/* Copyright 2003 Roger Dingledine */ /* See LICENSE for licensing information */ /* $Id$ */ #include "../or/or.h" #include "../or/tree.h" #ifdef HAVE_UNAME #include #endif /* used by inet_addr, not defined on solaris anywhere!? */ #ifndef INADDR_NONE #define INADDR_NONE ((unsigned long) -1) #endif /* in-line the strl functions */ #ifndef HAVE_STRLCPY #include "strlcpy.c" #endif #ifndef HAVE_STRLCAT #include "strlcat.c" #endif /* * Memory wrappers */ void *tor_malloc(size_t size) { void *result; result = malloc(size); if(!result) { log_fn(LOG_ERR, "Out of memory. Dying."); exit(1); } // memset(result,'X',size); /* deadbeef to encourage bugs */ return result; } void *tor_malloc_zero(size_t size) { void *result = tor_malloc(size); memset(result, 0, size); return result; } void *tor_realloc(void *ptr, size_t size) { void *result; result = realloc(ptr, size); if (!result) { log_fn(LOG_ERR, "Out of memory. Dying."); exit(1); } return result; } char *tor_strdup(const char *s) { char *dup; assert(s); dup = strdup(s); if(!dup) { log_fn(LOG_ERR,"Out of memory. Dying."); exit(1); } return dup; } char *tor_strndup(const char *s, size_t n) { char *dup; assert(s); dup = tor_malloc(n+1); strncpy(dup, s, n); dup[n] = 0; return dup; } /* Convert s to lowercase. */ void tor_strlower(char *s) { while (*s) { *s = tolower(*s); ++s; } } #ifndef UNALIGNED_INT_ACCESS_OK uint16_t get_uint16(char *cp) { uint16_t v; memcpy(&v,cp,2); return v; } uint32_t get_uint32(char *cp) { uint32_t v; memcpy(&v,cp,4); return v; } void set_uint16(char *cp, uint16_t v) { memcpy(cp,&v,2); } void set_uint32(char *cp, uint32_t v) { memcpy(cp,&v,4); } #endif /* * A simple smartlist interface to make an unordered list of acceptable * nodes and then choose a random one. * smartlist_create() mallocs the list, _free() frees the list, * _add() adds an element, _remove() removes an element if it's there, * _choose() returns a random element. */ smartlist_t *smartlist_create(int max_elements) { smartlist_t *sl = tor_malloc(sizeof(smartlist_t)); sl->list = tor_malloc(sizeof(void *) * max_elements); sl->num_used = 0; sl->max = max_elements; return sl; } void smartlist_free(smartlist_t *sl) { free(sl->list); free(sl); } /* add element to the list, but only if there's room */ void smartlist_add(smartlist_t *sl, void *element) { if(sl->num_used < sl->max) sl->list[sl->num_used++] = element; else log_fn(LOG_WARN,"We've already got %d elements, discarding.",sl->max); } void smartlist_remove(smartlist_t *sl, void *element) { int i; if(element == NULL) return; for(i=0; i < sl->num_used; i++) if(sl->list[i] == element) { sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ } } int smartlist_isin(smartlist_t *sl, void *element) { int i; for(i=0; i < sl->num_used; i++) if(sl->list[i] == element) return 1; return 0; } int smartlist_overlap(smartlist_t *sl1, smartlist_t *sl2) { int i; for(i=0; i < sl2->num_used; i++) if(smartlist_isin(sl1, sl2->list[i])) return 1; return 0; } /* remove elements of sl1 that aren't in sl2 */ void smartlist_intersect(smartlist_t *sl1, smartlist_t *sl2) { int i; for(i=0; i < sl1->num_used; i++) if(!smartlist_isin(sl2, sl1->list[i])) { sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ } } /* remove all elements of sl2 from sl1 */ void smartlist_subtract(smartlist_t *sl1, smartlist_t *sl2) { int i; for(i=0; i < sl2->num_used; i++) smartlist_remove(sl1, sl2->list[i]); } void *smartlist_choose(smartlist_t *sl) { if(sl->num_used) return sl->list[crypto_pseudo_rand_int(sl->num_used)]; return NULL; /* no elements to choose from */ } /* * Splay-tree implementation of string-to-void* map */ struct strmap_entry_t { SPLAY_ENTRY(strmap_entry_t) node; char *key; void *val; }; struct strmap_t { SPLAY_HEAD(strmap_tree, strmap_entry_t) head; }; static int compare_strmap_entries(struct strmap_entry_t *a, struct strmap_entry_t *b) { return strcmp(a->key, b->key); } SPLAY_PROTOTYPE(strmap_tree, strmap_entry_t, node, compare_strmap_entries); SPLAY_GENERATE(strmap_tree, strmap_entry_t, node, compare_strmap_entries); /* Create a new empty map from strings to void*'s. */ strmap_t* strmap_new(void) { strmap_t *result; result = tor_malloc(sizeof(strmap_t)); SPLAY_INIT(&result->head); return result; } /* Set the current value for with . Returns the previous * value for if one was set, or NULL if one was not. * * This function makes a copy of 'key' if necessary, but not of 'val'. */ void* strmap_set(strmap_t *map, const char *key, void *val) { strmap_entry_t *resolve; strmap_entry_t search; void *oldval; assert(map && key && val); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { oldval = resolve->val; resolve->val = val; return oldval; } else { resolve = tor_malloc_zero(sizeof(strmap_entry_t)); resolve->key = tor_strdup(key); resolve->val = val; SPLAY_INSERT(strmap_tree, &map->head, resolve); return NULL; } } /* Return the current value associated with , or NULL if no * value is set. */ void* strmap_get(strmap_t *map, const char *key) { strmap_entry_t *resolve; strmap_entry_t search; assert(map && key); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { return resolve->val; } else { return NULL; } } /* Remove the value currently associated with from the map. * Return the value if one was set, or NULL if there was no entry for * . * * Note: you must free any storage associated with the returned value. */ void* strmap_remove(strmap_t *map, const char *key) { strmap_entry_t *resolve; strmap_entry_t search; void *oldval; assert(map && key); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { oldval = resolve->val; SPLAY_REMOVE(strmap_tree, &map->head, resolve); tor_free(resolve->key); tor_free(resolve); return oldval; } else { return NULL; } } /* Same as strmap_set, but first converts to lowercase. */ void* strmap_set_lc(strmap_t *map, const char *key, void *val) { /* We could be a little faster by using strcasecmp instead, and a separate * type, but I don't think it matters. */ void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_set(map,lc_key,val); tor_free(lc_key); return v; } /* Same as strmap_get, but first converts to lowercase. */ void* strmap_get_lc(strmap_t *map, const char *key) { void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_get(map,lc_key); tor_free(lc_key); return v; } /* Same as strmap_remove, but first converts to lowercase */ void* strmap_remove_lc(strmap_t *map, const char *key) { void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_remove(map,lc_key); tor_free(lc_key); return v; } /* Invoke fn() on every entry of the map, in order. For every entry, * fn() is invoked with that entry's key, that entry's value, and the * value of supplied to strmap_foreach. fn() must return a new * (possibly unmodified) value for each entry: if fn() returns NULL, the * entry is removed. * * Example: * static void* upcase_and_remove_empty_vals(const char *key, void *val, * void* data) { * char *cp = (char*)val; * if (!*cp) { // val is an empty string. * free(val); * return NULL; * } else { * for (; *cp; cp++) * *cp = toupper(*cp); * } * return val; * } * } * * ... * * strmap_foreach(map, upcase_and_remove_empty_vals, NULL); */ void strmap_foreach(strmap_t *map, void* (*fn)(const char *key, void *val, void *data), void *data) { strmap_entry_t *ptr, *next; assert(map && fn); for (ptr = SPLAY_MIN(strmap_tree, &map->head); ptr != NULL; ptr = next) { /* This remove-in-place usage is specifically blessed in tree(3). */ next = SPLAY_NEXT(strmap_tree, &map->head, ptr); ptr->val = fn(ptr->key, ptr->val, data); if (!ptr->val) { SPLAY_REMOVE(strmap_tree, &map->head, ptr); tor_free(ptr->key); tor_free(ptr); } } } /* return an 'iterator' pointer to the front of a map. * * Iterator example: * * // uppercase values in "map", removing empty values. * * strmap_iterator_t *iter; * const char *key; * void *val; * char *cp; * * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) { * strmap_iter_get(iter, &key, &val); * cp = (char*)val; * if (!*cp) { * iter = strmap_iter_next_rmv(iter); * free(val); * } else { * for(;*cp;cp++) *cp = toupper(*cp); * iter = strmap_iter_next(iter); * } * } * */ strmap_iter_t *strmap_iter_init(strmap_t *map) { assert(map); return SPLAY_MIN(strmap_tree, &map->head); } /* Advance the iterator 'iter' for map a single step to the next entry. */ strmap_iter_t *strmap_iter_next(strmap_t *map, strmap_iter_t *iter) { assert(map && iter); return SPLAY_NEXT(strmap_tree, &map->head, iter); } /* Advance the iterator 'iter' a single step to the next entry, removing * the current entry. */ strmap_iter_t *strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter) { strmap_iter_t *next; assert(map && iter); next = SPLAY_NEXT(strmap_tree, &map->head, iter); SPLAY_REMOVE(strmap_tree, &map->head, iter); tor_free(iter->key); tor_free(iter); return next; } /* Set *keyp and *valp to the current entry pointed to by iter. */ void strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp) { assert(iter && keyp && valp); *keyp = iter->key; *valp = iter->val; } /* Return true iff iter has advanced past the last entry of map. */ int strmap_iter_done(strmap_iter_t *iter) { return iter == NULL; } /* Remove all entries from , and deallocate storage for those entries. * If free_val is provided, it is invoked on every value in . */ void strmap_free(strmap_t *map, void (*free_val)(void*)) { strmap_entry_t *ent, *next; for (ent = SPLAY_MIN(strmap_tree, &map->head); ent != NULL; ent = next) { next = SPLAY_NEXT(strmap_tree, &map->head, ent); SPLAY_REMOVE(strmap_tree, &map->head, ent); tor_free(ent->key); if (free_val) tor_free(ent->val); } assert(SPLAY_EMPTY(&map->head)); tor_free(map); } /* * String manipulation */ /* return the first char of s that is not whitespace and not a comment */ const char *eat_whitespace(const char *s) { assert(s); while(isspace((int)*s) || *s == '#') { while(isspace((int)*s)) s++; if(*s == '#') { /* read to a \n or \0 */ while(*s && *s != '\n') s++; if(!*s) return s; } } return s; } const char *eat_whitespace_no_nl(const char *s) { while(*s == ' ' || *s == '\t') ++s; return s; } /* return the first char of s that is whitespace or '#' or '\0 */ const char *find_whitespace(const char *s) { assert(s); while(*s && !isspace((int)*s) && *s != '#') s++; return s; } /* * Time */ void tor_gettimeofday(struct timeval *timeval) { #ifdef HAVE_GETTIMEOFDAY if (gettimeofday(timeval, NULL)) { log_fn(LOG_ERR, "gettimeofday failed."); /* If gettimeofday dies, we have either given a bad timezone (we didn't), or segfaulted.*/ exit(1); } #elif defined(HAVE_FTIME) ftime(timeval); #else #error "No way to get time." #endif return; } long tv_udiff(struct timeval *start, struct timeval *end) { long udiff; long secdiff = end->tv_sec - start->tv_sec; if (secdiff+1 > LONG_MAX/1000000) { log_fn(LOG_WARN, "comparing times too far apart."); return LONG_MAX; } udiff = secdiff*1000000L + (end->tv_usec - start->tv_usec); if(udiff < 0) { log_fn(LOG_INFO, "start (%ld.%ld) is after end (%ld.%ld). Returning 0.", (long)start->tv_sec, (long)start->tv_usec, (long)end->tv_sec, (long)end->tv_usec); return 0; } return udiff; } int tv_cmp(struct timeval *a, struct timeval *b) { if (a->tv_sec > b->tv_sec) return 1; if (a->tv_sec < b->tv_sec) return -1; if (a->tv_usec > b->tv_usec) return 1; if (a->tv_usec < b->tv_usec) return -1; return 0; } void tv_add(struct timeval *a, struct timeval *b) { a->tv_usec += b->tv_usec; a->tv_sec += b->tv_sec + (a->tv_usec / 1000000); a->tv_usec %= 1000000; } void tv_addms(struct timeval *a, long ms) { a->tv_usec += (ms * 1000) % 1000000; a->tv_sec += ((ms * 1000) / 1000000) + (a->tv_usec / 1000000); a->tv_usec %= 1000000; } #define IS_LEAPYEAR(y) (!(y % 4) && ((y % 100) || !(y % 400))) static int n_leapdays(int y1, int y2) { --y1; --y2; return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400); } static const int days_per_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; time_t tor_timegm (struct tm *tm) { /* This is a pretty ironclad timegm implementation, snarfed from Python2.2. * It's way more brute-force than fiddling with tzset(). */ time_t ret; unsigned long year, days, hours, minutes; int i; year = tm->tm_year + 1900; assert(year >= 1970); assert(tm->tm_mon >= 0 && tm->tm_mon <= 11); days = 365 * (year-1970) + n_leapdays(1970,year); for (i = 0; i < tm->tm_mon; ++i) days += days_per_month[i]; if (tm->tm_mon > 1 && IS_LEAPYEAR(year)) ++days; days += tm->tm_mday - 1; hours = days*24 + tm->tm_hour; minutes = hours*60 + tm->tm_min; ret = minutes*60 + tm->tm_sec; return ret; } /* * Low-level I/O. */ /* a wrapper for write(2) that makes sure to write all count bytes. * Only use if fd is a blocking fd. */ int write_all(int fd, const char *buf, size_t count, int isSocket) { size_t written = 0; int result; while(written != count) { if (isSocket) result = send(fd, buf+written, count-written, 0); else result = write(fd, buf+written, count-written); if(result<0) return -1; written += result; } return count; } /* a wrapper for read(2) that makes sure to read all count bytes. * Only use if fd is a blocking fd. */ int read_all(int fd, char *buf, size_t count, int isSocket) { size_t numread = 0; int result; while(numread != count) { if (isSocket) result = recv(fd, buf+numread, count-numread, 0); else result = read(fd, buf+numread, count-numread); if(result<=0) return -1; numread += result; } return count; } void set_socket_nonblocking(int socket) { #ifdef MS_WINDOWS /* Yes means no and no means yes. Do you not want to be nonblocking? */ int nonblocking = 0; ioctlsocket(socket, FIONBIO, (unsigned long*) &nonblocking); #else fcntl(socket, F_SETFL, O_NONBLOCK); #endif } /* * Process control */ /* Minimalist interface to run a void function in the background. On * unix calls fork, on win32 calls beginthread. Returns -1 on failure. * func should not return, but rather should call spawn_exit. */ int spawn_func(int (*func)(void *), void *data) { #ifdef MS_WINDOWS int rv; rv = _beginthread(func, 0, data); if (rv == (unsigned long) -1) return -1; return 0; #else pid_t pid; pid = fork(); if (pid<0) return -1; if (pid==0) { /* Child */ func(data); assert(0); /* Should never reach here. */ return 0; /* suppress "control-reaches-end-of-non-void" warning. */ } else { /* Parent */ return 0; } #endif } void spawn_exit() { #ifdef MS_WINDOWS _endthread(); #else exit(0); #endif } /* * Windows compatibility. */ int tor_socketpair(int family, int type, int protocol, int fd[2]) { #ifdef HAVE_SOCKETPAIR_XXXX /* For testing purposes, we never fall back to real socketpairs. */ return socketpair(family, type, protocol, fd); #else int listener = -1; int connector = -1; int acceptor = -1; struct sockaddr_in listen_addr; struct sockaddr_in connect_addr; int size; if (protocol #ifdef AF_UNIX || family != AF_UNIX #endif ) { #ifdef MS_WINDOWS errno = WSAEAFNOSUPPORT; #else errno = EAFNOSUPPORT; #endif return -1; } if (!fd) { errno = EINVAL; return -1; } listener = socket(AF_INET, type, 0); if (listener == -1) return -1; memset (&listen_addr, 0, sizeof (listen_addr)); listen_addr.sin_family = AF_INET; listen_addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK); listen_addr.sin_port = 0; /* kernel choses port. */ if (bind(listener, (struct sockaddr *) &listen_addr, sizeof (listen_addr)) == -1) goto tidy_up_and_fail; if (listen(listener, 1) == -1) goto tidy_up_and_fail; connector = socket(AF_INET, type, 0); if (connector == -1) goto tidy_up_and_fail; /* We want to find out the port number to connect to. */ size = sizeof (connect_addr); if (getsockname(listener, (struct sockaddr *) &connect_addr, &size) == -1) goto tidy_up_and_fail; if (size != sizeof (connect_addr)) goto abort_tidy_up_and_fail; if (connect(connector, (struct sockaddr *) &connect_addr, sizeof (connect_addr)) == -1) goto tidy_up_and_fail; size = sizeof (listen_addr); acceptor = accept(listener, (struct sockaddr *) &listen_addr, &size); if (acceptor == -1) goto tidy_up_and_fail; if (size != sizeof(listen_addr)) goto abort_tidy_up_and_fail; close(listener); /* Now check we are talking to ourself by matching port and host on the two sockets. */ if (getsockname(connector, (struct sockaddr *) &connect_addr, &size) == -1) goto tidy_up_and_fail; if (size != sizeof (connect_addr) || listen_addr.sin_family != connect_addr.sin_family || listen_addr.sin_addr.s_addr != connect_addr.sin_addr.s_addr || listen_addr.sin_port != connect_addr.sin_port) { goto abort_tidy_up_and_fail; } fd[0] = connector; fd[1] = acceptor; return 0; abort_tidy_up_and_fail: #ifdef MS_WINDOWS errno = WSAECONNABORTED; #else errno = ECONNABORTED; /* I hope this is portable and appropriate. */ #endif tidy_up_and_fail: { int save_errno = errno; if (listener != -1) close(listener); if (connector != -1) close(connector); if (acceptor != -1) close(acceptor); errno = save_errno; return -1; } #endif } #ifdef MS_WINDOWS int correct_socket_errno(int s) { int optval, optvallen=sizeof(optval); assert(errno == WSAEWOULDBLOCK); if (getsockopt(s, SOL_SOCKET, SO_ERROR, (void*)&optval, &optvallen)) return errno; if (optval) return optval; return WSAEWOULDBLOCK; } #endif /* * Filesystem operations. */ /* Return FN_ERROR if filename can't be read, FN_NOENT if it doesn't * exist, FN_FILE if it is a regular file, or FN_DIR if it's a * directory. */ file_status_t file_status(const char *fname) { struct stat st; if (stat(fname, &st)) { if (errno == ENOENT) { return FN_NOENT; } return FN_ERROR; } if (st.st_mode & S_IFDIR) return FN_DIR; else if (st.st_mode & S_IFREG) return FN_FILE; else return FN_ERROR; } /* Check whether dirname exists and is private. If yes returns 0. Else returns -1. */ int check_private_dir(const char *dirname, int create) { int r; struct stat st; if (stat(dirname, &st)) { if (errno != ENOENT) { log(LOG_WARN, "Directory %s cannot be read: %s", dirname, strerror(errno)); return -1; } if (!create) { log(LOG_WARN, "Directory %s does not exist.", dirname); return -1; } log(LOG_INFO, "Creating directory %s", dirname); #ifdef MS_WINDOWS r = mkdir(dirname); #else r = mkdir(dirname, 0700); #endif if (r) { log(LOG_WARN, "Error creating directory %s: %s", dirname, strerror(errno)); return -1; } else { return 0; } } if (!(st.st_mode & S_IFDIR)) { log(LOG_WARN, "%s is not a directory", dirname); return -1; } #ifndef MS_WINDOWS if (st.st_uid != getuid()) { log(LOG_WARN, "%s is not owned by this UID (%d)", dirname, (int)getuid()); return -1; } if (st.st_mode & 0077) { log(LOG_WARN, "Fixing permissions on directory %s", dirname); if (chmod(dirname, 0700)) { log(LOG_WARN, "Could not chmod directory %s: %s", dirname, strerror(errno)); return -1; } else { return 0; } } #endif return 0; } int write_str_to_file(const char *fname, const char *str) { char tempname[1024]; int fd; FILE *file; if ((strlcpy(tempname,fname,1024) >= 1024) || (strlcat(tempname,".tmp",1024) >= 1024)) { log(LOG_WARN, "Filename %s.tmp too long (>1024 chars)", fname); return -1; } if ((fd = open(tempname, O_WRONLY|O_CREAT|O_TRUNC, 0600)) < 0) { log(LOG_WARN, "Couldn't open %s for writing: %s", tempname, strerror(errno)); return -1; } if (!(file = fdopen(fd, "w"))) { log(LOG_WARN, "Couldn't fdopen %s for writing: %s", tempname, strerror(errno)); close(fd); return -1; } if (fputs(str,file) == EOF) { log(LOG_WARN, "Error writing to %s: %s", tempname, strerror(errno)); fclose(file); return -1; } fclose(file); if (rename(tempname, fname)) { log(LOG_WARN, "Error replacing %s: %s", fname, strerror(errno)); return -1; } return 0; } char *read_file_to_str(const char *filename) { int fd; /* router file */ struct stat statbuf; char *string; assert(filename); if(strcspn(filename,CONFIG_LEGAL_FILENAME_CHARACTERS) != 0) { log_fn(LOG_WARN,"Filename %s contains illegal characters.",filename); return NULL; } if(stat(filename, &statbuf) < 0) { log_fn(LOG_INFO,"Could not stat %s.",filename); return NULL; } fd = open(filename,O_RDONLY,0); if (fd<0) { log_fn(LOG_WARN,"Could not open %s.",filename); return NULL; } string = tor_malloc(statbuf.st_size+1); if(read_all(fd,string,statbuf.st_size,0) != statbuf.st_size) { log_fn(LOG_WARN,"Couldn't read all %ld bytes of file '%s'.", (long)statbuf.st_size,filename); free(string); close(fd); return NULL; } close(fd); string[statbuf.st_size] = 0; /* null terminate it */ return string; } /* read lines from f (no more than maxlen-1 bytes each) until we * get a non-whitespace line. If it isn't of the form "key value" * (value can have spaces), return -1. * Point *key to the first word in line, point *value * to the second. * Put a \0 at the end of key, remove everything at the end of value * that is whitespace or comment. * Return 1 if success, 0 if no more lines, -1 if error. */ int parse_line_from_file(char *line, int maxlen, FILE *f, char **key_out, char **value_out) { char *s, *key, *end, *value; try_next_line: if(!fgets(line, maxlen, f)) { if(feof(f)) return 0; return -1; /* real error */ } if((s = strchr(line,'#'))) /* strip comments */ *s = 0; /* stop the line there */ /* remove end whitespace */ s = strchr(line, 0); /* now we're at the null */ do { *s = 0; s--; } while (s >= line && isspace((int)*s)); key = line; while(isspace((int)*key)) key++; if(*key == 0) goto try_next_line; /* this line has nothing on it */ end = key; while(*end && !isspace((int)*end)) end++; value = end; while(*value && isspace((int)*value)) value++; if(!*end || !*value) { /* only a key on this line. no value. */ *end = 0; log_fn(LOG_WARN,"Line has keyword '%s' but no value. Failing.",key); return -1; } *end = 0; /* null it out */ log_fn(LOG_DEBUG,"got keyword '%s', value '%s'", key, value); *key_out = key, *value_out = value; return 1; } int is_internal_IP(uint32_t ip) { if (((ip & 0xff000000) == 0x0a000000) || /* 10/8 */ ((ip & 0xff000000) == 0x00000000) || /* 0/8 */ ((ip & 0xff000000) == 0x7f000000) || /* 127/8 */ ((ip & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */ ((ip & 0xfff00000) == 0xac100000) || /* 172.16/12 */ ((ip & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */ return 1; return 0; } static char uname_result[256]; static int uname_result_is_set = 0; const char * get_uname(void) { #ifdef HAVE_UNAME struct utsname u; #endif if (!uname_result_is_set) { #ifdef HAVE_UNAME if (uname(&u) != -1) { /* (linux says 0 is success, solaris says 1 is success) */ snprintf(uname_result, 255, "%s %s %s", u.sysname, u.nodename, u.machine); uname_result[255] = '\0'; } else #endif { strcpy(uname_result, "Unknown platform"); } uname_result_is_set = 1; } return uname_result; } #ifndef MS_WINDOWS /* Based on code contributed by christian grothoff */ static int start_daemon_called = 0; static int finish_daemon_called = 0; static int daemon_filedes[2]; void start_daemon(char *desired_cwd) { pid_t pid; if (start_daemon_called) return; start_daemon_called = 1; if(!desired_cwd) desired_cwd = "/"; /* Don't hold the wrong FS mounted */ if (chdir(desired_cwd) < 0) { log_fn(LOG_ERR,"chdir to %s failed. Exiting.",desired_cwd); exit(1); } pipe(daemon_filedes); pid = fork(); if (pid < 0) { log_fn(LOG_ERR,"fork failed. Exiting."); exit(1); } if (pid) { /* Parent */ int ok; char c; close(daemon_filedes[1]); /* we only read */ ok = -1; while (0 < read(daemon_filedes[0], &c, sizeof(char))) { if (c == '.') ok = 1; } fflush(stdout); if (ok == 1) exit(0); else exit(1); /* child reported error */ } else { /* Child */ close(daemon_filedes[0]); /* we only write */ pid = setsid(); /* Detach from controlling terminal */ /* * Fork one more time, so the parent (the session group leader) can exit. * This means that we, as a non-session group leader, can never regain a * controlling terminal. This part is recommended by Stevens's * _Advanced Programming in the Unix Environment_. */ if (fork() != 0) { exit(0); } return; } } void finish_daemon(void) { int nullfd; char c = '.'; if (finish_daemon_called) return; if (!start_daemon_called) start_daemon(NULL); finish_daemon_called = 1; nullfd = open("/dev/null", O_CREAT | O_RDWR | O_APPEND); if (nullfd < 0) { log_fn(LOG_ERR,"/dev/null can't be opened. Exiting."); exit(1); } /* close fds linking to invoking terminal, but * close usual incoming fds, but redirect them somewhere * useful so the fds don't get reallocated elsewhere. */ if (dup2(nullfd,0) < 0 || dup2(nullfd,1) < 0 || dup2(nullfd,2) < 0) { log_fn(LOG_ERR,"dup2 failed. Exiting."); exit(1); } write(daemon_filedes[1], &c, sizeof(char)); /* signal success */ close(daemon_filedes[1]); } #else /* defined(MS_WINDOWS) */ void start_daemon(char *cp) {} void finish_daemon(void) {} #endif void write_pidfile(char *filename) { #ifndef MS_WINDOWS FILE *pidfile; if ((pidfile = fopen(filename, "w")) == NULL) { log_fn(LOG_WARN, "unable to open %s for writing: %s", filename, strerror(errno)); } else { fprintf(pidfile, "%d", (int)getpid()); fclose(pidfile); } #endif } int switch_id(char *user, char *group) { #ifndef MS_WINDOWS struct passwd *pw = NULL; struct group *gr = NULL; if (user) { pw = getpwnam(user); if (pw == NULL) { log_fn(LOG_ERR,"User '%s' not found.", user); return -1; } } /* switch the group first, while we still have the privileges to do so */ if (group) { gr = getgrnam(group); if (gr == NULL) { log_fn(LOG_ERR,"Group '%s' not found.", group); return -1; } if (setgid(gr->gr_gid) != 0) { log_fn(LOG_ERR,"Error setting GID: %s", strerror(errno)); return -1; } } else if (user) { if (setgid(pw->pw_gid) != 0) { log_fn(LOG_ERR,"Error setting GID: %s", strerror(errno)); return -1; } } /* now that the group is switched, we can switch users and lose privileges */ if (user) { if (setuid(pw->pw_uid) != 0) { log_fn(LOG_ERR,"Error setting UID: %s", strerror(errno)); return -1; } } return 0; #endif log_fn(LOG_ERR, "User or group specified, but switching users is not supported."); return -1; } int tor_inet_aton(const char *c, struct in_addr* addr) { #ifdef HAVE_INET_ATON return inet_aton(c, addr); #else uint32_t r; assert(c && addr); if (strcmp(c, "255.255.255.255") == 0) { addr->s_addr = 0xFFFFFFFFu; return 1; } r = inet_addr(c); if (r == INADDR_NONE) return 0; addr->s_addr = r; return 1; #endif }