_t *entry_guard_lines)
{
config_line_t **next, *line;
next = &state->EntryGuards;
*next = NULL;
/* Loop over all the state lines in the smartlist */
SMARTLIST_FOREACH_BEGIN(entry_guard_lines, const smartlist_t *,state_lines) {
/* Get key and value for each line */
const char *state_key = smartlist_get(state_lines, 0);
const char *state_value = smartlist_get(state_lines, 1);
*next = line = tor_malloc_zero(sizeof(config_line_t));
line->key = tor_strdup(state_key);
tor_asprintf(&line->value, "%s", state_value);
next = &(line->next);
} SMARTLIST_FOREACH_END(state_lines);
}
/** Free memory occupied by entry_guard_lines. */
static void
state_lines_free(smartlist_t *entry_guard_lines)
{
SMARTLIST_FOREACH_BEGIN(entry_guard_lines, smartlist_t *, state_lines) {
char *state_key = smartlist_get(state_lines, 0);
char *state_value = smartlist_get(state_lines, 1);
tor_free(state_key);
tor_free(state_value);
smartlist_free(state_lines);
} SMARTLIST_FOREACH_END(state_lines);
smartlist_free(entry_guard_lines);
}
/* Tests entry_guards_parse_state(). It creates a fake Tor state with
a saved entry guard and makes sure that Tor can parse it and
creates the right entry node out of it.
*/
static void
test_entry_guards_parse_state_simple(void *arg)
{
or_options_t *options = get_options_mutable();
options->UseDeprecatedGuardAlgorithm = 1;
or_state_t *state = or_state_new();
const smartlist_t *all_entry_guards = get_entry_guards();
smartlist_t *entry_state_lines = smartlist_new();
char *msg = NULL;
int retval;
/* Details of our fake guard node */
const char *nickname = "hagbard";
const char *fpr = "B29D536DD1752D542E1FBB3C9CE4449D51298212";
const char *tor_version = "0.2.5.3-alpha-dev";
const char *added_at = get_yesterday_date_str();
const char *unlisted_since = "2014-06-08 16:16:50";
(void) arg;
/* The global entry guards smartlist should be empty now. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 0);
{ /* Prepare the state entry */
/* Prepare the smartlist to hold the key/value of each line */
smartlist_t *state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuard");
smartlist_add_asprintf(state_line, "%s %s %s", nickname, fpr, "DirCache");
smartlist_add(entry_state_lines, state_line);
state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuardAddedBy");
smartlist_add_asprintf(state_line, "%s %s %s", fpr, tor_version, added_at);
smartlist_add(entry_state_lines, state_line);
state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuardUnlistedSince");
smartlist_add_asprintf(state_line, "%s", unlisted_since);
smartlist_add(entry_state_lines, state_line);
}
/* Inject our lines in the state */
state_insert_entry_guard_helper(state, entry_state_lines);
/* Parse state */
retval = entry_guards_parse_state(state, 1, &msg);
tt_int_op(retval, OP_GE, 0);
/* Test that the guard was registered.
We need to re-get the entry guard list since its pointer was
overwritten in entry_guards_parse_state(). */
all_entry_guards = get_entry_guards();
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 1);
{ /* Test the entry guard structure */
char hex_digest[1024];
char str_time[1024];
const entry_guard_t *e = smartlist_get(all_entry_guards, 0);
tt_str_op(e->nickname, OP_EQ, nickname); /* Verify nickname */
base16_encode(hex_digest, sizeof(hex_digest),
e->identity, DIGEST_LEN);
tt_str_op(hex_digest, OP_EQ, fpr); /* Verify fingerprint */
tt_assert(e->is_dir_cache); /* Verify dirness */
tt_str_op(e->chosen_by_version, OP_EQ, tor_version); /* Verify version */
tt_assert(e->made_contact); /* All saved guards have been contacted */
tt_assert(e->bad_since); /* Verify bad_since timestamp */
format_iso_time(str_time, e->bad_since);
tt_str_op(str_time, OP_EQ, unlisted_since);
/* The rest should be unset */
tt_assert(!e->unreachable_since);
tt_assert(!e->can_retry);
tt_assert(!e->pb.path_bias_noticed);
tt_assert(!e->pb.path_bias_warned);
tt_assert(!e->pb.path_bias_extreme);
tt_assert(!e->pb.path_bias_disabled);
tt_assert(!e->pb.path_bias_use_noticed);
tt_assert(!e->pb.path_bias_use_extreme);
tt_assert(!e->last_attempted);
}
done:
state_lines_free(entry_state_lines);
or_state_free(state);
tor_free(msg);
}
/** Similar to test_entry_guards_parse_state_simple() but aims to test
the PathBias-related details of the entry guard. */
static void
test_entry_guards_parse_state_pathbias(void *arg)
{
or_options_t *options = get_options_mutable();
options->UseDeprecatedGuardAlgorithm = 1;
or_state_t *state = or_state_new();
const smartlist_t *all_entry_guards = get_entry_guards();
char *msg = NULL;
int retval;
smartlist_t *entry_state_lines = smartlist_new();
/* Path bias details of the fake guard */
const double circ_attempts = 9;
const double circ_successes = 8;
const double successful_closed = 4;
const double collapsed = 2;
const double unusable = 0;
const double timeouts = 1;
(void) arg;
/* The global entry guards smartlist should be empty now. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 0);
{ /* Prepare the state entry */
/* Prepare the smartlist to hold the key/value of each line */
smartlist_t *state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuard");
smartlist_add_asprintf(state_line,
"givethanks B29D536DD1752D542E1FBB3C9CE4449D51298212 NoDirCache");
smartlist_add(entry_state_lines, state_line);
state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuardAddedBy");
smartlist_add_asprintf(state_line,
"B29D536DD1752D542E1FBB3C9CE4449D51298212 0.2.5.3-alpha-dev "
"%s", get_yesterday_date_str());
smartlist_add(entry_state_lines, state_line);
state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuardUnlistedSince");
smartlist_add_asprintf(state_line, "2014-06-08 16:16:50");
smartlist_add(entry_state_lines, state_line);
state_line = smartlist_new();
smartlist_add_asprintf(state_line, "EntryGuardPathBias");
smartlist_add_asprintf(state_line, "%f %f %f %f %f %f",
circ_attempts, circ_successes, successful_closed,
collapsed, unusable, timeouts);
smartlist_add(entry_state_lines, state_line);
}
/* Inject our lines in the state */
state_insert_entry_guard_helper(state, entry_state_lines);
/* Parse state */
retval = entry_guards_parse_state(state, 1, &msg);
tt_int_op(retval, OP_GE, 0);
/* Test that the guard was registered */
all_entry_guards = get_entry_guards();
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 1);
{ /* Test the path bias of this guard */
const entry_guard_t *e = smartlist_get(all_entry_guards, 0);
tt_assert(!e->is_dir_cache);
tt_assert(!e->can_retry);
/* XXX tt_double_op doesn't support equality. Cast to int for now. */
tt_int_op((int)e->pb.circ_attempts, OP_EQ, (int)circ_attempts);
tt_int_op((int)e->pb.circ_successes, OP_EQ, (int)circ_successes);
tt_int_op((int)e->pb.successful_circuits_closed, OP_EQ,
(int)successful_closed);
tt_int_op((int)e->pb.timeouts, OP_EQ, (int)timeouts);
tt_int_op((int)e->pb.collapsed_circuits, OP_EQ, (int)collapsed);
tt_int_op((int)e->pb.unusable_circuits, OP_EQ, (int)unusable);
}
done:
or_state_free(state);
state_lines_free(entry_state_lines);
tor_free(msg);
}
/* Simple test of entry_guards_set_from_config() by specifying a
particular EntryNode and making sure it gets picked. */
static void
test_entry_guards_set_from_config(void *arg)
{
or_options_t *options = get_options_mutable();
options->UseDeprecatedGuardAlgorithm = 1;
guard_selection_t *gs = get_guard_selection_info();
const smartlist_t *all_entry_guards =
get_entry_guards_for_guard_selection(gs);
const char *entrynodes_str = "test003r";
const node_t *chosen_entry = NULL;
int retval;
(void) arg;
/* Prase EntryNodes as a routerset. */
options->EntryNodes = routerset_new();
retval = routerset_parse(options->EntryNodes,
entrynodes_str,
"test_entrynodes");
tt_int_op(retval, OP_GE, 0);
/* Read nodes from EntryNodes */
entry_guards_set_from_config(gs, options);
/* Test that only one guard was added. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 1);
/* Make sure it was the guard we specified. */
chosen_entry = choose_random_entry(NULL);
tt_str_op(chosen_entry->ri->nickname, OP_EQ, entrynodes_str);
done:
routerset_free(options->EntryNodes);
}
static void
test_entry_is_time_to_retry(void *arg)
{
entry_guard_t *test_guard;
time_t now;
int retval;
(void)arg;
now = time(NULL);
test_guard = tor_malloc_zero(sizeof(entry_guard_t));
test_guard->last_attempted = now - 10;
test_guard->unreachable_since = now - 1;
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->unreachable_since = now - (6*60*60 - 1);
test_guard->last_attempted = now - (60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->last_attempted = now - (60*60 - 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,0);
test_guard->unreachable_since = now - (6*60*60 + 1);
test_guard->last_attempted = now - (4*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->unreachable_since = now - (3*24*60*60 - 1);
test_guard->last_attempted = now - (4*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->unreachable_since = now - (3*24*60*60 + 1);
test_guard->last_attempted = now - (18*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->unreachable_since = now - (7*24*60*60 - 1);
test_guard->last_attempted = now - (18*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->last_attempted = now - (18*60*60 - 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,0);
test_guard->unreachable_since = now - (7*24*60*60 + 1);
test_guard->last_attempted = now - (36*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
test_guard->unreachable_since = now - (7*24*60*60 + 1);
test_guard->last_attempted = now - (36*60*60 + 1);
retval = entry_is_time_to_retry(test_guard,now);
tt_int_op(retval,OP_EQ,1);
done:
tor_free(test_guard);
}
/** XXX Do some tests that entry_is_live() */
static void
test_entry_is_live(void *arg)
{
smartlist_t *our_nodelist = NULL;
guard_selection_t *gs = get_guard_selection_info();
const smartlist_t *all_entry_guards =
get_entry_guards_for_guard_selection(gs);
const node_t *test_node = NULL;
const entry_guard_t *test_entry = NULL;
const char *msg;
int which_node;
(void) arg;
/* The global entry guards smartlist should be empty now. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ, 0);
/* Walk the nodelist and add all nodes as entry guards. */
our_nodelist = nodelist_get_list();
tt_int_op(smartlist_len(our_nodelist), OP_EQ, HELPER_NUMBER_OF_DESCRIPTORS);
SMARTLIST_FOREACH_BEGIN(our_nodelist, const node_t *, node) {
const node_t *node_tmp;
node_tmp = add_an_entry_guard(gs, node, 0, 1, 0, 0);
tt_assert(node_tmp);
tt_int_op(node->is_stable, OP_EQ, 0);
tt_int_op(node->is_fast, OP_EQ, 0);
} SMARTLIST_FOREACH_END(node);
/* Make sure the nodes were added as entry guards. */
tt_int_op(smartlist_len(all_entry_guards), OP_EQ,
HELPER_NUMBER_OF_DESCRIPTORS);
/* Now get a random test entry that we will use for this unit test. */
which_node = 3; /* (chosen by fair dice roll) */
test_entry = smartlist_get(all_entry_guards, which_node);
/* Let's do some entry_is_live() tests! */
/* Require the node to be stable, but it's not. Should fail.
Also enable 'assume_reachable' because why not. */
test_node = entry_is_live(test_entry,
ENTRY_NEED_UPTIME | ENTRY_ASSUME_REACHABLE,
&msg);
tt_assert(!test_node);
/* Require the node to be fast, but it's not. Should fail. */
test_node = entry_is_live(test_entry,
ENTRY_NEED_CAPACITY | ENTRY_ASSUME_REACHABLE,
&msg);
tt_assert(!test_node);
/* Don't impose any restrictions on the node. Should succeed. */
test_node = entry_is_live(test_entry, 0, &msg);
tt_assert(test_node);
tt_ptr_op(test_node, OP_EQ, node_get_by_id(test_entry->identity));
/* Require descriptor for this node. It has one so it should succeed. */
test_node = entry_is_live(test_entry, ENTRY_NEED_DESCRIPTOR, &msg);
tt_assert(test_node);
tt_ptr_op(test_node, OP_EQ, node_get_by_id(test_entry->identity));
done:
; /* XXX */
}
#define TEST_IPV4_ADDR "123.45.67.89"
#define TEST_IPV6_ADDR "[1234:5678:90ab:cdef::]"
static void
test_node_preferred_orport(void *arg)
{
(void)arg;
tor_addr_t ipv4_addr;
const uint16_t ipv4_port = 4444;
tor_addr_t ipv6_addr;
const uint16_t ipv6_port = 6666;
routerinfo_t node_ri;
node_t node;
tor_addr_port_t ap;
/* Setup options */
memset(&mocked_options, 0, sizeof(mocked_options));
/* We don't test ClientPreferIPv6ORPort here, because it's used in
* nodelist_set_consensus to setup node.ipv6_preferred, which we set
* directly. */
MOCK(get_options, mock_get_options);
/* Setup IP addresses */
tor_addr_parse(&ipv4_addr, TEST_IPV4_ADDR);
tor_addr_parse(&ipv6_addr, TEST_IPV6_ADDR);
/* Setup node_ri */
memset(&node_ri, 0, sizeof(node_ri));
node_ri.addr = tor_addr_to_ipv4h(&ipv4_addr);
node_ri.or_port = ipv4_port;
tor_addr_copy(&node_ri.ipv6_addr, &ipv6_addr);
node_ri.ipv6_orport = ipv6_port;
/* Setup node */
memset(&node, 0, sizeof(node));
node.ri = &node_ri;
/* Check the preferred address is IPv4 if we're only using IPv4, regardless
* of whether we prefer it or not */
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientUseIPv6 = 0;
node.ipv6_preferred = 0;
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
tt_assert(ap.port == ipv4_port);
node.ipv6_preferred = 1;
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
tt_assert(ap.port == ipv4_port);
/* Check the preferred address is IPv4 if we're using IPv4 and IPv6, but
* don't prefer the IPv6 address */
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientUseIPv6 = 1;
node.ipv6_preferred = 0;
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr));
tt_assert(ap.port == ipv4_port);
/* Check the preferred address is IPv6 if we prefer it and
* ClientUseIPv6 is 1, regardless of ClientUseIPv4 */
mocked_options.ClientUseIPv4 = 1;
mocked_options.ClientUseIPv6 = 1;
node.ipv6_preferred = 1;
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
tt_assert(ap.port == ipv6_port);
mocked_options.ClientUseIPv4 = 0;
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
tt_assert(ap.port == ipv6_port);
/* Check the preferred address is IPv6 if we don't prefer it, but
* ClientUseIPv4 is 0 */
mocked_options.ClientUseIPv4 = 0;
mocked_options.ClientUseIPv6 = 1;
node.ipv6_preferred = fascist_firewall_prefer_ipv6_orport(&mocked_options);
node_get_pref_orport(&node, &ap);
tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr));
tt_assert(ap.port == ipv6_port);
done:
UNMOCK(get_options);
}
static void
test_entry_guard_describe(void *arg)
{
(void)arg;
entry_guard_t g;
memset(&g, 0, sizeof(g));
strlcpy(g.nickname, "okefenokee", sizeof(g.nickname));
memcpy(g.identity, "theforestprimeval---", DIGEST_LEN);
tt_str_op(entry_guard_describe(&g), OP_EQ,
"okefenokee ($746865666F726573747072696D6576616C2D2D2D)");
done:
;
}
static void
test_entry_guard_randomize_time(void *arg)
{
const time_t now = 1479153573;
const int delay = 86400;
const int N = 1000;
(void)arg;
time_t t;
int i;
for (i = 0; i < N; ++i) {
t = randomize_time(now, delay);
tt_int_op(t, OP_LE, now);
tt_int_op(t, OP_GE, now-delay);
}
/* now try the corner cases */
for (i = 0; i < N; ++i) {
t = randomize_time(100, delay);
tt_int_op(t, OP_GE, 1);
tt_int_op(t, OP_LE, 100);
t = randomize_time(0, delay);
tt_int_op(t, OP_EQ, 1);
}
done:
;
}
static void
test_entry_guard_encode_for_state_minimal(void *arg)
{
(void) arg;
entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t));
eg->selection_name = tor_strdup("wubwub");
memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN);
eg->sampled_on_date = 1479081600;
eg->confirmed_idx = -1;
char *s = NULL;
s = entry_guard_encode_for_state(eg);
tt_str_op(s, OP_EQ,
"in=wubwub "
"rsa_id=706C75727079666C75727079736C75727079646F "
"sampled_on=2016-11-14T00:00:00 "
"listed=0");
done:
entry_guard_free(eg);
tor_free(s);
}
static void
test_entry_guard_encode_for_state_maximal(void *arg)
{
(void) arg;
entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t));
strlcpy(eg->nickname, "Fred", sizeof(eg->nickname));
eg->selection_name = tor_strdup("default");
memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN);
eg->sampled_on_date = 1479081600;
eg->sampled_by_version = tor_strdup("1.2.3");
eg->unlisted_since_date = 1479081645;
eg->currently_listed = 1;
eg->confirmed_on_date = 1479081690;
eg->confirmed_idx = 333;
eg->extra_state_fields = tor_strdup("and the green grass grew all around");
char *s = NULL;
s = entry_guard_encode_for_state(eg);
tt_str_op(s, OP_EQ,
"in=default "
"rsa_id=706C75727079666C75727079736C75727079646F "
"nickname=Fred "
"sampled_on=2016-11-14T00:00:00 "
"sampled_by=1.2.3 "
"unlisted_since=2016-11-14T00:00:45 "
"listed=1 "
"confirmed_on=2016-11-14T00:01:30 "
"confirmed_idx=333 "
"and the green grass grew all around");
done:
entry_guard_free(eg);
tor_free(s);
}
static void
test_entry_guard_parse_from_state_minimal(void *arg)
{
(void)arg;
char *mem_op_hex_tmp = NULL;
entry_guard_t *eg = NULL;
time_t t = approx_time();
eg = entry_guard_parse_from_state(
"in=default_plus "
"rsa_id=596f75206d6179206e656564206120686f626279");
tt_assert(eg);
tt_str_op(eg->selection_name, OP_EQ, "default_plus");
test_mem_op_hex(eg->identity, OP_EQ,
"596f75206d6179206e656564206120686f626279");
tt_str_op(eg->nickname, OP_EQ, "$596F75206D6179206E656564206120686F626279");
tt_i64_op(eg->sampled_on_date, OP_GE, t);
tt_i64_op(eg->sampled_on_date, OP_LE, t+86400);
tt_i64_op(eg->unlisted_since_date, OP_EQ, 0);
tt_ptr_op(eg->sampled_by_version, OP_EQ, NULL);
tt_int_op(eg->currently_listed, OP_EQ, 0);
tt_i64_op(eg->confirmed_on_date, OP_EQ, 0);
tt_int_op(eg->confirmed_idx, OP_EQ, -1);
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
done:
entry_guard_free(eg);
tor_free(mem_op_hex_tmp);
}
static void
test_entry_guard_parse_from_state_maximal(void *arg)
{
(void)arg;
char *mem_op_hex_tmp = NULL;
entry_guard_t *eg = NULL;
eg = entry_guard_parse_from_state(
"in=fred "
"rsa_id=706C75727079666C75727079736C75727079646F "
"nickname=Fred "
"sampled_on=2016-11-14T00:00:00 "
"sampled_by=1.2.3 "
"unlisted_since=2016-11-14T00:00:45 "
"listed=1 "
"confirmed_on=2016-11-14T00:01:30 "
"confirmed_idx=333 "
"and the green grass grew all around "
"rsa_id=all,around");
tt_assert(eg);
test_mem_op_hex(eg->identity, OP_EQ,
"706C75727079666C75727079736C75727079646F");
tt_str_op(eg->nickname, OP_EQ, "Fred");
tt_i64_op(eg->sampled_on_date, OP_EQ, 1479081600);
tt_i64_op(eg->unlisted_since_date, OP_EQ, 1479081645);
tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3");
tt_int_op(eg->currently_listed, OP_EQ, 1);
tt_i64_op(eg->confirmed_on_date, OP_EQ, 1479081690);
tt_int_op(eg->confirmed_idx, OP_EQ, 333);
tt_str_op(eg->extra_state_fields, OP_EQ,
"and the green grass grew all around rsa_id=all,around");
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
done:
entry_guard_free(eg);
tor_free(mem_op_hex_tmp);
}
static void
test_entry_guard_parse_from_state_failure(void *arg)
{
(void)arg;
entry_guard_t *eg = NULL;
/* no selection */
eg = entry_guard_parse_from_state(
"rsa_id=596f75206d6179206e656564206120686f626270");
tt_assert(! eg);
/* no RSA ID. */
eg = entry_guard_parse_from_state("in=default nickname=Fred");
tt_assert(! eg);
/* Bad RSA ID: bad character. */
eg = entry_guard_parse_from_state(
"in=default "
"rsa_id=596f75206d6179206e656564206120686f62627q");
tt_assert(! eg);
/* Bad RSA ID: too long.*/
eg = entry_guard_parse_from_state(
"in=default "
"rsa_id=596f75206d6179206e656564206120686f6262703");
tt_assert(! eg);
/* Bad RSA ID: too short.*/
eg = entry_guard_parse_from_state(
"in=default "
"rsa_id=596f75206d6179206e65656420612");
tt_assert(! eg);
done:
entry_guard_free(eg);
}
static void
test_entry_guard_parse_from_state_partial_failure(void *arg)
{
(void)arg;
char *mem_op_hex_tmp = NULL;
entry_guard_t *eg = NULL;
time_t t = approx_time();
eg = entry_guard_parse_from_state(
"in=default "
"rsa_id=706C75727079666C75727079736C75727079646F "
"nickname=FredIsANodeWithAStrangeNicknameThatIsTooLong "
"sampled_on=2016-11-14T00:00:99 "
"sampled_by=1.2.3 stuff in the middle "
"unlisted_since=2016-xx-14T00:00:45 "
"listed=0 "
"confirmed_on=2016-11-14T00:01:30zz "
"confirmed_idx=idx "
"and the green grass grew all around "
"rsa_id=all,around");
tt_assert(eg);
test_mem_op_hex(eg->identity, OP_EQ,
"706C75727079666C75727079736C75727079646F");
tt_str_op(eg->nickname, OP_EQ, "FredIsANodeWithAStrangeNicknameThatIsTooL");
tt_i64_op(eg->sampled_on_date, OP_EQ, t);
tt_i64_op(eg->unlisted_since_date, OP_EQ, 0);
tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3");
tt_int_op(eg->currently_listed, OP_EQ, 0);
tt_i64_op(eg->confirmed_on_date, OP_EQ, 0);
tt_int_op(eg->confirmed_idx, OP_EQ, -1);
tt_str_op(eg->extra_state_fields, OP_EQ,
"stuff in the middle and the green grass grew all around "
"rsa_id=all,around");
tt_int_op(eg->last_tried_to_connect, OP_EQ, 0);
tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
done:
entry_guard_free(eg);
tor_free(mem_op_hex_tmp);
}
static void
test_entry_guard_get_guard_selection_by_name(void *arg)
{
(void)arg;
guard_selection_t *gs1, *gs2, *gs3;
gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0);
tt_assert(gs1 == NULL);
gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1);
tt_assert(gs1 != NULL);
gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1);
tt_assert(gs2 == gs1);
gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0);
tt_assert(gs2 == gs1);
gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0);
tt_assert(gs2 == NULL);
gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 1);
tt_assert(gs2 != NULL);
tt_assert(gs2 != gs1);
gs3 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0);
tt_assert(gs3 == gs2);
gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0);
tt_assert(gs3 == NULL);
gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 1);
tt_assert(gs3 != NULL);
tt_assert(gs3 != gs2);
tt_assert(gs3 != gs1);
// XXXX prop271 re-enable this. tt_assert(gs3 == get_guard_selection_info());
#if 0
or_options_t *options = get_options_mutable();
options->UseDeprecatedGuardAlgorithm = 1;
gs4 = get_guard_selection_info();
tt_assert(gs4 != gs3);
tt_assert(gs4 == get_guard_selection_by_name("legacy", 1));
options->UseDeprecatedGuardAlgorithm = 0;
tt_assert(gs3 == get_guard_selection_info());
#endif
done:
entry_guards_free_all();
}
static void
test_entry_guard_add_single_guard(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
/* 1: Add a single guard to the sample. */
node_t *n1 = smartlist_get(big_fake_net_nodes, 0);
time_t now = approx_time();
tt_assert(n1->is_possible_guard == 1);
entry_guard_t *g1 = entry_guard_add_to_sample(gs, n1);
tt_assert(g1);
/* Make sure its fields look right. */
tt_mem_op(n1->identity, OP_EQ, g1->identity, DIGEST_LEN);
tt_i64_op(g1->sampled_on_date, OP_GE, now - 12*86400);
tt_i64_op(g1->sampled_on_date, OP_LE, now);
tt_str_op(g1->sampled_by_version, OP_EQ, VERSION);
tt_assert(g1->currently_listed == 1);
tt_i64_op(g1->confirmed_on_date, OP_EQ, 0);
tt_int_op(g1->confirmed_idx, OP_EQ, -1);
tt_int_op(g1->last_tried_to_connect, OP_EQ, 0);
tt_uint_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
tt_i64_op(g1->failing_since, OP_EQ, 0);
tt_assert(g1->is_filtered_guard == 1);
tt_assert(g1->is_usable_filtered_guard == 1);
tt_assert(g1->is_primary == 0);
tt_assert(g1->extra_state_fields == NULL);
/* Make sure it got added. */
tt_int_op(1, OP_EQ, smartlist_len(gs->sampled_entry_guards));
tt_ptr_op(g1, OP_EQ, smartlist_get(gs->sampled_entry_guards, 0));
tt_ptr_op(g1, OP_EQ, get_sampled_guard_with_id(gs, (uint8_t*)n1->identity));
const uint8_t bad_id[20] = {0};
tt_ptr_op(NULL, OP_EQ, get_sampled_guard_with_id(gs, bad_id));
done:
guard_selection_free(gs);
}
static void
test_entry_guard_node_filter(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
bridge_line_t *bl = NULL;
/* Initialize a bunch of node objects that are all guards. */
const int NUM = 7;
node_t *n[NUM];
entry_guard_t *g[NUM];
int i;
for (i=0; i < NUM; ++i) {
n[i] = smartlist_get(big_fake_net_nodes, i*2); // even ones are guards.
g[i] = entry_guard_add_to_sample(gs, n[i]);
// everything starts out filtered-in
tt_assert(g[i]->is_filtered_guard == 1);
tt_assert(g[i]->is_usable_filtered_guard == 1);
}
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, NUM);
/* Make sure refiltering doesn't hurt */
entry_guards_update_filtered_sets(gs);
for (i = 0; i < NUM; ++i) {
tt_assert(g[i]->is_filtered_guard == 1);
tt_assert(g[i]->is_usable_filtered_guard == 1);
}
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, NUM);
/* Now start doing things to make the guards get filtered out, 1 by 1. */
/* 0: Not listed. */
g[0]->currently_listed = 0;
/* 1: path bias says this guard is maybe eeeevil. */
g[1]->pb.path_bias_disabled = 1;
/* 2: Unreachable address. */
n[2]->rs->addr = 0;
/* 3: ExcludeNodes */
n[3]->rs->addr = 0x90902020;
routerset_free(get_options_mutable()->ExcludeNodes);
get_options_mutable()->ExcludeNodes = routerset_new();
routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", "");
/* 4: Bridge. */
sweep_bridge_list();
bl = tor_malloc_zero(sizeof(bridge_line_t));
tor_addr_from_ipv4h(&bl->addr, n[4]->rs->addr);
bl->port = n[4]->rs->or_port;
memcpy(bl->digest, n[4]->identity, 20);
bridge_add_from_config(bl);
bl = NULL; // prevent free.
/* 5: Unreachable. This stays in the filter, but isn't in usable-filtered */
g[5]->last_tried_to_connect = approx_time(); // prevent retry.
g[5]->is_reachable = GUARD_REACHABLE_NO;
/* 6: no change. */
/* Now refilter and inspect. */
entry_guards_update_filtered_sets(gs);
for (i = 0; i < NUM; ++i) {
tt_assert(g[i]->is_filtered_guard == (i == 5 || i == 6));
tt_assert(g[i]->is_usable_filtered_guard == (i == 6));
}
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, 1);
/* Now make sure we have no live consensus, and no nodes. Nothing should
* pass the filter any more. */
tor_free(dummy_consensus);
dummy_consensus = NULL;
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, node, {
memset(node->identity, 0xff, 20);
});
entry_guards_update_filtered_sets(gs);
for (i = 0; i < NUM; ++i) {
tt_assert(g[i]->is_filtered_guard == 0);
tt_assert(g[i]->is_usable_filtered_guard == 0);
}
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, 0);
done:
guard_selection_free(gs);
tor_free(bl);
}
static void
test_entry_guard_expand_sample(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
digestmap_t *node_by_id = digestmap_new();
entry_guard_t *guard = entry_guards_expand_sample(gs);
tt_assert(guard); // the last guard returned.
// Every sampled guard here should be filtered and reachable for now.
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ,
num_reachable_filtered_guards(gs));
/* Make sure we got the right number. */
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
num_reachable_filtered_guards(gs));
// Make sure everything we got was from our fake node list, and everything
// was unique.
SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, g) {
const node_t *n = bfn_mock_node_get_by_id(g->identity);
tt_assert(n);
tt_ptr_op(NULL, OP_EQ, digestmap_get(node_by_id, g->identity));
digestmap_set(node_by_id, g->identity, (void*) n);
int idx = smartlist_pos(big_fake_net_nodes, n);
// The even ones are the guards; make sure we got guards.
tt_int_op(idx & 1, OP_EQ, 0);
} SMARTLIST_FOREACH_END(g);
// Nothing became unusable/unfiltered, so a subsequent expand should
// make no changes.
guard = entry_guards_expand_sample(gs);
tt_assert(! guard); // no guard was added.
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
num_reachable_filtered_guards(gs));
// Make a few guards unreachable.
guard = smartlist_get(gs->sampled_entry_guards, 0);
guard->is_usable_filtered_guard = 0;
guard = smartlist_get(gs->sampled_entry_guards, 1);
guard->is_usable_filtered_guard = 0;
guard = smartlist_get(gs->sampled_entry_guards, 2);
guard->is_usable_filtered_guard = 0;
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE - 3, OP_EQ,
num_reachable_filtered_guards(gs));
// This time, expanding the sample will add some more guards.
guard = entry_guards_expand_sample(gs);
tt_assert(guard); // no guard was added.
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
num_reachable_filtered_guards(gs));
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ,
num_reachable_filtered_guards(gs)+3);
// Still idempotent.
guard = entry_guards_expand_sample(gs);
tt_assert(! guard); // no guard was added.
tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ,
num_reachable_filtered_guards(gs));
// Now, do a nasty trick: tell the filter to exclude 31/32 of the guards.
// This will cause the sample size to get reeeeally huge, while the
// filtered sample size grows only slowly.
routerset_free(get_options_mutable()->ExcludeNodes);
get_options_mutable()->ExcludeNodes = routerset_new();
routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", "");
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
if (n_sl_idx % 64 != 0) {
n->rs->addr = 0x90903030;
}
});
entry_guards_update_filtered_sets(gs);
// Surely (p ~ 1-2**-60), one of our guards has been excluded.
tt_int_op(num_reachable_filtered_guards(gs), OP_LT,
DFLT_MIN_FILTERED_SAMPLE_SIZE);
// Try to regenerate the guards.
guard = entry_guards_expand_sample(gs);
tt_assert(guard); // no guard was added.
/* this time, it's possible that we didn't add enough sampled guards. */
tt_int_op(num_reachable_filtered_guards(gs), OP_LE,
DFLT_MIN_FILTERED_SAMPLE_SIZE);
/* but we definitely didn't exceed the sample maximum. */
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_LE,
(int)((271 / 2) * .3));
done:
guard_selection_free(gs);
digestmap_free(node_by_id, NULL);
}
static void
test_entry_guard_expand_sample_small_net(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
/* Fun corner case: not enough guards to make up our whole sample size. */
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, {
if (n_sl_idx >= 40) {
tor_free(n->rs);
tor_free(n->md);
tor_free(n);
SMARTLIST_DEL_CURRENT(big_fake_net_nodes, n);
} else {
n->rs->addr = 0; // make the filter reject this.
}
});
entry_guard_t *guard = entry_guards_expand_sample(gs);
tt_assert(guard); // the last guard returned -- some guard was added.
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_GT, 0);
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_LT, 10);
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, 0);
done:
guard_selection_free(gs);
}
static void
test_entry_guard_update_from_consensus_status(void *arg)
{
/* Here we're going to have some nodes become un-guardy, and say we got a
* new consensus. This should cause those nodes to get detected as
* unreachable. */
(void)arg;
int i;
time_t start = approx_time();
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
networkstatus_t *ns_tmp = NULL;
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
MOCK(randomize_time, mock_randomize_time_no_randomization);
/* First, sample some guards. */
entry_guards_expand_sample(gs);
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
int n_filtered_pre = num_reachable_filtered_guards(gs);
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
tt_i64_op(n_sampled_pre, OP_GT, 10);
/* At this point, it should be a no-op to do this: */
sampled_guards_update_from_consensus(gs);
/* Now let's make some of our guards become unlisted. The easiest way to
* do that would be to take away their guard flag. */
for (i = 0; i < 5; ++i) {
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
n->is_possible_guard = 0;
}
update_approx_time(start + 30);
{
/* try this with no live networkstatus. Nothing should happen! */
ns_tmp = dummy_consensus;
dummy_consensus = NULL;
sampled_guards_update_from_consensus(gs);
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
tt_i64_op(num_reachable_filtered_guards(gs), OP_EQ, n_filtered_pre);
/* put the networkstatus back. */
dummy_consensus = ns_tmp;
ns_tmp = NULL;
}
/* Now those guards should become unlisted, and drop off the filter, but
* stay in the sample. */
update_approx_time(start + 60);
sampled_guards_update_from_consensus(gs);
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
tt_i64_op(num_reachable_filtered_guards(gs), OP_EQ, n_filtered_pre - 5);
for (i = 0; i < 5; ++i) {
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
tt_assert(! g->currently_listed);
tt_i64_op(g->unlisted_since_date, OP_EQ, start+60);
}
for (i = 5; i < n_sampled_pre; ++i) {
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
tt_assert(g->currently_listed);
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
}
/* Now re-list one, and remove one completely. */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
n->is_possible_guard = 1;
}
{
/* try removing the node, to make sure we don't crash on an absent node
*/
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
smartlist_remove(big_fake_net_nodes, n);
tor_free(n->rs);
tor_free(n->md);
tor_free(n);
}
update_approx_time(start + 300);
sampled_guards_update_from_consensus(gs);
/* guards 1..5 are now unlisted; 0,6,7.. are listed. */
tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
for (i = 1; i < 6; ++i) {
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
tt_assert(! g->currently_listed);
if (i == 5)
tt_i64_op(g->unlisted_since_date, OP_EQ, start+300);
else
tt_i64_op(g->unlisted_since_date, OP_EQ, start+60);
}
for (i = 0; i < n_sampled_pre; i = (!i) ? 6 : i+1) { /* 0,6,7,8, ... */
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
tt_assert(g->currently_listed);
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
}
done:
tor_free(ns_tmp); /* in case we couldn't put it back */
guard_selection_free(gs);
UNMOCK(randomize_time);
}
static void
test_entry_guard_update_from_consensus_repair(void *arg)
{
/* Here we'll make sure that our code to repair the unlisted-since
* times is correct. */
(void)arg;
int i;
time_t start = approx_time();
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
MOCK(randomize_time, mock_randomize_time_no_randomization);
/* First, sample some guards. */
entry_guards_expand_sample(gs);
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
int n_filtered_pre = num_reachable_filtered_guards(gs);
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
tt_i64_op(n_sampled_pre, OP_GT, 10);
/* Now corrupt the list a bit. Call some unlisted-since-never, and some
* listed-and-unlisted-since-a-time. */
update_approx_time(start + 300);
for (i = 0; i < 3; ++i) {
/* these will get a date. */
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
n->is_possible_guard = 0;
g->currently_listed = 0;
}
for (i = 3; i < 6; ++i) {
/* these will become listed. */
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
g->unlisted_since_date = start+100;
}
setup_full_capture_of_logs(LOG_WARN);
sampled_guards_update_from_consensus(gs);
expect_log_msg_containing(
"was listed, but with unlisted_since_date set");
expect_log_msg_containing(
"was unlisted, but with unlisted_since_date unset");
teardown_capture_of_logs();
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre);
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, n_filtered_pre - 3);
for (i = 3; i < n_sampled_pre; ++i) {
/* these will become listed. */
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i);
if (i < 3) {
tt_assert(! g->currently_listed);
tt_i64_op(g->unlisted_since_date, OP_EQ, start+300);
} else {
tt_assert(g->currently_listed);
tt_i64_op(g->unlisted_since_date, OP_EQ, 0);
}
}
done:
teardown_capture_of_logs();
guard_selection_free(gs);
UNMOCK(randomize_time);
}
static void
test_entry_guard_update_from_consensus_remove(void *arg)
{
/* Now let's check the logic responsible for removing guards from the
* sample entirely. */
(void)arg;
//int i;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
smartlist_t *keep_ids = smartlist_new();
smartlist_t *remove_ids = smartlist_new();
/* Don't randomly backdate stuff; it will make correctness harder to check.*/
MOCK(randomize_time, mock_randomize_time_no_randomization);
/* First, sample some guards. */
entry_guards_expand_sample(gs);
int n_sampled_pre = smartlist_len(gs->sampled_entry_guards);
int n_filtered_pre = num_reachable_filtered_guards(gs);
tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre);
tt_i64_op(n_sampled_pre, OP_GT, 10);
const time_t one_day_ago = approx_time() - 1*24*60*60;
const time_t one_year_ago = approx_time() - 365*24*60*60;
const time_t two_years_ago = approx_time() - 2*365*24*60*60;
/* 0: unlisted for a day. (keep this) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
n->is_possible_guard = 0;
g->currently_listed = 0;
g->unlisted_since_date = one_day_ago;
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
}
/* 1: unlisted for a year. (remove this) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 1);
node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity);
n->is_possible_guard = 0;
g->currently_listed = 0;
g->unlisted_since_date = one_year_ago;
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
}
/* 2: added a day ago, never confirmed. (keep this) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 2);
g->sampled_on_date = one_day_ago;
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
}
/* 3: added a year ago, never confirmed. (remove this) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 3);
g->sampled_on_date = one_year_ago;
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
}
/* 4: added two year ago, confirmed yesterday, primary. (keep this.) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 4);
g->sampled_on_date = one_year_ago;
g->confirmed_on_date = one_day_ago;
g->confirmed_idx = 0;
g->is_primary = 1;
smartlist_add(gs->confirmed_entry_guards, g);
smartlist_add(gs->primary_entry_guards, g);
smartlist_add(keep_ids, tor_memdup(g->identity, 20));
}
/* 5: added two years ago, confirmed a year ago, primary. (remove this) */
{
entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5);
g->sampled_on_date = two_years_ago;
g->confirmed_on_date = one_year_ago;
g->confirmed_idx = 1;
g->is_primary = 1;
smartlist_add(gs->confirmed_entry_guards, g);
smartlist_add(gs->primary_entry_guards, g);
smartlist_add(remove_ids, tor_memdup(g->identity, 20));
}
sampled_guards_update_from_consensus(gs);
/* Did we remove the right ones? */
SMARTLIST_FOREACH(keep_ids, uint8_t *, id, {
tt_assert(get_sampled_guard_with_id(gs, id) != NULL);
});
SMARTLIST_FOREACH(remove_ids, uint8_t *, id, {
tt_want(get_sampled_guard_with_id(gs, id) == NULL);
});
/* Did we remove the right number? */
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre - 3);
done:
guard_selection_free(gs);
UNMOCK(randomize_time);
SMARTLIST_FOREACH(keep_ids, char *, cp, tor_free(cp));
SMARTLIST_FOREACH(remove_ids, char *, cp, tor_free(cp));
smartlist_free(keep_ids);
smartlist_free(remove_ids);
}
static void
test_entry_guard_confirming_guards(void *arg)
{
(void)arg;
/* Now let's check the logic responsible for manipulating the list
* of confirmed guards */
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
MOCK(randomize_time, mock_randomize_time_no_randomization);
/* Create the sample. */
entry_guards_expand_sample(gs);
/* Confirm a few guards. */
time_t start = approx_time();
entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0);
entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1);
entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 8);
make_guard_confirmed(gs, g2);
update_approx_time(start + 10);
make_guard_confirmed(gs, g1);
make_guard_confirmed(gs, g3);
/* Were the correct dates and indices fed in? */
tt_int_op(g1->confirmed_idx, OP_EQ, 1);
tt_int_op(g2->confirmed_idx, OP_EQ, 0);
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
tt_i64_op(g1->confirmed_on_date, OP_EQ, start+10);
tt_i64_op(g2->confirmed_on_date, OP_EQ, start);
tt_i64_op(g3->confirmed_on_date, OP_EQ, start+10);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3);
/* Now make sure we can regenerate the confirmed_entry_guards list. */
smartlist_clear(gs->confirmed_entry_guards);
g2->confirmed_idx = 0;
g1->confirmed_idx = 10;
g3->confirmed_idx = 100;
entry_guards_update_confirmed(gs);
tt_int_op(g1->confirmed_idx, OP_EQ, 1);
tt_int_op(g2->confirmed_idx, OP_EQ, 0);
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1);
tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3);
/* Now make sure we can regenerate the confirmed_entry_guards list if
* the indices are messed up. */
g1->confirmed_idx = g2->confirmed_idx = g3->confirmed_idx = 999;
smartlist_clear(gs->confirmed_entry_guards);
entry_guards_update_confirmed(gs);
tt_int_op(g1->confirmed_idx, OP_GE, 0);
tt_int_op(g2->confirmed_idx, OP_GE, 0);
tt_int_op(g3->confirmed_idx, OP_GE, 0);
tt_int_op(g1->confirmed_idx, OP_LE, 2);
tt_int_op(g2->confirmed_idx, OP_LE, 2);
tt_int_op(g3->confirmed_idx, OP_LE, 2);
g1 = smartlist_get(gs->confirmed_entry_guards, 0);
g2 = smartlist_get(gs->confirmed_entry_guards, 1);
g3 = smartlist_get(gs->confirmed_entry_guards, 2);
tt_int_op(g1->confirmed_idx, OP_EQ, 0);
tt_int_op(g2->confirmed_idx, OP_EQ, 1);
tt_int_op(g3->confirmed_idx, OP_EQ, 2);
tt_assert(g1 != g2);
tt_assert(g1 != g3);
tt_assert(g2 != g3);
done:
UNMOCK(randomize_time);
guard_selection_free(gs);
}
static void
test_entry_guard_sample_reachable_filtered(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
entry_guards_expand_sample(gs);
const int N = 10000;
bitarray_t *selected = NULL;
int i, j;
/* We've got a sampled list now; let's make one non-usable-filtered; some
* confirmed, some primary, some pending.
*/
int n_guards = smartlist_len(gs->sampled_entry_guards);
tt_int_op(n_guards, OP_GT, 10);
entry_guard_t *g;
g = smartlist_get(gs->sampled_entry_guards, 0);
g->is_pending = 1;
g = smartlist_get(gs->sampled_entry_guards, 1);
make_guard_confirmed(gs, g);
g = smartlist_get(gs->sampled_entry_guards, 2);
g->is_primary = 1;
g = smartlist_get(gs->sampled_entry_guards, 3);
g->pb.path_bias_disabled = 1;
entry_guards_update_filtered_sets(gs);
gs->primary_guards_up_to_date = 1;
tt_int_op(num_reachable_filtered_guards(gs), OP_EQ, n_guards - 1);
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards);
// +1 since the one we made disabled will make another one get added.
++n_guards;
/* Try a bunch of selections. */
const struct {
int flag; int idx;
} tests[] = {
{ 0, -1 },
{ SAMPLE_EXCLUDE_CONFIRMED, 1 },
{ SAMPLE_EXCLUDE_PRIMARY|SAMPLE_NO_UPDATE_PRIMARY, 2 },
{ SAMPLE_EXCLUDE_PENDING, 0 },
{ -1, -1},
};
for (j = 0; tests[j].flag >= 0; ++j) {
selected = bitarray_init_zero(n_guards);
const int excluded_flags = tests[j].flag;
const int excluded_idx = tests[j].idx;
for (i = 0; i < N; ++i) {
g = sample_reachable_filtered_entry_guards(gs, excluded_flags);
tor_assert(g);
int pos = smartlist_pos(gs->sampled_entry_guards, g);
tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards);
tt_int_op(pos, OP_GE, 0);
tt_int_op(pos, OP_LT, n_guards);
bitarray_set(selected, pos);
}
for (i = 0; i < n_guards; ++i) {
const int should_be_set = (i != excluded_idx &&
i != 3); // filtered out.
tt_int_op(!!bitarray_is_set(selected, i), OP_EQ, should_be_set);
}
bitarray_free(selected);
selected = NULL;
}
done:
guard_selection_free(gs);
bitarray_free(selected);
}
static void
test_entry_guard_sample_reachable_filtered_empty(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
/* What if we try to sample from a set of 0? */
SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n,
n->is_possible_guard = 0);
entry_guard_t *g = sample_reachable_filtered_entry_guards(gs, 0);
tt_ptr_op(g, OP_EQ, NULL);
done:
guard_selection_free(gs);
}
static void
test_entry_guard_retry_unreachable(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
entry_guards_expand_sample(gs);
/* Let's say that we have two guards, and they're down.
*/
time_t start = approx_time();;
entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0);
entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1);
entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 2);
g1->is_reachable = GUARD_REACHABLE_NO;
g2->is_reachable = GUARD_REACHABLE_NO;
g1->is_primary = 1;
g1->failing_since = g2->failing_since = start;
g1->last_tried_to_connect = g2->last_tried_to_connect = start;
/* Wait 5 minutes. Nothing will get retried. */
update_approx_time(start + 5 * 60);
entry_guard_consider_retry(g1);
entry_guard_consider_retry(g2);
entry_guard_consider_retry(g3); // just to make sure this doesn't crash.
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
tt_int_op(g3->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
/* After 30 min, the primary one gets retried */
update_approx_time(start + 35 * 60);
entry_guard_consider_retry(g1);
entry_guard_consider_retry(g2);
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
g1->is_reachable = GUARD_REACHABLE_NO;
g1->last_tried_to_connect = start + 35*60;
/* After 1 hour, we'll retry the nonprimary one. */
update_approx_time(start + 61 * 60);
entry_guard_consider_retry(g1);
entry_guard_consider_retry(g2);
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
g2->is_reachable = GUARD_REACHABLE_NO;
g2->last_tried_to_connect = start + 61*60;
/* And then the primary one again. */
update_approx_time(start + 66 * 60);
entry_guard_consider_retry(g1);
entry_guard_consider_retry(g2);
tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
done:
guard_selection_free(gs);
}
static void
test_entry_guard_manage_primary(void *arg)
{
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
smartlist_t *prev_guards = smartlist_new();
/* If no guards are confirmed, we should pick a few reachable guards and
* call them all primary. But not confirmed.*/
entry_guards_update_primary(gs);
int n_primary = smartlist_len(gs->primary_entry_guards);
tt_int_op(n_primary, OP_GE, 1);
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
tt_assert(g->is_primary);
tt_assert(g->confirmed_idx == -1);
});
/* Calling it a second time should leave the guards unchanged. */
smartlist_add_all(prev_guards, gs->primary_entry_guards);
entry_guards_update_primary(gs);
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx));
});
/* If we have one confirmed guard, that guards becomes the first primary
* guard, and the other primary guards get kept. */
/* find a non-primary guard... */
entry_guard_t *confirmed = NULL;
SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, g, {
if (! g->is_primary) {
confirmed = g;
break;
}
});
tt_assert(confirmed);
/* make it confirmed. */
make_guard_confirmed(gs, confirmed);
/* update the list... */
smartlist_clear(prev_guards);
smartlist_add_all(prev_guards, gs->primary_entry_guards);
entry_guards_update_primary(gs);
/* and see what's primary now! */
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
tt_ptr_op(smartlist_get(gs->primary_entry_guards, 0), OP_EQ, confirmed);
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
tt_assert(g->is_primary);
if (g_sl_idx == 0)
continue;
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx - 1));
});
{
entry_guard_t *prev_last_guard = smartlist_get(prev_guards, n_primary-1);
tt_assert(! prev_last_guard->is_primary);
}
/* Calling it a fourth time should leave the guards unchanged. */
smartlist_clear(prev_guards);
smartlist_add_all(prev_guards, gs->primary_entry_guards);
entry_guards_update_primary(gs);
tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary);
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, {
tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx));
});
done:
guard_selection_free(gs);
smartlist_free(prev_guards);
}
static void
test_entry_guard_guard_preferred(void *arg)
{
(void) arg;
entry_guard_t *g1 = tor_malloc_zero(sizeof(entry_guard_t));
entry_guard_t *g2 = tor_malloc_zero(sizeof(entry_guard_t));
g1->confirmed_idx = g2->confirmed_idx = -1;
g1->last_tried_to_connect = approx_time();
g2->last_tried_to_connect = approx_time();
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g1));
/* Neither is pending; priorities equal. */
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
/* If one is pending, the pending one has higher priority */
g1->is_pending = 1;
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2));
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
/* If both are pending, and last_tried_to_connect is equal:
priorities equal */
g2->is_pending = 1;
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
/* One had a connection that startied earlier: it has higher priority. */
g2->last_tried_to_connect -= 10;
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1));
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
/* Now, say that g1 is confirmed. It will get higher priority. */
g1->confirmed_idx = 5;
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1));
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2));
/* But if g2 was confirmed first, it will get priority */
g2->confirmed_idx = 2;
tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1));
tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2));
done:
tor_free(g1);
tor_free(g2);
}
static void
test_entry_guard_select_for_circuit_no_confirmed(void *arg)
{
/* Simpler cases: no gaurds are confirmed yet. */
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
/* simple starting configuration */
entry_guards_update_primary(gs);
unsigned state = 9999;
entry_guard_t *g = select_entry_guard_for_circuit(gs, &state);
tt_assert(g);
tt_assert(g->is_primary);
tt_int_op(g->confirmed_idx, OP_EQ, -1);
tt_assert(g->is_pending == 0); // primary implies non-pending.
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
// If we do that again, we should get the same guard.
entry_guard_t *g2 = select_entry_guard_for_circuit(gs, &state);
tt_ptr_op(g2, OP_EQ, g);
// if we mark that guard down, we should get a different primary guard.
// auto-retry it.
g->is_reachable = GUARD_REACHABLE_NO;
g->unreachable_since = approx_time() - 10;
g->last_tried_to_connect = approx_time() - 10;
state = 9999;
g2 = select_entry_guard_for_circuit(gs, &state);
tt_ptr_op(g2, OP_NE, g);
tt_assert(g2);
tt_assert(g2->is_primary);
tt_int_op(g2->confirmed_idx, OP_EQ, -1);
tt_assert(g2->is_pending == 0); // primary implies non-pending.
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
// If we say that the first primary guard was last tried a long time ago, we
// should get an automatic retry on it.
g->unreachable_since = approx_time() - 72*60*60;
g->last_tried_to_connect = approx_time() - 72*60*60;
state = 9999;
g2 = select_entry_guard_for_circuit(gs, &state);
tt_ptr_op(g2, OP_EQ, g);
tt_assert(g2);
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
// And if we mark ALL the primary guards down, we should get another guard
// at random.
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
guard->is_reachable = GUARD_REACHABLE_NO;
guard->last_tried_to_connect = approx_time() - 5;
guard->unreachable_since = approx_time() - 30;
});
state = 9999;
g2 = select_entry_guard_for_circuit(gs, &state);
tt_assert(g2);
tt_assert(!g2->is_primary);
tt_int_op(g2->confirmed_idx, OP_EQ, -1);
tt_assert(g2->is_pending == 1);
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
// As a bonus, maybe we should be retrying the primary guards. Let's say so.
mark_primary_guards_maybe_reachable(gs);
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
tt_int_op(guard->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
tt_assert(guard->is_usable_filtered_guard == 1);
// no change to these fields.
tt_i64_op(guard->last_tried_to_connect, OP_EQ, approx_time() - 5);
tt_i64_op(guard->unreachable_since, OP_EQ, approx_time() - 30);
});
done:
guard_selection_free(gs);
}
static void
test_entry_guard_select_for_circuit_confirmed(void *arg)
{
/* Case 2: if all the primary guards are down, and there are more confirmed
guards, we use a confirmed guard. */
(void)arg;
int i;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
const int N_CONFIRMED = 10;
/* slightly more complicated simple starting configuration */
entry_guards_update_primary(gs);
for (i = 0; i < N_CONFIRMED; ++i) {
entry_guard_t *guard = smartlist_get(gs->sampled_entry_guards, i);
make_guard_confirmed(gs, guard);
}
entry_guards_update_primary(gs); // rebuild the primary list.
unsigned state = 9999;
// As above, this gives us a primary guard.
entry_guard_t *g = select_entry_guard_for_circuit(gs, &state);
tt_assert(g);
tt_assert(g->is_primary);
tt_int_op(g->confirmed_idx, OP_EQ, 0);
tt_assert(g->is_pending == 0); // primary implies non-pending.
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
tt_ptr_op(g, OP_EQ, smartlist_get(gs->primary_entry_guards, 0));
// But if we mark all the primary guards down...
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, {
guard->last_tried_to_connect = approx_time();
entry_guards_note_guard_failure(gs, guard);
});
// ... we should get a confirmed guard.
state = 9999;
g = select_entry_guard_for_circuit(gs, &state);
tt_assert(g);
tt_assert(! g->is_primary);
tt_int_op(g->confirmed_idx, OP_EQ, smartlist_len(gs->primary_entry_guards));
tt_assert(g->is_pending);
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time());
// And if we try again, we should get a different confirmed guard, since
// that one is pending.
state = 9999;
entry_guard_t *g2 = select_entry_guard_for_circuit(gs, &state);
tt_assert(g2);
tt_assert(! g2->is_primary);
tt_ptr_op(g2, OP_NE, g);
tt_int_op(g2->confirmed_idx, OP_EQ,
smartlist_len(gs->primary_entry_guards)+1);
tt_assert(g2->is_pending);
tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time());
// If we make every confirmed guard become pending then we start poking
// other guards.
const int n_remaining_confirmed =
N_CONFIRMED - 2 - smartlist_len(gs->primary_entry_guards);
for (i = 0; i < n_remaining_confirmed; ++i) {
g = select_entry_guard_for_circuit(gs, &state);
tt_int_op(g->confirmed_idx, OP_GE, 0);
tt_assert(g);
}
state = 9999;
g = select_entry_guard_for_circuit(gs, &state);
tt_assert(g);
tt_assert(g->is_pending);
tt_int_op(g->confirmed_idx, OP_EQ, -1);
done:
guard_selection_free(gs);
}
static void
test_entry_guard_select_for_circuit_highlevel_primary(void *arg)
{
/* Play around with selecting primary guards for circuits and markign
* them up and down */
(void)arg;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
time_t start = approx_time();
const node_t *node = NULL;
circuit_guard_state_t *guard = NULL;
entry_guard_t *g;
/*
* Make sure that the pick-for-circuit API basically works. We'll get
* a primary guard, so it'll be usable on completion.
*/
int r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(r == 0);
tt_assert(node);
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
tt_int_op(g->is_primary, OP_EQ, 1);
tt_i64_op(g->last_tried_to_connect, OP_EQ, start);
tt_int_op(g->confirmed_idx, OP_EQ, -1);
/* Call that circuit successful. */
update_approx_time(start+15);
r = entry_guard_succeeded(&guard);
tt_int_op(r, OP_EQ, 1); /* We can use it now. */
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES);
tt_int_op(g->confirmed_idx, OP_EQ, 0);
circuit_guard_state_free(guard);
guard = NULL;
node = NULL;
g = NULL;
/* Try again. We'll also get a primary guard this time. (The same one,
in fact.) But this time, we'll say the connection has failed. */
update_approx_time(start+35);
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(r == 0);
tt_assert(node);
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
tt_i64_op(guard->state_set_at, OP_EQ, start+35);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
tt_int_op(g->is_primary, OP_EQ, 1);
tt_i64_op(g->last_tried_to_connect, OP_EQ, start+35);
tt_int_op(g->confirmed_idx, OP_EQ, 0); // same one.
/* It's failed! What will happen to our poor guard? */
update_approx_time(start+45);
entry_guard_failed(&guard);
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_DEAD);
tt_i64_op(guard->state_set_at, OP_EQ, start+45);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
tt_i64_op(g->failing_since, OP_EQ, start+45);
tt_int_op(g->confirmed_idx, OP_EQ, 0); // still confirmed.
circuit_guard_state_free(guard);
guard = NULL;
node = NULL;
entry_guard_t *g_prev = g;
g = NULL;
/* Now try a third time. Since the other one is down, we'll get a different
* (still primary) guard.
*/
update_approx_time(start+60);
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(r == 0);
tt_assert(node);
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_ptr_op(g, OP_NE, g_prev);
tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN);
tt_mem_op(g->identity, OP_NE, g_prev->identity, DIGEST_LEN);
tt_int_op(g->is_primary, OP_EQ, 1);
tt_i64_op(g->last_tried_to_connect, OP_EQ, start+60);
tt_int_op(g->confirmed_idx, OP_EQ, -1); // not confirmd now.
/* Call this one up; watch it get confirmed. */
update_approx_time(start+90);
r = entry_guard_succeeded(&guard);
tt_int_op(r, OP_EQ, 1); /* We can use it now. */
tt_assert(guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES);
tt_int_op(g->confirmed_idx, OP_EQ, 1);
done:
guard_selection_free(gs);
circuit_guard_state_free(guard);
}
static void
test_entry_guard_select_for_circuit_highlevel_confirm_other(void *arg)
{
(void) arg;
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
/* At the start, we have no confirmed guards. We'll mark the primary guards
* down, then confirm something else. As soon as we do, it should become
* primary, and we should get it next time. */
time_t start = approx_time();
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
circuit_guard_state_t *guard = NULL;
int i, r;
const node_t *node = NULL;
/* Declare that we're on the internet. */
entry_guards_note_internet_connectivity(gs);
/* Primary guards are down! */
for (i = 0; i < N_PRIMARY; ++i) {
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(node);
tt_assert(guard);
tt_assert(r == 0);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
entry_guard_failed(&guard);
circuit_guard_state_free(guard);
guard = NULL;
node = NULL;
}
/* Next guard should be non-primary. */
node = NULL;
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(node);
tt_assert(guard);
tt_assert(r == 0);
entry_guard_t *g = entry_guard_handle_get(guard->guard);
tt_assert(g);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
tt_int_op(g->confirmed_idx, OP_EQ, -1);
tt_int_op(g->is_primary, OP_EQ, 0);
tt_int_op(g->is_pending, OP_EQ, 1);
(void)start;
r = entry_guard_succeeded(&guard);
/* We're on the internet (by fiat), so this guard will get called "confirmed"
* and should immediately become primary.
* XXXX prop271 -- I don't like that behavior, but it's what is specified
*/
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
tt_assert(r == 1);
tt_int_op(g->confirmed_idx, OP_EQ, 0);
tt_int_op(g->is_primary, OP_EQ, 1);
tt_int_op(g->is_pending, OP_EQ, 0);
done:
guard_selection_free(gs);
circuit_guard_state_free(guard);
}
static void
test_entry_guard_select_for_circuit_highlevel_primary_retry(void *arg)
{
(void) arg;
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
/* At the start, we have no confirmed guards. We'll mark the primary guards
* down, then confirm something else. As soon as we do, it should become
* primary, and we should get it next time. */
time_t start = approx_time();
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
circuit_guard_state_t *guard = NULL, *guard2 = NULL;
int i, r;
const node_t *node = NULL;
entry_guard_t *g;
/* Declare that we're on the internet. */
entry_guards_note_internet_connectivity(gs);
/* Make primary guards confirmed (so they won't be superseded by a later
* guard), then mark them down. */
for (i = 0; i < N_PRIMARY; ++i) {
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(node);
tt_assert(guard);
tt_assert(r == 0);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
g = entry_guard_handle_get(guard->guard);
make_guard_confirmed(gs, g);
tt_int_op(g->is_primary, OP_EQ, 1);
entry_guard_failed(&guard);
circuit_guard_state_free(guard);
tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO);
guard = NULL;
node = NULL;
}
/* Get another guard that we might try. */
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(node);
tt_assert(guard);
tt_assert(r == 0);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
g = entry_guard_handle_get(guard->guard);
tt_int_op(g->is_primary, OP_EQ, 0);
tt_assert(entry_guards_all_primary_guards_are_down(gs));
/* And an hour has passed ... */
update_approx_time(start + 3600);
/* Say that guard has succeeded! */
r = entry_guard_succeeded(&guard);
tt_int_op(r, OP_EQ, 0); // can't use it yet.
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
g = entry_guard_handle_get(guard->guard);
/* The primary guards should have been marked up! */
SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, pg, {
tt_int_op(pg->is_primary, OP_EQ, 1);
tt_ptr_op(g, OP_NE, pg);
tt_int_op(pg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE);
});
/* Have a circuit to a primary guard succeed. */
r = entry_guard_pick_for_circuit(gs, &node, &guard2);
tt_assert(r == 0);
tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
r = entry_guard_succeeded(&guard2);
tt_assert(r == 1);
tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
tt_assert(! entry_guards_all_primary_guards_are_down(gs));
done:
guard_selection_free(gs);
circuit_guard_state_free(guard);
circuit_guard_state_free(guard2);
}
static void
test_entry_guard_select_and_cancel(void *arg)
{
(void) arg;
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
int i,r;
const node_t *node = NULL;
circuit_guard_state_t *guard;
guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL);
entry_guard_t *g;
/* Once more, we mark all the primary guards down. */
entry_guards_note_internet_connectivity(gs);
for (i = 0; i < N_PRIMARY; ++i) {
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION);
g = entry_guard_handle_get(guard->guard);
tt_int_op(g->is_primary, OP_EQ, 1);
tt_int_op(g->is_pending, OP_EQ, 0);
make_guard_confirmed(gs, g);
entry_guard_failed(&guard);
circuit_guard_state_free(guard);
guard = NULL;
node = NULL;
}
tt_assert(entry_guards_all_primary_guards_are_down(gs));
/* Now get another guard we could try... */
r = entry_guard_pick_for_circuit(gs, &node, &guard);
tt_assert(node);
tt_assert(guard);
tt_assert(r == 0);
tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
g = entry_guard_handle_get(guard->guard);
tt_int_op(g->is_primary, OP_EQ, 0);
tt_int_op(g->is_pending, OP_EQ, 1);
/* Whoops! We should never have asked for this guard. Cancel the request! */
entry_guard_cancel(&guard);
tt_assert(guard == NULL);
tt_int_op(g->is_primary, OP_EQ, 0);
tt_int_op(g->is_pending, OP_EQ, 0);
done:
guard_selection_free(gs);
circuit_guard_state_free(guard);
}
/* Unit test setup function: Create a fake network, and set everything up
* for testing the upgrade-a-waiting-circuit code. */
typedef struct {
guard_selection_t *gs;
time_t start;
circuit_guard_state_t *guard1_state;
circuit_guard_state_t *guard2_state;
entry_guard_t *guard1;
entry_guard_t *guard2;
origin_circuit_t *circ1;
origin_circuit_t *circ2;
smartlist_t *all_origin_circuits;
} upgrade_circuits_data_t;
static void *
upgrade_circuits_setup(const struct testcase_t *testcase)
{
upgrade_circuits_data_t *data = tor_malloc_zero(sizeof(*data));
guard_selection_t *gs = data->gs =
guard_selection_new("default", GS_TYPE_NORMAL);
circuit_guard_state_t *guard;
const node_t *node;
entry_guard_t *g;
int i;
const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS;
const char *argument = testcase->setup_data;
const int make_circ1_succeed = strstr(argument, "c1-done") != NULL;
const int make_circ2_succeed = strstr(argument, "c2-done") != NULL;
big_fake_network_setup(testcase);
/* We're going to set things up in a state where a circuit will be ready to
* be upgraded. Each test can make a single change (or not) that should
* block the upgrade.
*/
/* First, make all the primary guards confirmed, and down. */
data->start = approx_time();
entry_guards_note_internet_connectivity(gs);
for (i = 0; i < N_PRIMARY; ++i) {
entry_guard_pick_for_circuit(gs, &node, &guard);
g = entry_guard_handle_get(guard->guard);
make_guard_confirmed(gs, g);
entry_guard_failed(&guard);
circuit_guard_state_free(guard);
}
/* Grab another couple of guards */
data->all_origin_circuits = smartlist_new();
update_approx_time(data->start + 27);
entry_guard_pick_for_circuit(gs, &node, &data->guard1_state);
origin_circuit_t *circ;
data->circ1 = circ = origin_circuit_new();
circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL;
circ->guard_state = data->guard1_state;
smartlist_add(data->all_origin_circuits, circ);
update_approx_time(data->start + 30);
entry_guard_pick_for_circuit(gs, &node, &data->guard2_state);
data->circ2 = circ = origin_circuit_new();
circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL;
circ->guard_state = data->guard2_state;
smartlist_add(data->all_origin_circuits, circ);
data->guard1 = entry_guard_handle_get(data->guard1_state->guard);
data->guard2 = entry_guard_handle_get(data->guard2_state->guard);
tor_assert(data->guard1 != data->guard2);
tor_assert(data->guard1_state->state ==
GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
tor_assert(data->guard2_state->state ==
GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD);
int r;
update_approx_time(data->start + 32);
if (make_circ1_succeed) {
r = entry_guard_succeeded(&data->guard1_state);
tor_assert(r == 0);
tor_assert(data->guard1_state->state ==
GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
}
update_approx_time(data->start + 33);
if (make_circ2_succeed) {
r = entry_guard_succeeded(&data->guard2_state);
tor_assert(r == 0);
tor_assert(data->guard2_state->state ==
GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD);
}
return data;
}
static int
upgrade_circuits_cleanup(const struct testcase_t *testcase, void *ptr)
{
upgrade_circuits_data_t *data = ptr;
// circuit_guard_state_free(data->guard1_state); // held in circ1
// circuit_guard_state_free(data->guard2_state); // held in circ2
guard_selection_free(data->gs);
smartlist_free(data->all_origin_circuits);
circuit_free(TO_CIRCUIT(data->circ1));
circuit_free(TO_CIRCUIT(data->circ2));
tor_free(data);
return big_fake_network_cleanup(testcase, ptr);
}
static void
test_entry_guard_upgrade_a_circuit(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* This is the easy case: we have no COMPLETED circuits, all the
* primary guards are down, we have two WAITING circuits: one will
* get upgraded to COMPLETED! (The one that started first.)
*/
/* XXXX prop271 -- perhaps the one that started first should
* also wind up in confirmed_entry_guards earlier?
*/
smartlist_t *result = smartlist_new();
int r;
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 1);
tt_int_op(smartlist_len(result), OP_EQ, 1);
origin_circuit_t *oc = smartlist_get(result, 0);
/* circ1 was started first, so we'll get told to ugrade it... */
tt_ptr_op(oc, OP_EQ, data->circ1);
/* And the guard state should be complete */
tt_ptr_op(data->guard1_state, OP_NE, NULL);
tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
done:
smartlist_free(result);
}
static void
test_entry_guard_upgrade_blocked_by_live_primary_guards(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* If any primary guards might be up, we can't upgrade any waiting
* circuits.
*/
mark_primary_guards_maybe_reachable(data->gs);
smartlist_t *result = smartlist_new();
int r;
setup_capture_of_logs(LOG_DEBUG);
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 0);
tt_int_op(smartlist_len(result), OP_EQ, 0);
expect_log_msg_containing("not all primary guards were definitely down.");
done:
teardown_capture_of_logs();
smartlist_free(result);
}
static void
test_entry_guard_upgrade_blocked_by_lack_of_waiting_circuits(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* If no circuits are waiting, we can't upgrade anything. (The test
* setup in this case was told not to make any of the circuits "waiting".)
*/
smartlist_t *result = smartlist_new();
int r;
setup_capture_of_logs(LOG_DEBUG);
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 0);
tt_int_op(smartlist_len(result), OP_EQ, 0);
expect_log_msg_containing("Considered upgrading guard-stalled circuits, "
"but didn't find any.");
done:
teardown_capture_of_logs();
smartlist_free(result);
}
static void
test_entry_guard_upgrade_blocked_by_better_circ_complete(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* We'll run through the logic of upgrade_a_circuit below...
* and then try again to make sure that circ2 isn't also upgraded.
*/
smartlist_t *result = smartlist_new();
int r;
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 1);
tt_int_op(smartlist_len(result), OP_EQ, 1);
origin_circuit_t *oc = smartlist_get(result, 0);
tt_ptr_op(oc, OP_EQ, data->circ1);
tt_ptr_op(data->guard1_state, OP_NE, NULL);
tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE);
/* Now, try again. Make sure that circ2 isn't upgraded. */
smartlist_clear(result);
setup_capture_of_logs(LOG_DEBUG);
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 0);
tt_int_op(smartlist_len(result), OP_EQ, 0);
expect_log_msg_containing("At least one complete circuit had higher "
"priority, so not upgrading.");
done:
teardown_capture_of_logs();
smartlist_free(result);
}
static void
test_entry_guard_upgrade_not_blocked_by_worse_circ_complete(void *arg)
{
upgrade_circuits_data_t *data = arg;
smartlist_t *result = smartlist_new();
/* here we manually make circ2 COMPLETE, and make sure that circ1
* gets made complete anyway, since guard1 has higher priority
*/
update_approx_time(data->start + 300);
data->guard2_state->state = GUARD_CIRC_STATE_COMPLETE;
data->guard2_state->state_set_at = approx_time();
update_approx_time(data->start + 301);
/* Now, try again. Make sure that circ1 is approved. */
int r;
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 1);
tt_int_op(smartlist_len(result), OP_EQ, 1);
origin_circuit_t *oc = smartlist_get(result, 0);
tt_ptr_op(oc, OP_EQ, data->circ1);
done:
smartlist_free(result);
}
static void
test_entry_guard_upgrade_blocked_by_better_circ_pending(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* circ2 is done, but circ1 is still pending. Since circ1 is better,
* we won't upgrade circ2. */
/* XXXX Prop271 -- this is a kludge. I'm making sure circ1 _is_ better,
* by messing with the guards' confirmed_idx */
make_guard_confirmed(data->gs, data->guard1);
{
int tmp;
tmp = data->guard1->confirmed_idx;
data->guard1->confirmed_idx = data->guard2->confirmed_idx;
data->guard2->confirmed_idx = tmp;
}
smartlist_t *result = smartlist_new();
setup_capture_of_logs(LOG_DEBUG);
int r;
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 0);
tt_int_op(smartlist_len(result), OP_EQ, 0);
expect_log_msg_containing("but 1 pending circuit(s) had higher guard "
"priority, so not upgrading.");
done:
teardown_capture_of_logs();
smartlist_free(result);
}
static void
test_entry_guard_upgrade_not_blocked_by_worse_circ_pending(void *arg)
{
upgrade_circuits_data_t *data = arg;
/* circ1 is done, but circ2 is still pending. Since circ1 is better,
* we will upgrade it. */
smartlist_t *result = smartlist_new();
int r;
r = entry_guards_upgrade_waiting_circuits(data->gs,
data->all_origin_circuits,
result);
tt_int_op(r, OP_EQ, 1);
tt_int_op(smartlist_len(result), OP_EQ, 1);
origin_circuit_t *oc = smartlist_get(result, 0);
tt_ptr_op(oc, OP_EQ, data->circ1);
done:
smartlist_free(result);
}
static const struct testcase_setup_t fake_network = {
fake_network_setup, fake_network_cleanup
};
static const struct testcase_setup_t big_fake_network = {
big_fake_network_setup, big_fake_network_cleanup
};
static const struct testcase_setup_t upgrade_circuits = {
upgrade_circuits_setup, upgrade_circuits_cleanup
};
#define BFN_TEST(name) \
{ #name, test_entry_guard_ ## name, TT_FORK, &big_fake_network, NULL }
#define UPGRADE_TEST(name, arg) \
{ #name, test_entry_guard_ ## name, TT_FORK, &upgrade_circuits, \
(void*)(arg) }
struct testcase_t entrynodes_tests[] = {
{ "entry_is_time_to_retry", test_entry_is_time_to_retry,
TT_FORK, NULL, NULL },
{ "choose_random_entry_no_guards", test_choose_random_entry_no_guards,
TT_FORK, &fake_network, NULL },
{ "choose_random_entry_one_possible_guard",
test_choose_random_entry_one_possible_guard,
TT_FORK, &fake_network, NULL },
{ "populate_live_entry_guards_1guard",
test_populate_live_entry_guards_1guard,
TT_FORK, &fake_network, NULL },
{ "populate_live_entry_guards_3guards",
test_populate_live_entry_guards_3guards,
TT_FORK, &fake_network, NULL },
{ "entry_guards_parse_state_simple",
test_entry_guards_parse_state_simple,
TT_FORK, &fake_network, NULL },
{ "entry_guards_parse_state_pathbias",
test_entry_guards_parse_state_pathbias,
TT_FORK, &fake_network, NULL },
{ "entry_guards_set_from_config",
test_entry_guards_set_from_config,
TT_FORK, &fake_network, NULL },
{ "entry_is_live",
test_entry_is_live,
TT_FORK, &fake_network, NULL },
{ "node_preferred_orport",
test_node_preferred_orport,
0, NULL, NULL },
{ "entry_guard_describe", test_entry_guard_describe, 0, NULL, NULL },
{ "randomize_time", test_entry_guard_randomize_time, 0, NULL, NULL },
{ "encode_for_state_minimal",
test_entry_guard_encode_for_state_minimal, 0, NULL, NULL },
{ "encode_for_state_maximal",
test_entry_guard_encode_for_state_maximal, 0, NULL, NULL },
{ "parse_from_state_minimal",
test_entry_guard_parse_from_state_minimal, 0, NULL, NULL },
{ "parse_from_state_maximal",
test_entry_guard_parse_from_state_maximal, 0, NULL, NULL },
{ "parse_from_state_failure",
test_entry_guard_parse_from_state_failure, 0, NULL, NULL },
{ "parse_from_state_partial_failure",
test_entry_guard_parse_from_state_partial_failure, 0, NULL, NULL },
{ "get_guard_selection_by_name",
test_entry_guard_get_guard_selection_by_name, TT_FORK, NULL, NULL },
BFN_TEST(add_single_guard),
BFN_TEST(node_filter),
BFN_TEST(expand_sample),
BFN_TEST(expand_sample_small_net),
BFN_TEST(update_from_consensus_status),
BFN_TEST(update_from_consensus_repair),
BFN_TEST(update_from_consensus_remove),
BFN_TEST(confirming_guards),
BFN_TEST(sample_reachable_filtered),
BFN_TEST(sample_reachable_filtered_empty),
BFN_TEST(retry_unreachable),
BFN_TEST(manage_primary),
{ "guard_preferred", test_entry_guard_guard_preferred, TT_FORK, NULL, NULL },
BFN_TEST(select_for_circuit_no_confirmed),
BFN_TEST(select_for_circuit_confirmed),
BFN_TEST(select_for_circuit_highlevel_primary),
BFN_TEST(select_for_circuit_highlevel_confirm_other),
BFN_TEST(select_for_circuit_highlevel_primary_retry),
BFN_TEST(select_and_cancel),
UPGRADE_TEST(upgrade_a_circuit, "c1-done c2-done"),
UPGRADE_TEST(upgrade_blocked_by_live_primary_guards, "c1-done c2-done"),
UPGRADE_TEST(upgrade_blocked_by_lack_of_waiting_circuits, ""),
UPGRADE_TEST(upgrade_blocked_by_better_circ_complete, "c1-done c2-done"),
UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_complete, "c1-done c2-done"),
UPGRADE_TEST(upgrade_blocked_by_better_circ_pending, "c2-done"),
UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_pending, "c1-done"),
END_OF_TESTCASES
};