/* Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2013, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /* Ordinarily defined in tor_main.c; this bit is just here to provide one * since we're not linking to tor_main.c */ const char tor_git_revision[] = ""; /** * \file bench.c * \brief Benchmarks for lower level Tor modules. **/ #include "orconfig.h" #include "or.h" #include "onion_tap.h" #include "relay.h" #include #include #ifndef OPENSSL_NO_EC #include #include #include #endif #include "config.h" #ifdef CURVE25519_ENABLED #include "crypto_curve25519.h" #include "onion_ntor.h" #endif #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) static uint64_t nanostart; static inline uint64_t timespec_to_nsec(const struct timespec *ts) { return ((uint64_t)ts->tv_sec)*1000000000 + ts->tv_nsec; } static void reset_perftime(void) { struct timespec ts; int r; r = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); tor_assert(r == 0); nanostart = timespec_to_nsec(&ts); } static uint64_t perftime(void) { struct timespec ts; int r; r = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); tor_assert(r == 0); return timespec_to_nsec(&ts) - nanostart; } #else static struct timeval tv_start = { 0, 0 }; static void reset_perftime(void) { tor_gettimeofday(&tv_start); } static uint64_t perftime(void) { struct timeval now, out; tor_gettimeofday(&now); timersub(&now, &tv_start, &out); return ((uint64_t)out.tv_sec)*1000000000 + out.tv_usec*1000; } #endif #define NANOCOUNT(start,end,iters) \ ( ((double)((end)-(start))) / (iters) ) /** Run AES performance benchmarks. */ static void bench_aes(void) { int len, i; char *b1, *b2; crypto_cipher_t *c; uint64_t start, end; const int bytes_per_iter = (1<<24); reset_perftime(); c = crypto_cipher_new(NULL); for (len = 1; len <= 8192; len *= 2) { int iters = bytes_per_iter / len; b1 = tor_malloc_zero(len); b2 = tor_malloc_zero(len); start = perftime(); for (i = 0; i < iters; ++i) { crypto_cipher_encrypt(c, b1, b2, len); } end = perftime(); tor_free(b1); tor_free(b2); printf("%d bytes: %.2f nsec per byte\n", len, NANOCOUNT(start, end, iters*len)); } crypto_cipher_free(c); } static void bench_onion_TAP(void) { const int iters = 1<<9; int i; crypto_pk_t *key, *key2; uint64_t start, end; char os[TAP_ONIONSKIN_CHALLENGE_LEN]; char or[TAP_ONIONSKIN_REPLY_LEN]; crypto_dh_t *dh_out; key = crypto_pk_new(); key2 = crypto_pk_new(); if (crypto_pk_generate_key_with_bits(key, 1024) < 0) goto done; if (crypto_pk_generate_key_with_bits(key2, 1024) < 0) goto done; reset_perftime(); start = perftime(); for (i = 0; i < iters; ++i) { onion_skin_TAP_create(key, &dh_out, os); crypto_dh_free(dh_out); } end = perftime(); printf("Client-side, part 1: %f usec.\n", NANOCOUNT(start, end, iters)/1e3); onion_skin_TAP_create(key, &dh_out, os); start = perftime(); for (i = 0; i < iters; ++i) { char key_out[CPATH_KEY_MATERIAL_LEN]; onion_skin_TAP_server_handshake(os, key, NULL, or, key_out, sizeof(key_out)); } end = perftime(); printf("Server-side, key guessed right: %f usec\n", NANOCOUNT(start, end, iters)/1e3); start = perftime(); for (i = 0; i < iters; ++i) { char key_out[CPATH_KEY_MATERIAL_LEN]; onion_skin_TAP_server_handshake(os, key2, key, or, key_out, sizeof(key_out)); } end = perftime(); printf("Server-side, key guessed wrong: %f usec.\n", NANOCOUNT(start, end, iters)/1e3); start = perftime(); for (i = 0; i < iters; ++i) { crypto_dh_t *dh; char key_out[CPATH_KEY_MATERIAL_LEN]; int s; dh = crypto_dh_dup(dh_out); s = onion_skin_TAP_client_handshake(dh, or, key_out, sizeof(key_out)); crypto_dh_free(dh); tor_assert(s == 0); } end = perftime(); printf("Client-side, part 2: %f usec.\n", NANOCOUNT(start, end, iters)/1e3); done: crypto_pk_free(key); crypto_pk_free(key2); } #ifdef CURVE25519_ENABLED static void bench_onion_ntor(void) { const int iters = 1<<10; int i; curve25519_keypair_t keypair1, keypair2; uint64_t start, end; uint8_t os[NTOR_ONIONSKIN_LEN]; uint8_t or[NTOR_REPLY_LEN]; ntor_handshake_state_t *state = NULL; uint8_t nodeid[DIGEST_LEN]; di_digest256_map_t *keymap = NULL; curve25519_secret_key_generate(&keypair1.seckey, 0); curve25519_public_key_generate(&keypair1.pubkey, &keypair1.seckey); curve25519_secret_key_generate(&keypair2.seckey, 0); curve25519_public_key_generate(&keypair2.pubkey, &keypair2.seckey); dimap_add_entry(&keymap, keypair1.pubkey.public_key, &keypair1); dimap_add_entry(&keymap, keypair2.pubkey.public_key, &keypair2); reset_perftime(); start = perftime(); for (i = 0; i < iters; ++i) { onion_skin_ntor_create(nodeid, &keypair1.pubkey, &state, os); ntor_handshake_state_free(state); state = NULL; } end = perftime(); printf("Client-side, part 1: %f usec.\n", NANOCOUNT(start, end, iters)/1e3); state = NULL; onion_skin_ntor_create(nodeid, &keypair1.pubkey, &state, os); start = perftime(); for (i = 0; i < iters; ++i) { uint8_t key_out[CPATH_KEY_MATERIAL_LEN]; onion_skin_ntor_server_handshake(os, keymap, NULL, nodeid, or, key_out, sizeof(key_out)); } end = perftime(); printf("Server-side: %f usec\n", NANOCOUNT(start, end, iters)/1e3); start = perftime(); for (i = 0; i < iters; ++i) { uint8_t key_out[CPATH_KEY_MATERIAL_LEN]; int s; s = onion_skin_ntor_client_handshake(state, or, key_out, sizeof(key_out)); tor_assert(s == 0); } end = perftime(); printf("Client-side, part 2: %f usec.\n", NANOCOUNT(start, end, iters)/1e3); ntor_handshake_state_free(state); dimap_free(keymap, NULL); } #endif static void bench_cell_aes(void) { uint64_t start, end; const int len = 509; const int iters = (1<<16); const int max_misalign = 15; char *b = tor_malloc(len+max_misalign); crypto_cipher_t *c; int i, misalign; c = crypto_cipher_new(NULL); reset_perftime(); for (misalign = 0; misalign <= max_misalign; ++misalign) { start = perftime(); for (i = 0; i < iters; ++i) { crypto_cipher_crypt_inplace(c, b+misalign, len); } end = perftime(); printf("%d bytes, misaligned by %d: %.2f nsec per byte\n", len, misalign, NANOCOUNT(start, end, iters*len)); } crypto_cipher_free(c); tor_free(b); } /** Run digestmap_t performance benchmarks. */ static void bench_dmap(void) { smartlist_t *sl = smartlist_new(); smartlist_t *sl2 = smartlist_new(); uint64_t start, end, pt2, pt3, pt4; int iters = 8192; const int elts = 4000; const int fpostests = 100000; char d[20]; int i,n=0, fp = 0; digestmap_t *dm = digestmap_new(); digestset_t *ds = digestset_new(elts); for (i = 0; i < elts; ++i) { crypto_rand(d, 20); smartlist_add(sl, tor_memdup(d, 20)); } for (i = 0; i < elts; ++i) { crypto_rand(d, 20); smartlist_add(sl2, tor_memdup(d, 20)); } printf("nbits=%d\n", ds->mask+1); reset_perftime(); start = perftime(); for (i = 0; i < iters; ++i) { SMARTLIST_FOREACH(sl, const char *, cp, digestmap_set(dm, cp, (void*)1)); } pt2 = perftime(); printf("digestmap_set: %.2f ns per element\n", NANOCOUNT(start, pt2, iters*elts)); for (i = 0; i < iters; ++i) { SMARTLIST_FOREACH(sl, const char *, cp, digestmap_get(dm, cp)); SMARTLIST_FOREACH(sl2, const char *, cp, digestmap_get(dm, cp)); } pt3 = perftime(); printf("digestmap_get: %.2f ns per element\n", NANOCOUNT(pt2, pt3, iters*elts*2)); for (i = 0; i < iters; ++i) { SMARTLIST_FOREACH(sl, const char *, cp, digestset_add(ds, cp)); } pt4 = perftime(); printf("digestset_add: %.2f ns per element\n", NANOCOUNT(pt3, pt4, iters*elts)); for (i = 0; i < iters; ++i) { SMARTLIST_FOREACH(sl, const char *, cp, n += digestset_contains(ds, cp)); SMARTLIST_FOREACH(sl2, const char *, cp, n += digestset_contains(ds, cp)); } end = perftime(); printf("digestset_contains: %.2f ns per element.\n", NANOCOUNT(pt4, end, iters*elts*2)); /* We need to use this, or else the whole loop gets optimized out. */ printf("Hits == %d\n", n); for (i = 0; i < fpostests; ++i) { crypto_rand(d, 20); if (digestset_contains(ds, d)) ++fp; } printf("False positive rate on digestset: %.2f%%\n", (fp/(double)fpostests)*100); digestmap_free(dm, NULL); digestset_free(ds); SMARTLIST_FOREACH(sl, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(sl2, char *, cp, tor_free(cp)); smartlist_free(sl); smartlist_free(sl2); } static void bench_siphash(void) { char buf[128]; int lens[] = { 7, 8, 15, 16, 20, 32, 111, 128, -1 }; int i, j; uint64_t total; uint64_t start, end; const int N = 300000; crypto_rand(buf, sizeof(buf)); for (i = 0; lens[i] > 0; ++i) { total = 0; reset_perftime(); start = perftime(); for (j = 0; j < N; ++j) { total += siphash24g(buf, lens[i]); } end = perftime(); printf("siphash24g(%d): %.2f ns per call\n", lens[i], NANOCOUNT(start,end,N)); } } static void bench_cell_ops(void) { const int iters = 1<<16; int i; /* benchmarks for cell ops at relay. */ or_circuit_t *or_circ = tor_malloc_zero(sizeof(or_circuit_t)); cell_t *cell = tor_malloc(sizeof(cell_t)); int outbound; uint64_t start, end; crypto_rand((char*)cell->payload, sizeof(cell->payload)); /* Mock-up or_circuit_t */ or_circ->base_.magic = OR_CIRCUIT_MAGIC; or_circ->base_.purpose = CIRCUIT_PURPOSE_OR; /* Initialize crypto */ or_circ->p_crypto = crypto_cipher_new(NULL); or_circ->n_crypto = crypto_cipher_new(NULL); or_circ->p_digest = crypto_digest_new(); or_circ->n_digest = crypto_digest_new(); reset_perftime(); for (outbound = 0; outbound <= 1; ++outbound) { cell_direction_t d = outbound ? CELL_DIRECTION_OUT : CELL_DIRECTION_IN; start = perftime(); for (i = 0; i < iters; ++i) { char recognized = 0; crypt_path_t *layer_hint = NULL; relay_crypt(TO_CIRCUIT(or_circ), cell, d, &layer_hint, &recognized); } end = perftime(); printf("%sbound cells: %.2f ns per cell. (%.2f ns per byte of payload)\n", outbound?"Out":" In", NANOCOUNT(start,end,iters), NANOCOUNT(start,end,iters*CELL_PAYLOAD_SIZE)); } crypto_digest_free(or_circ->p_digest); crypto_digest_free(or_circ->n_digest); crypto_cipher_free(or_circ->p_crypto); crypto_cipher_free(or_circ->n_crypto); tor_free(or_circ); tor_free(cell); } static void bench_dh(void) { const int iters = 1<<10; int i; uint64_t start, end; reset_perftime(); start = perftime(); for (i = 0; i < iters; ++i) { char dh_pubkey_a[DH_BYTES], dh_pubkey_b[DH_BYTES]; char secret_a[DH_BYTES], secret_b[DH_BYTES]; ssize_t slen_a, slen_b; crypto_dh_t *dh_a = crypto_dh_new(DH_TYPE_TLS); crypto_dh_t *dh_b = crypto_dh_new(DH_TYPE_TLS); crypto_dh_generate_public(dh_a); crypto_dh_generate_public(dh_b); crypto_dh_get_public(dh_a, dh_pubkey_a, sizeof(dh_pubkey_a)); crypto_dh_get_public(dh_b, dh_pubkey_b, sizeof(dh_pubkey_b)); slen_a = crypto_dh_compute_secret(LOG_NOTICE, dh_a, dh_pubkey_b, sizeof(dh_pubkey_b), secret_a, sizeof(secret_a)); slen_b = crypto_dh_compute_secret(LOG_NOTICE, dh_b, dh_pubkey_a, sizeof(dh_pubkey_a), secret_b, sizeof(secret_b)); tor_assert(slen_a == slen_b); tor_assert(!memcmp(secret_a, secret_b, slen_a)); crypto_dh_free(dh_a); crypto_dh_free(dh_b); } end = perftime(); printf("Complete DH handshakes (1024 bit, public and private ops):\n" " %f millisec each.\n", NANOCOUNT(start, end, iters)/1e6); } #if (!defined(OPENSSL_NO_EC) \ && OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,0,0)) #define HAVE_EC_BENCHMARKS static void bench_ecdh_impl(int nid, const char *name) { const int iters = 1<<10; int i; uint64_t start, end; reset_perftime(); start = perftime(); for (i = 0; i < iters; ++i) { char secret_a[DH_BYTES], secret_b[DH_BYTES]; ssize_t slen_a, slen_b; EC_KEY *dh_a = EC_KEY_new_by_curve_name(nid); EC_KEY *dh_b = EC_KEY_new_by_curve_name(nid); if (!dh_a || !dh_b) { puts("Skipping. (No implementation?)"); return; } EC_KEY_generate_key(dh_a); EC_KEY_generate_key(dh_b); slen_a = ECDH_compute_key(secret_a, DH_BYTES, EC_KEY_get0_public_key(dh_b), dh_a, NULL); slen_b = ECDH_compute_key(secret_b, DH_BYTES, EC_KEY_get0_public_key(dh_a), dh_b, NULL); tor_assert(slen_a == slen_b); tor_assert(!memcmp(secret_a, secret_b, slen_a)); EC_KEY_free(dh_a); EC_KEY_free(dh_b); } end = perftime(); printf("Complete ECDH %s handshakes (2 public and 2 private ops):\n" " %f millisec each.\n", name, NANOCOUNT(start, end, iters)/1e6); } static void bench_ecdh_p256(void) { bench_ecdh_impl(NID_X9_62_prime256v1, "P-256"); } static void bench_ecdh_p224(void) { bench_ecdh_impl(NID_secp224r1, "P-224"); } #endif typedef void (*bench_fn)(void); typedef struct benchmark_t { const char *name; bench_fn fn; int enabled; } benchmark_t; #define ENT(s) { #s , bench_##s, 0 } static struct benchmark_t benchmarks[] = { ENT(dmap), ENT(siphash), ENT(aes), ENT(onion_TAP), #ifdef CURVE25519_ENABLED ENT(onion_ntor), #endif ENT(cell_aes), ENT(cell_ops), ENT(dh), #ifdef HAVE_EC_BENCHMARKS ENT(ecdh_p256), ENT(ecdh_p224), #endif {NULL,NULL,0} }; static benchmark_t * find_benchmark(const char *name) { benchmark_t *b; for (b = benchmarks; b->name; ++b) { if (!strcmp(name, b->name)) { return b; } } return NULL; } /** Main entry point for benchmark code: parse the command line, and run * some benchmarks. */ int main(int argc, const char **argv) { int i; int list=0, n_enabled=0; benchmark_t *b; char *errmsg; or_options_t *options; tor_threads_init(); for (i = 1; i < argc; ++i) { if (!strcmp(argv[i], "--list")) { list = 1; } else { benchmark_t *b = find_benchmark(argv[i]); ++n_enabled; if (b) { b->enabled = 1; } else { printf("No such benchmark as %s\n", argv[i]); } } } reset_perftime(); crypto_seed_rng(1); crypto_init_siphash_key(); options = options_new(); init_logging(); options->command = CMD_RUN_UNITTESTS; options->DataDirectory = tor_strdup(""); options_init(options); if (set_options(options, &errmsg) < 0) { printf("Failed to set initial options: %s\n", errmsg); tor_free(errmsg); return 1; } for (b = benchmarks; b->name; ++b) { if (b->enabled || n_enabled == 0) { printf("===== %s =====\n", b->name); if (!list) b->fn(); } } return 0; }