Apparently somewhere along the line we decided that MIN might be
missing.
But we already defined it (if it was missing) in compat.h, which
everybody includes.
Closes ticket 18889.
This marks some lines as unreachable by the unit tests, and as
therefore excluded from test coverage.
(Note: This convention is only for lines that are absolutely
unreachable. Don't use it anywhere you wouldn't add a
tor_fragile_assert().)
Did you know that crypto_digest_all is a substring of
crypto_digest_alloc_bytes()? Hence the mysterious emergence of
"crypto_common_digestsoc_bytes".
Next time I should use the \b assertion in my regexen.
Spotted by Mike.
They are no longer "all" digests, but only the "common" digests.
Part of 17795.
This is an automated patch I made with a couple of perl one-liners:
perl -i -pe 's/crypto_digest_all/crypto_common_digests/g;' src/*/*.[ch]
perl -i -pe 's/\bdigests_t\b/common_digests_t/g;' src/*/*.[ch]
We use sensible parameters taken from common sources, and no longer
have dynamic DH groups as an option, but it feels prudent to have
OpenSSL validate p and g at initialization time.
Check size argument to memwipe() for underflow.
Closes bug #18089. Reported by "gk", patch by "teor".
Bugfix on 0.2.3.25 and 0.2.4.6-alpha (#7352),
commit 49dd5ef3 on 7 Nov 2012.
OpenSSL doesn't use them, and fwict they were never called. If some
version of openssl *does* start using them, we should test them before
we turn them back on.
See ticket 17926
This is an eXtendable-Output Function with the following claimed
security strengths against *all* adversaries:
Collision: min(d/2, 256)
Preimage: >= min(d, 256)
2nd Preimage: min(d, 256)
where d is the amount of output used, in bits.
* DIGEST_SHA3_[256,512] added as supported algorithms, which do
exactly what is said on the tin.
* test/bench now benchmarks all of the supported digest algorithms,
so it's possible to see just how slow SHA-3 is, though the message
sizes could probably use tweaking since this is very dependent on
the message size vs the SHA-3 rate.
These functions must really never fail; so have crypto_rand() assert
that it's working okay, and have crypto_seed_rng() demand that
callers check its return value. Also have crypto_seed_rng() check
RAND_status() before returning.
(These inputs are possible when Shadow starts the world at time_t 0,
and breaks our assumption that Tor didn't exist in the 1970s.)
Fixes regression introduced in 241e6b09. Fixes#16980.
The base64 and base32 functions used to be in crypto.c;
crypto_format.h had no header; some general-purpose functions were in
crypto_curve25519.c.
This patch makes a {crypto,util}_format.[ch], and puts more functions
there. Small modules are beautiful!
The runtime sanity checking is slightly different from the optimized
basepoint stuff in that it uses a given implementation's self tests if
available, and checks if signing/verification works with a test vector
from the IETF EdDSA draft.
The unit tests include a new testcase that will fuzz donna against ref0,
including the blinding and curve25519 key conversion routines. If this
is something that should be done at runtime (No?), the code can be
stolen from there.
Note: Integrating batch verification is not done yet.
Integration work scavanged from nickm's `ticket8897_9663_v2` branch,
with minor modifications. Tor will still sanity check the output but
now also attempts to catch extreme breakage by spot checking the
optimized implementation vs known values from the NaCl documentation.
Implements feature 9663.
Routers now use TAP and ntor onion keys to sign their identity keys,
and put these signatures in their descriptors. That allows other
parties to be confident that the onion keys are indeed controlled by
the router that generated the descriptor.
OpenSSL 1.1.0 must be built with "enable-deprecated", and compiled with
`OPENSSL_USE_DEPRECATED` for this to work, so instead, use the newer
routine as appropriate.
These commands allow for the creation and management of ephemeral
Onion ("Hidden") services that are either bound to the lifetime of
the originating control connection, or optionally the lifetime of
the tor instance.
Implements #6411.
Incidently, this fixes a bug where the maximum value was never used when
only using crypto_rand_int(). For instance this example below in
rendservice.c never gets to INTRO_POINT_LIFETIME_MAX_SECONDS.
int intro_point_lifetime_seconds =
INTRO_POINT_LIFETIME_MIN_SECONDS +
crypto_rand_int(INTRO_POINT_LIFETIME_MAX_SECONDS -
INTRO_POINT_LIFETIME_MIN_SECONDS);
Signed-off-by: David Goulet <dgoulet@ev0ke.net>