Conflicts throughout. All resolved in favor of taking HEAD and
adding tor_mem* or fast_mem* ops as appropriate.
src/common/Makefile.am
src/or/circuitbuild.c
src/or/directory.c
src/or/dirserv.c
src/or/dirvote.c
src/or/networkstatus.c
src/or/rendclient.c
src/or/rendservice.c
src/or/router.c
src/or/routerlist.c
src/or/routerparse.c
src/or/test.c
Here I looked at the results of the automated conversion and cleaned
them up as follows:
If there was a tor_memcmp or tor_memeq that was in fact "safe"[*] I
changed it to a fast_memcmp or fast_memeq.
Otherwise if there was a tor_memcmp that could turn into a
tor_memneq or tor_memeq, I converted it.
This wants close attention.
[*] I'm erring on the side of caution here, and leaving some things
as tor_memcmp that could in my opinion use the data-dependent
fast_memcmp variant.
To make sure that a server learns if its IP has changed, the server
sometimes launches authority.z descriptor fetches from
update_router_descriptor_downloads. That's nice, but we're moving
towards a situation where update_router_descriptor_downloads doesn't
always get called. So this patch breaks the authority.z
check-and-fetch into a new function.
This function also renames last_routerdesc_download to a more
appropriate last_descriptor_download, and adds a new
update_all_descriptor_downloads() function.
(For now, this is unnecessary, since servers don't actually use
microdescriptors. But that could change, or bridges could start
using microdescriptors, and then we'll be glad this is refactored
nicely.)
To turn this on, set UseMicrodescriptors to "1" (or "auto" if you
want it on-if-you're-a-client). It should go auto-by-default once
0.2.3.1-alpha is released.
Because of our node logic, directory caches will never use
microdescriptors when they have the right routerinfo available.
Resolved conflicts in:
doc/tor.1.txt
src/or/circuitbuild.c
src/or/circuituse.c
src/or/connection_edge.c
src/or/connection_edge.h
src/or/directory.c
src/or/rendclient.c
src/or/routerlist.c
src/or/routerlist.h
These were mostly releated to the routerinfo_t->node_t conversion.
IOW, if we were using TrackExitHosts, and we added an excluded node or
removed a node from exitnodes, we wouldn't actually remove the mapping
that points us at the new node.
Also, note with an XXX022 comment a place that I think we are looking
at the wrong string.
The routerset_equal function explicitly handles NULL inputs, so
there's no need to check inputs for NULL before calling it.
Also fix a bug in routerset_equal where a non-NULL routerset with no
entries didn't get counted as equal to a NULL routerset. This was
untriggerable, I think, but potentially annoying down the road.
If we're picking a random directory node, never pick an excluded one.
But if we've chosen a specific one (or all), allow it unless strictnodes
is set (in which case warn so the user knows it's their fault).
When warning that we won't connect to a strictly excluded node,
log what it was we were trying to do at that node.
When ExcludeNodes is set but StrictNodes is not set, we only use
non-excluded nodes if we can, but fall back to using excluded nodes
if none of those nodes is usable.
Resolved nontrivial conflict around rewrite_x_address_for_bridge and
learned_bridge_descriptor. Now, since leanred_bridge_descriptor works
on nodes, we must make sure that rewrite_node_address_for_bridge also
works on nodes.
Conflicts:
src/or/circuitbuild.c
We need to make sure that the worst thing that a weird consensus param
can do to us is to break our Tor (and only if the other Tors are
reliably broken in the same way) so that the majority of directory
authorities can't pull any attacks that are worse than the DoS that
they can trigger by simply shutting down.
One of these worse things was the cbtnummodes parameter, which could
lead to heap corruption on some systems if the value was sufficiently
large.
This commit fixes this particular issue and also introduces sanity
checking for all consensus parameters.
Our public key functions assumed that they were always writing into a
large enough buffer. In one case, they weren't.
(Incorporates fixes from sebastian)
Sebastian notes (and I think correctly) that one of our ||s should
have been an &&, which simplifies a boolean expression to decide
whether to replace bridges. I'm also refactoring out the negation at
the start of the expression, to make it more readable.
https://trac.torproject.org/projects/tor/ticket/1859
There are two problems in this bug:
1. When an OP makes a .exit request specifying itself as the exit, and the exit
is not yet listed, Tor gets all the routerinfos needed for the circuit but
discovers in circuit_is_acceptable() that its own routerinfo is not in the
routerdigest list and cannot be used. Tor then gets locked in a cycle of
repeating these two steps. When gathering the routerinfos for a circuit,
specifically when the exit has been chosen by .exit notation, Tor needs to
apply the same rules it uses later on when deciding if it can build a
circuit with those routerinfos.
2. A different bug arises in the above situation when the Tor instance's
routerinfo *is* listed in the routerlist, it shares its nickname with a
number of other Tor nodes, and it does not have 'Named' rights to its
nickname.
So for example, if (i) there are five nodes named Bob in the network, (ii) I
am running one of them but am flagged as 'Unnamed' because someone else
claimed the 'Bob' nickname first, and (iii) I run my Tor as both client
and exit the following can happen to me:
- I go to www.evil.com
- I click on a link www.evil.com.bob.exit
- My request will exit through my own Tor node rather than the 'Named'
node Bob or any of the others.
- www.evil.com now knows I am actually browsing from the same computer
that is running my 'Bob' node
So to solve both issues we need to ensure:
- When fulfilling a .exit request we only choose a routerinfo if it exists in
the routerlist, even when that routerinfo is ours.
- When getting a router by nickname we only return our own router information
if it is not going to be used for building a circuit.
We ensure this by removing the special treatment afforded our own router in
router_get_by_nickname(). This means the function will only return the
routerinfo of our own router if it is in the routerlist built from authority
info and has a unique nickname or is bound to a non-unique nickname.
There are some uses of router_get_by_nickname() where we are looking for the
router by name because of a configuration directive, specifically local
declaration of NodeFamilies and EntryNodes and other routers' declaration of
MyFamily. In these cases it is not at first clear if we need to continue
returning our own routerinfo even if our router is not listed and/or has a
non-unique nickname with the Unnamed flag.
The patch treats each of these cases as follows:
Other Routers' Declaration of MyFamily
This happens in routerlist_add_family(). If another router declares our router
in its family and our router has the Unnamed flag or is not in the routerlist
yet, should we take advantage of the fact that we know our own routerinfo to
add us in anyway? This patch says 'no, treat our own router just like any
other'. This is a safe choice because it ensures our client has the same view
of the network as other clients. We also have no good way of knowing if our
router is Named or not independently of the authorities, so we have to rely on
them in this.
Local declaration of NodeFamilies
Again, we have no way of knowing if the declaration 'NodeFamilies
Bob,Alice,Ringo' refers to our router Bob or the Named router Bob, so we have
to defer to the authorities and treat our own router like any other.
Local declaration of NodeFamilies
Again, same as above. There's also no good reason we would want our client to
choose it's own router as an entry guard if it does not meet the requirements
expected of any other router on the network.
In order to reduce the possibility of error, the patch also replaces two
instances where we were using router_get_by_nickname() with calls to
router_get_by_hexdigest() where the identity digest of the router
is available.
In the case where old_router == NULL but sdmap has an entry for the
router, we can currently safely infer that the old_router was not a
bridge. Add an assert to ensure that this remains true, and fix the
logic not to die with the tor_assert(old_router) call.
https://trac.torproject.org/projects/tor/ticket/1859
There are two problems in this bug:
1. When an OP makes a .exit request specifying itself as the exit, and the exit
is not yet listed, Tor gets all the routerinfos needed for the circuit but
discovers in circuit_is_acceptable() that its own routerinfo is not in the
routerdigest list and cannot be used. Tor then gets locked in a cycle of
repeating these two steps. When gathering the routerinfos for a circuit,
specifically when the exit has been chosen by .exit notation, Tor needs to
apply the same rules it uses later on when deciding if it can build a
circuit with those routerinfos.
2. A different bug arises in the above situation when the Tor instance's
routerinfo *is* listed in the routerlist, it shares its nickname with a
number of other Tor nodes, and it does not have 'Named' rights to its
nickname.
So for example, if (i) there are five nodes named Bob in the network, (ii) I
am running one of them but am flagged as 'Unnamed' because someone else
claimed the 'Bob' nickname first, and (iii) I run my Tor as both client
and exit the following can happen to me:
- I go to www.evil.com
- I click on a link www.evil.com.bob.exit
- My request will exit through my own Tor node rather than the 'Named'
node Bob or any of the others.
- www.evil.com now knows I am actually browsing from the same computer
that is running my 'Bob' node
So to solve both issues we need to ensure:
- When fulfilling a .exit request we only choose a routerinfo if it exists in
the routerlist, even when that routerinfo is ours.
- When getting a router by nickname we only return our own router information
if it is not going to be used for building a circuit.
We ensure this by removing the special treatment afforded our own router in
router_get_by_nickname(). This means the function will only return the
routerinfo of our own router if it is in the routerlist built from authority
info and has a unique nickname or is bound to a non-unique nickname.
There are some uses of router_get_by_nickname() where we are looking for the
router by name because of a configuration directive, specifically local
declaration of NodeFamilies and EntryNodes and other routers' declaration of
MyFamily. In these cases it is not at first clear if we need to continue
returning our own routerinfo even if our router is not listed and/or has a
non-unique nickname with the Unnamed flag.
The patch treats each of these cases as follows:
Other Routers' Declaration of MyFamily
This happens in routerlist_add_family(). If another router declares our router
in its family and our router has the Unnamed flag or is not in the routerlist
yet, should we take advantage of the fact that we know our own routerinfo to
add us in anyway? This patch says 'no, treat our own router just like any
other'. This is a safe choice because it ensures our client has the same view
of the network as other clients. We also have no good way of knowing if our
router is Named or not independently of the authorities, so we have to rely on
them in this.
Local declaration of NodeFamilies
Again, we have no way of knowing if the declaration 'NodeFamilies
Bob,Alice,Ringo' refers to our router Bob or the Named router Bob, so we have
to defer to the authorities and treat our own router like any other.
Local declaration of NodeFamilies
Again, same as above. There's also no good reason we would want our client to
choose it's own router as an entry guard if it does not meet the requirements
expected of any other router on the network.
In order to reduce the possibility of error, the patch also replaces two
instances where we were using router_get_by_nickname() with calls to
router_get_by_hexdigest() where the identity digest of the router
is available.
Also, make the NodeFamily option into a list of routersets. This
lets us git rid of router_in_nickname_list (or whatever it was
called) without porting it to work with nodes, and also lets people
specify country codes and IP ranges in NodeFamily
This was the only flag in routerstatus_t that we would previously
change in a routerstatus_t in a consensus. We no longer have reason
to do so -- and probably never did -- as you can now confirm more
easily than you could have done by grepping for is_running before
this patch.
The name change is to emphasize that the routerstatus_t is_running
flag is only there to tell you whether the consensus says it's
running, not whether it *you* think it's running.
A node_t is an abstraction over routerstatus_t, routerinfo_t, and
microdesc_t. It should try to present a consistent interface to all
of them. There should be a node_t for a server whenever there is
* A routerinfo_t for it in the routerlist
* A routerstatus_t in the current_consensus.
(note that a microdesc_t alone isn't enough to make a node_t exist,
since microdescriptors aren't usable on their own.)
There are three ways to get a node_t right now: looking it up by ID,
looking it up by nickname, and iterating over the whole list of
microdescriptors.
All (or nearly all) functions that are supposed to return "a router"
-- especially those used in building connections and circuits --
should return a node_t, not a routerinfo_t or a routerstatus_t.
A node_t should hold all the *mutable* flags about a node. This
patch moves the is_foo flags from routerinfo_t into node_t. The
flags in routerstatus_t remain, but they get set from the consensus
and should not change.
Some other highlights of this patch are:
* Looking up routerinfo and routerstatus by nickname is now
unified and based on the "look up a node by nickname" function.
This tries to look only at the values from current consensus,
and not get confused by the routerinfo_t->is_named flag, which
could get set for other weird reasons. This changes the
behavior of how authorities (when acting as clients) deal with
nodes that have been listed by nickname.
* I tried not to artificially increase the size of the diff here
by moving functions around. As a result, some functions that
now operate on nodes are now in the wrong file -- they should
get moved to nodelist.c once this refactoring settles down.
This moving should happen as part of a patch that moves
functions AND NOTHING ELSE.
* Some old code is now left around inside #if 0/1 blocks, and
should get removed once I've verified that I don't want it
sitting around to see how we used to do things.
There are still some unimplemented functions: these are flagged
with "UNIMPLEMENTED_NODELIST()." I'll work on filling in the
implementation here, piece by piece.
I wish this patch could have been smaller, but there did not seem to
be any piece of it that was independent from the rest. Moving flags
forces many functions that once returned routerinfo_t * to return
node_t *, which forces their friends to change, and so on.
The node_t type is meant to serve two key functions:
1) Abstracting difference between routerinfo_t and microdesc_t
so that clients can use microdesc_t instead of routerinfo_t.
2) Being a central place to hold mutable state about nodes
formerly held in routerstatus_t and routerinfo_t.
This patch implements a nodelist type that holds a node for every
router that we would consider using.
When picking bridges (or other nodes without a consensus entry (and
thus no bandwidth weights)) we shouldn't just trust the node's
descriptor. So far we believed anything between 0 and 10MB/s, where 0
would mean that a node doesn't get any use from use unless it is our
only one, and 10MB/s would be a quite siginficant weight. To make this
situation better, we now believe weights in the range from 20kB/s to
100kB/s. This should allow new bridges to get use more quickly, and
means that it will be harder for bridges to see almost all our traffic.
Bridges and other relays not included in the consensus don't
necessarily have a non-zero bandwidth capacity. If all our
configured bridges had a zero bw capacity we would warn the
user. Change that.
It's normal when bootstrapping to have a lot of different certs
missing, so we don't want missing certs to make us warn... unless
the certs we're missing are ones that we've tried to fetch a couple
of times and failed at.
May fix bug 1145.
router_add_to_routerlist() is supposed to be a nice minimal function
that only touches the routerlist structures, but it included a call to
dirserv_single_reachability_test().
We have a function that gets called _after_ adding descriptors
successfully: routerlist_descriptors_added. This patch moves the
responsibility for testing there.
Because the decision of whether to test or not depends on whether
there was an old routerinfo for this router or not, we have to first
detect whether we _will_ want to run the tests if the router is added.
We make this the job of
routers_update_status_from_consensus_networkstatus().
Finally, this patch makes the code notice if a router is going from
hibernating to non-hibernating, and if so causes a reachability test
to get launched.
what's happening here is that we're fetching certs for obsolete
authorities -- probably legacy signers in this case. but try to
remain general in the log message.
I'm adding this because I can never remember what stuff like 'rule 3'
means. That's the one where if somebody goes limp or taps out, the
fight is over, right?
Treat strings returned from signed_descriptor_get_body_impl() as not
NUL-terminated. Since the length of the strings is available, this is
not a big problem.
Discovered by rieo.
this case can now legitimately happen, if you have a cached v2 status
from moria1, and you run with the new list of dirservers that's missing
the old moria1. it's nothing to worry about; the file will die off in
a month or two.
Some *_free functions threw asserts when passed NULL. Now all of them
accept NULL as input and perform no action when called that way.
This gains us consistence for our free functions, and allows some
code simplifications where an explicit null check is no longer necessary.
This patch introduces a new type called document_signature_t to represent the
signature of a consensus document. Now, each consensus document can have up
to one document signature per voter per digest algorithm. Also, each
detached-signatures document can have up to one signature per <voter,
algorithm, flavor>.
If any the v3 certs we download are unparseable, we should actually
notice the failure so we don't retry indefinitely. Bugfix on 0.2.0.x;
reported by "rotator".
rather than the bandwidth values in each relay descriptor. This approach
opens the door to more accurate bandwidth estimates once the directory
authorities start doing active measurements. Implements more of proposal
141.
When we got a descriptor that we (as an authority) rejected as totally
bad, we were freeing it, then using the digest in its RAM to look up its
download status. Caught by arma with valgrind. Bugfix on 0.2.1.9-alpha.