This module implements a key-pinning mechanism to ensure that it's
safe to use RSA keys as identitifers even as we migrate to Ed25519
keys. It remembers, for every Ed25519 key we've seen, what the
associated Ed25519 key is. This way, if we see a different Ed25519
key with that RSA key, we'll know that there's a mismatch.
We persist these entries to disk using a simple format, where each
line has a base64-encoded RSA SHA1 hash, then a base64-endoded
Ed25519 key. Empty lines, misformed lines, and lines beginning with
a # are ignored. Lines beginning with @ are reserved for future
extensions.
For prop220, we have a new ed25519 certificate type. This patch
implements the code to create, parse, and validate those, along with
code for routers to maintain their own sets of certificates and
keys. (Some parts of master identity key encryption are done, but
the implementation of that isn't finished)
Check that tor generates new keys, and overwrites the empty key files.
Test that tor generates new keys when keys are missing (existing
behaviour).
Test that tor does not overwrite key files that already contain data
(existing behaviour).
Tests fixes to bug 13111.
By now, support in the network is widespread and it's time to require
more modern crypto on all Tor instances, whether they're clients or
servers. By doing this early in 0.2.6, we can be sure that at some point
all clients will have reasonable support.
We didn't really have test coverage for these parsing functions, so
I went and made some. These tests also verify that the parsing
functions set the list of invalid digests correctly.
Also, use it to generate test vectors, and add those test vectors
to test_crypto.c
This is based on ed25519.py from the ed25519 webpage; the kludgy hacks
are my own.
This reduces the likelihood that I have made any exploitable errors
in the encoding/decoding.
This commit also imports the trunnel runtime source into Tor.
A new set of unit test cases are provided, as well as introducing
an alternative paradigm and macros to support it. Primarily, each test
case is given its own namespace, in order to isolate tests from each
other. We do this by in the usual fashion, by appending module and
submodule names to our symbols. New macros assist by reducing friction
for this and other tasks, like overriding a function in the global
namespace with one in the current namespace, or declaring integer
variables to assist tracking how many times a mock has been called.
A set of tests for a small-scale module has been included in this
commit, in order to highlight how the paradigm can be used. This
suite gives 100% coverage to status.c in test execution.