/* Copyright (c) 2003-2004, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2009, The Tor Project, Inc. */ /* See LICENSE for licensing information */ #ifndef _TOR_CONTAINER_H #define _TOR_CONTAINER_H #include "util.h" /** A resizeable list of pointers, with associated helpful functionality. * * The members of this struct are exposed only so that macros and inlines can * use them; all access to smartlist internals should go through the functions * and macros defined here. **/ typedef struct smartlist_t { /** list has enough capacity to store exactly capacity elements * before it needs to be resized. Only the first num_used (\<= * capacity) elements point to valid data. */ void **list; int num_used; int capacity; } smartlist_t; smartlist_t *smartlist_create(void); void smartlist_free(smartlist_t *sl); void smartlist_clear(smartlist_t *sl); void smartlist_add(smartlist_t *sl, void *element); void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2); void smartlist_remove(smartlist_t *sl, const void *element); void *smartlist_pop_last(smartlist_t *sl); void smartlist_reverse(smartlist_t *sl); void smartlist_string_remove(smartlist_t *sl, const char *element); int smartlist_isin(const smartlist_t *sl, const void *element) ATTR_PURE; int smartlist_string_isin(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_string_pos(const smartlist_t *, const char *elt) ATTR_PURE; int smartlist_string_isin_case(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_string_num_isin(const smartlist_t *sl, int num) ATTR_PURE; int smartlist_digest_isin(const smartlist_t *sl, const char *element) ATTR_PURE; int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) ATTR_PURE; void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2); void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2); /* smartlist_choose() is defined in crypto.[ch] */ #ifdef DEBUG_SMARTLIST /** Return the number of items in sl. */ static INLINE int smartlist_len(const smartlist_t *sl) ATTR_PURE; static INLINE int smartlist_len(const smartlist_t *sl) { tor_assert(sl); return (sl)->num_used; } /** Return the idxth element of sl. */ static INLINE void *smartlist_get(const smartlist_t *sl, int idx) ATTR_PURE; static INLINE void *smartlist_get(const smartlist_t *sl, int idx) { tor_assert(sl); tor_assert(idx>=0); tor_assert(sl->num_used > idx); return sl->list[idx]; } static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) { tor_assert(sl); tor_assert(idx>=0); tor_assert(sl->num_used > idx); sl->list[idx] = val; } #else #define smartlist_len(sl) ((sl)->num_used) #define smartlist_get(sl, idx) ((sl)->list[idx]) #define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val)) #endif /** Exchange the elements at indices idx1 and idx2 of the * smartlist sl. */ static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2) { if (idx1 != idx2) { void *elt = smartlist_get(sl, idx1); smartlist_set(sl, idx1, smartlist_get(sl, idx2)); smartlist_set(sl, idx2, elt); } } void smartlist_del(smartlist_t *sl, int idx); void smartlist_del_keeporder(smartlist_t *sl, int idx); void smartlist_insert(smartlist_t *sl, int idx, void *val); void smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b)); void smartlist_uniq(smartlist_t *sl, int (*compare)(const void **a, const void **b), void (*free_fn)(void *elt)); void smartlist_sort_strings(smartlist_t *sl); void smartlist_sort_digests(smartlist_t *sl); void smartlist_uniq_strings(smartlist_t *sl); void smartlist_uniq_digests(smartlist_t *sl); void *smartlist_bsearch(smartlist_t *sl, const void *key, int (*compare)(const void *key, const void **member)) ATTR_PURE; int smartlist_bsearch_idx(const smartlist_t *sl, const void *key, int (*compare)(const void *key, const void **member), int *found_out); void smartlist_pqueue_add(smartlist_t *sl, int (*compare)(const void *a, const void *b), void *item); void *smartlist_pqueue_pop(smartlist_t *sl, int (*compare)(const void *a, const void *b)); void smartlist_pqueue_assert_ok(smartlist_t *sl, int (*compare)(const void *a, const void *b)); #define SPLIT_SKIP_SPACE 0x01 #define SPLIT_IGNORE_BLANK 0x02 #define SPLIT_STRIP_SPACE 0x04 int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep, int flags, int max); char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate, size_t *len_out) ATTR_MALLOC; char *smartlist_join_strings2(smartlist_t *sl, const char *join, size_t join_len, int terminate, size_t *len_out) ATTR_MALLOC; /** Iterate over the items in a smartlist sl, in order. For each item, * assign it to a new local variable of type type named var, and * execute the statement cmd. Inside the loop, the loop index can * be accessed as var_sl_idx and the length of the list can be accessed * as var_sl_len. * * NOTE: Do not change the length of the list while the loop is in progress, * unless you adjust the _sl_len variable correspondingly. See second example * below. * * Example use: *
 *   smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
 *   SMARTLIST_FOREACH(list, char *, cp,
 *   {
 *     printf("%d: %s\n", cp_sl_idx, cp);
 *     tor_free(cp);
 *   });
 *   smartlist_free(list);
 * 
* * Example use (advanced): *
 *   SMARTLIST_FOREACH(list, char *, cp,
 *   {
 *     if (!strcmp(cp, "junk")) {
 *       tor_free(cp);
 *       SMARTLIST_DEL_CURRENT(list, cp);
 *     }
 *   });
 * 
*/ /* Note: these macros use token pasting, and reach into smartlist internals. * This can make them a little daunting. Here's the approximate unpacking of * the above examples, for entertainment value: * *
 * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
 * {
 *   int cp_sl_idx, cp_sl_len = smartlist_len(list);
 *   char *cp;
 *   for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
 *     cp = smartlist_get(list, cp_sl_idx);
 *     printf("%d: %s\n", cp_sl_idx, cp);
 *     tor_free(cp);
 *   }
 * }
 * smartlist_free(list);
 * 
* *
 * {
 *   int cp_sl_idx, cp_sl_len = smartlist_len(list);
 *   char *cp;
 *   for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
 *     cp = smartlist_get(list, cp_sl_idx);
 *     if (!strcmp(cp, "junk")) {
 *       tor_free(cp);
 *       smartlist_del(list, cp_sl_idx);
 *       --cp_sl_idx;
 *       --cp_sl_len;
 *     }
 *   }
 * }
 * 
*/ #define SMARTLIST_FOREACH_BEGIN(sl, type, var) \ STMT_BEGIN \ int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \ type var; \ for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \ ++var ## _sl_idx) { \ var = (sl)->list[var ## _sl_idx]; #define SMARTLIST_FOREACH_END(var) \ var = NULL; \ } STMT_END #define SMARTLIST_FOREACH(sl, type, var, cmd) \ SMARTLIST_FOREACH_BEGIN(sl,type,var) { \ cmd; \ } SMARTLIST_FOREACH_END(var) /** Helper: While in a SMARTLIST_FOREACH loop over the list sl indexed * with the variable var, remove the current element in a way that * won't confuse the loop. */ #define SMARTLIST_DEL_CURRENT(sl, var) \ STMT_BEGIN \ smartlist_del(sl, var ## _sl_idx); \ --var ## _sl_idx; \ --var ## _sl_len; \ STMT_END /** Helper: While in a SMARTLIST_FOREACH loop over the list sl indexed * with the variable var, replace the current element with val. * Does not deallocate the current value of var. */ #define SMARTLIST_REPLACE_CURRENT(sl, var, val) \ STMT_BEGIN \ smartlist_set(sl, var ## _sl_idx, val); \ STMT_END /* Helper: Given two lists of items, possibly of different types, such that * both lists are sorted on some common field (as determined by a comparison * expression cmpexpr), and such that one list (sl1) has no * duplicates on the common field, loop through the lists in lockstep, and * execute unmatched_var2 on items in var2 that do not appear in * var1. * * WARNING: It isn't safe to add remove elements from either list while the * loop is in progress. * * Example use: * SMARTLIST_FOREACH_JOIN(routerstatus_list, routerstatus_t *, rs, * routerinfo_list, routerinfo_t *, ri, * memcmp(rs->identity_digest, ri->identity_digest, 20), * log_info(LD_GENERAL,"No match for %s", ri->nickname)) { * log_info(LD_GENERAL, "%s matches routerstatus %p", ri->nickname, rs); * } SMARTLIST_FOREACH_JOIN_END(rs, ri); **/ /* The example above unpacks (approximately) to: * int rs_sl_idx = 0, rs_sl_len = smartlist_len(routerstatus_list); * int ri_sl_idx, ri_sl_len = smartlist_len(routerinfo_list); * int rs_ri_cmp; * routerstatus_t *rs; * routerinfo_t *ri; * for (; ri_sl_idx < ri_sl_len; ++ri_sl_idx) { * ri = smartlist_get(routerinfo_list, ri_sl_idx); * while (rs_sl_idx < rs_sl_len) { * rs = smartlist_get(routerstatus_list, rs_sl_idx); * rs_ri_cmp = memcmp(rs->identity_digest, ri->identity_digest, 20); * if (rs_ri_cmp > 0) { * break; * } else if (rs_ri_cmp == 0) { * goto matched_ri; * } else { * ++rs_sl_idx; * } * } * log_info(LD_GENERAL,"No match for %s", ri->nickname); * continue; * matched_ri: { * log_info(LD_GENERAL,"%s matches with routerstatus %p",ri->nickname,rs); * } * } */ #define SMARTLIST_FOREACH_JOIN(sl1, type1, var1, sl2, type2, var2, \ cmpexpr, unmatched_var2) \ STMT_BEGIN \ int var1 ## _sl_idx = 0, var1 ## _sl_len=(sl1)->num_used; \ int var2 ## _sl_idx = 0, var2 ## _sl_len=(sl2)->num_used; \ int var1 ## _ ## var2 ## _cmp; \ type1 var1; \ type2 var2; \ for (; var2##_sl_idx < var2##_sl_len; ++var2##_sl_idx) { \ var2 = (sl2)->list[var2##_sl_idx]; \ while (var1##_sl_idx < var1##_sl_len) { \ var1 = (sl1)->list[var1##_sl_idx]; \ var1##_##var2##_cmp = (cmpexpr); \ if (var1##_##var2##_cmp > 0) { \ break; \ } else if (var1##_##var2##_cmp == 0) { \ goto matched_##var2; \ } else { \ ++var1##_sl_idx; \ } \ } \ /* Ran out of v1, or no match for var2. */ \ unmatched_var2; \ continue; \ matched_##var2: ; \ #define SMARTLIST_FOREACH_JOIN_END(var1, var2) \ } \ STMT_END #define DECLARE_MAP_FNS(maptype, keytype, prefix) \ typedef struct maptype maptype; \ typedef struct prefix##entry_t *prefix##iter_t; \ maptype* prefix##new(void); \ void* prefix##set(maptype *map, keytype key, void *val); \ void* prefix##get(const maptype *map, keytype key); \ void* prefix##remove(maptype *map, keytype key); \ void prefix##free(maptype *map, void (*free_val)(void*)); \ int prefix##isempty(const maptype *map); \ int prefix##size(const maptype *map); \ prefix##iter_t *prefix##iter_init(maptype *map); \ prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \ prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \ void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \ int prefix##iter_done(prefix##iter_t *iter); \ void prefix##assert_ok(const maptype *map) /* Map from const char * to void *. Implemented with a hash table. */ DECLARE_MAP_FNS(strmap_t, const char *, strmap_); /* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */ DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_); #undef DECLARE_MAP_FNS /** Iterates over the key-value pairs in a map map in order. * prefix is as for DECLARE_MAP_FNS (i.e., strmap_ or digestmap_). * The map's keys and values are of type keytype and valtype respectively; * each iteration assigns them to keyvar and valvar. * * Example use: * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) { * // use k and r * } MAP_FOREACH_END. */ /* Unpacks to, approximately: * { * digestmap_iter_t *k_iter; * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter); * k_iter = digestmap_iter_next(m, k_iter)) { * const char *k; * void *r_voidp; * routerinfo_t *r; * digestmap_iter_get(k_iter, &k, &r_voidp); * r = r_voidp; * // use k and r * } * } */ #define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \ STMT_BEGIN \ prefix##iter_t *keyvar##_iter; \ for (keyvar##_iter = prefix##iter_init(map); \ !prefix##iter_done(keyvar##_iter); \ keyvar##_iter = prefix##iter_next(map, keyvar##_iter)) { \ keytype keyvar; \ void *valvar##_voidp; \ valtype valvar; \ prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \ valvar = valvar##_voidp; /** As MAP_FOREACH, except allows members to be removed from the map * during the iteration via MAP_DEL_CURRENT. Example use: * * Example use: * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) { * if (is_very_old(r)) * MAP_DEL_CURRENT(k); * } MAP_FOREACH_END. **/ /* Unpacks to, approximately: * { * digestmap_iter_t *k_iter; * int k_del=0; * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter); * k_iter = k_del ? digestmap_iter_next(m, k_iter) * : digestmap_iter_next_rmv(m, k_iter)) { * const char *k; * void *r_voidp; * routerinfo_t *r; * k_del=0; * digestmap_iter_get(k_iter, &k, &r_voidp); * r = r_voidp; * if (is_very_old(r)) { * k_del = 1; * } * } * } */ #define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \ STMT_BEGIN \ prefix##iter_t *keyvar##_iter; \ int keyvar##_del=0; \ for (keyvar##_iter = prefix##iter_init(map); \ !prefix##iter_done(keyvar##_iter); \ keyvar##_iter = keyvar##_del ? \ prefix##iter_next_rmv(map, keyvar##_iter) : \ prefix##iter_next(map, keyvar##_iter)) { \ keytype keyvar; \ void *valvar##_voidp; \ valtype valvar; \ keyvar##_del=0; \ prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \ valvar = valvar##_voidp; /** Used with MAP_FOREACH_MODIFY to remove the currently-iterated-upon * member of the map. */ #define MAP_DEL_CURRENT(keyvar) \ STMT_BEGIN \ keyvar##_del = 1; \ STMT_END /** Used to end a MAP_FOREACH() block. */ #define MAP_FOREACH_END } STMT_END ; /** As MAP_FOREACH, but does not require declaration of prefix or keytype. * Example use: * DIGESTMAP_FOREACH(m, k, routerinfo_t *, r) { * // use k and r * } DIGESTMAP_FOREACH_END. */ #define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \ MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar) /** As MAP_FOREACH_MODIFY, but does not require declaration of prefix or * keytype. * Example use: * DIGESTMAP_FOREACH_MODIFY(m, k, routerinfo_t *, r) { * if (is_very_old(r)) * MAP_DEL_CURRENT(k); * } DIGESTMAP_FOREACH_END. */ #define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \ MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar) /** Used to end a DIGESTMAP_FOREACH() block. */ #define DIGESTMAP_FOREACH_END MAP_FOREACH_END #define STRMAP_FOREACH(map, keyvar, valtype, valvar) \ MAP_FOREACH(strmap_, map, const char *, keyvar, valtype, valvar) #define STRMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \ MAP_FOREACH_MODIFY(strmap_, map, const char *, keyvar, valtype, valvar) #define STRMAP_FOREACH_END MAP_FOREACH_END void* strmap_set_lc(strmap_t *map, const char *key, void *val); void* strmap_get_lc(const strmap_t *map, const char *key); void* strmap_remove_lc(strmap_t *map, const char *key); #define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \ typedef struct maptype maptype; \ typedef struct prefix##iter_t prefix##iter_t; \ static INLINE maptype* prefix##new(void) \ { \ return (maptype*)digestmap_new(); \ } \ static INLINE digestmap_t* prefix##to_digestmap(maptype *map) \ { \ return (digestmap_t*)map; \ } \ static INLINE valtype* prefix##get(maptype *map, const char *key) \ { \ return (valtype*)digestmap_get((digestmap_t*)map, key); \ } \ static INLINE valtype* prefix##set(maptype *map, const char *key, \ valtype *val) \ { \ return (valtype*)digestmap_set((digestmap_t*)map, key, val); \ } \ static INLINE valtype* prefix##remove(maptype *map, const char *key) \ { \ return (valtype*)digestmap_remove((digestmap_t*)map, key); \ } \ static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \ { \ digestmap_free((digestmap_t*)map, free_val); \ } \ static INLINE int prefix##isempty(maptype *map) \ { \ return digestmap_isempty((digestmap_t*)map); \ } \ static INLINE int prefix##size(maptype *map) \ { \ return digestmap_size((digestmap_t*)map); \ } \ static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \ { \ return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \ } \ static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \ prefix##iter_t *iter) \ { \ return (prefix##iter_t*) digestmap_iter_next( \ (digestmap_t*)map, (digestmap_iter_t*)iter); \ } \ static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \ prefix##iter_t *iter) \ { \ return (prefix##iter_t*) digestmap_iter_next_rmv( \ (digestmap_t*)map, (digestmap_iter_t*)iter); \ } \ static INLINE void prefix##iter_get(prefix##iter_t *iter, \ const char **keyp, \ valtype **valp) \ { \ void *v; \ digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \ *valp = v; \ } \ static INLINE int prefix##iter_done(prefix##iter_t *iter) \ { \ return digestmap_iter_done((digestmap_iter_t*)iter); \ } #if SIZEOF_INT == 4 #define BITARRAY_SHIFT 5 #elif SIZEOF_INT == 8 #define BITARRAY_SHIFT 6 #else #error "int is neither 4 nor 8 bytes. I can't deal with that." #endif #define BITARRAY_MASK ((1u<n_bits bits. */ static INLINE bitarray_t * bitarray_init_zero(unsigned int n_bits) { /* round up to the next int. */ size_t sz = (n_bits+BITARRAY_MASK) >> BITARRAY_SHIFT; return tor_malloc_zero(sz*sizeof(unsigned int)); } /** Expand ba from holding n_bits_old to n_bits_new, * clearing all new bits. Returns a possibly changed pointer to the * bitarray. */ static INLINE bitarray_t * bitarray_expand(bitarray_t *ba, unsigned int n_bits_old, unsigned int n_bits_new) { size_t sz_old = (n_bits_old+BITARRAY_MASK) >> BITARRAY_SHIFT; size_t sz_new = (n_bits_new+BITARRAY_MASK) >> BITARRAY_SHIFT; char *ptr; if (sz_new <= sz_old) return ba; ptr = tor_realloc(ba, sz_new*sizeof(unsigned int)); /* This memset does nothing to the older excess bytes. But they were * already set to 0 by bitarry_init_zero. */ memset(ptr+sz_old*sizeof(unsigned int), 0, (sz_new-sz_old)*sizeof(unsigned int)); return (bitarray_t*) ptr; } /** Free the bit array ba. */ static INLINE void bitarray_free(bitarray_t *ba) { tor_free(ba); } /** Set the bitth bit in b to 1. */ static INLINE void bitarray_set(bitarray_t *b, int bit) { b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK)); } /** Set the bitth bit in b to 0. */ static INLINE void bitarray_clear(bitarray_t *b, int bit) { b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK)); } /** Return true iff bitth bit in b is nonzero. NOTE: does * not necessarily return 1 on true. */ static INLINE unsigned int bitarray_is_set(bitarray_t *b, int bit) { return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK)); } /** A set of digests, implemented as a Bloom filter. */ typedef struct { int mask; /* One less than the number of bits in ba; always one less * than a power of two. */ bitarray_t *ba; /* A bit array to implement the Bloom filter. */ } digestset_t; #define BIT(n) ((n) & set->mask) /** Add the digest digest to set. */ static INLINE void digestset_add(digestset_t *set, const char *digest) { const uint32_t *p = (const uint32_t *)digest; const uint32_t d1 = p[0] + (p[1]>>16); const uint32_t d2 = p[1] + (p[2]>>16); const uint32_t d3 = p[2] + (p[3]>>16); const uint32_t d4 = p[3] + (p[0]>>16); bitarray_set(set->ba, BIT(d1)); bitarray_set(set->ba, BIT(d2)); bitarray_set(set->ba, BIT(d3)); bitarray_set(set->ba, BIT(d4)); } /** If digest is in set, return nonzero. Otherwise, * probably return zero. */ static INLINE int digestset_isin(const digestset_t *set, const char *digest) { const uint32_t *p = (const uint32_t *)digest; const uint32_t d1 = p[0] + (p[1]>>16); const uint32_t d2 = p[1] + (p[2]>>16); const uint32_t d3 = p[2] + (p[3]>>16); const uint32_t d4 = p[3] + (p[0]>>16); return bitarray_is_set(set->ba, BIT(d1)) && bitarray_is_set(set->ba, BIT(d2)) && bitarray_is_set(set->ba, BIT(d3)) && bitarray_is_set(set->ba, BIT(d4)); } #undef BIT digestset_t *digestset_new(int max_elements); void digestset_free(digestset_t* set); /* These functions, given an array of n_elements, return the * nth lowest element. nth=0 gives the lowest element; * n_elements-1 gives the highest; and (n_elements-1) / 2 gives * the median. As a side effect, the elements of array are sorted. */ int find_nth_int(int *array, int n_elements, int nth); time_t find_nth_time(time_t *array, int n_elements, int nth); double find_nth_double(double *array, int n_elements, int nth); uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth); long find_nth_long(long *array, int n_elements, int nth); static INLINE int median_int(int *array, int n_elements) { return find_nth_int(array, n_elements, (n_elements-1)/2); } static INLINE time_t median_time(time_t *array, int n_elements) { return find_nth_time(array, n_elements, (n_elements-1)/2); } static INLINE double median_double(double *array, int n_elements) { return find_nth_double(array, n_elements, (n_elements-1)/2); } static INLINE uint32_t median_uint32(uint32_t *array, int n_elements) { return find_nth_uint32(array, n_elements, (n_elements-1)/2); } static INLINE long median_long(long *array, int n_elements) { return find_nth_long(array, n_elements, (n_elements-1)/2); } #endif