If you pass the --enable-coverage flag on the command line, we build
our testing binaries with appropriate options eo enable coverage
testing. We also build a "tor-cov" binary that has coverage enabled,
for integration tests.
On recent OSX versions, test coverage only works with clang, not gcc.
So we warn about that.
Also add a contrib/coverage script to actually run gcov with the
appropriate options to generate useful .gcov files. (Thanks to
automake, the .o files will not have the names that gcov expects to
find.)
Also, remove generated gcda and gcno files on clean.
We previously used FILENAME_PRIVATE identifiers mostly for
identifiers exposed only to the unit tests... but also for
identifiers exposed to the benchmarker, and sometimes for
identifiers exposed to a similar module, and occasionally for no
really good reason at all.
Now, we use FILENAME_PRIVATE identifiers for identifiers shared by
Tor and the unit tests. They should be defined static when we
aren't building the unit test, and globally visible otherwise. (The
STATIC macro will keep us honest here.)
For identifiers used only by the unit tests and never by Tor at all,
on the other hand, we wrap them in #ifdef TOR_UNIT_TESTS.
This is not the motivating use case for the split test/non-test
build system; it's just a test example to see how it works, and to
take a chance to clean up the code a little.
This is mainly a matter of automake trickery: we build each static
library in two versions now: one with the TOR_UNIT_TESTS macro
defined, and one without. When TOR_UNIT_TESTS is defined, we can
enable mocking and expose more functions. When it's not defined, we
can lock the binary down more.
The alternatives would be to have alternate build modes: a "testing
configuration" for building the libraries with test support, and a
"production configuration" for building them without. I don't favor
that approach, since I think it would mean more people runnning
binaries build for testing, or more people not running unit tests.
Fix a bug in the voting algorithm that could yield incorrect results
when a non-naming authority declared too many flags. Fixes bug 9200;
bugfix on 0.2.0.3-alpha.
Found by coverity scan.
This implements "algorithm 1" from my discussion of bug #9072: on OOM,
find the circuits with the longest queues, and kill them. It's also a
fix for #9063 -- without the side-effects of bug #9072.
The memory bounds aren't perfect here, and you need to be sure to
allow some slack for the rest of Tor's usage.
This isn't a perfect fix; the rest of the solutions I describe on
codeable.
In my #7912 fix, there wasn't any code to remove entries from the
(channel, circuit ID)->circuit map corresponding to queued but un-sent
DESTROYs.
Spotted by skruffy. Fixes bug 9082; bug not in any released Tor.
I added the code to pass a destroy cell to a queueing function rather
than writing it immediately, and the code to remember that we
shouldn't reuse the circuit id until the destroy is actually sent, and
the code to release the circuit id once the destroy has been sent...
and then I finished by hooking destroy_cell_queue into the rest of
Tor.
This is a reprise of the fix in bdff7e3299d78; 6905c1f6 reintroduced
that bug. Briefly: windows doesn't seem to like deleting a mapped
file. I tried adding the PROT_SHARED_DELETE flag to the createfile
all, but that didn't actually fix this issue. Fortunately, the unit
test I added in 4f4fc63fea should
prevent us from making this particular screw-up again.
This patch also tries to limit the crash potential of a failure to
write by a little bit, although it could do a better job of retaining
microdescriptor bodies.
Fix for bug 8822, bugfix on 0.2.4.12-alpha.